Numerical Simulations of the Influence on the Temperature Fields of Large-Sized Nd-Glass Slab with Designed Edge-Cladding Materials, Methods, and Structures
Abstract
:1. Introduction
2. Modeling and Simulation
3. Results and Discussion
3.1. Temperature Field Evolution for Standard Edge-Cladding
3.2. Edge-Cladding by Halving the Absorption Coefficient and Deposition Energy
3.3. Edge-Cladding Using Materials with Higher Thermal Diffusivity and Higher and Lower Specific Heat
3.4. Edge-Cladding by 3D Printing
3.5. Edge-Cladding with Double Thickness and Double-Deck Structure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goren, C.; Tzuk, Y.; Marcus, G.; Pearl, S. Amplified Spontaneous Emission in Slab Amplifiers. IEEE J. Quantum Electron. 2006, 42, 1239–1247. [Google Scholar] [CrossRef]
- Moses, E.I.; de la Rubia, T.D.; Storm, E.; Latkowski, J.F.; Farmer, J.C.; Abbott, R.P.; Kramer, K.J.; Peterson, P.F.; Shaw, H.F.; Lehman, R.F. A Sustainable Nuclear Fuel Cycle Based on Laser Inertial Fusion Energy. Fusion Sci. Technol. 2009, 56, 547–565. [Google Scholar] [CrossRef]
- Li, W.; Gan, Z.; Yu, L.; Wang, C.; Liu, Y.; Guo, Z.; Xu, L.; Xu, M.; Hang, Y.; Xu, Y.; et al. 339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility. Opt. Lett. 2018, 43, 5681–5684. [Google Scholar] [CrossRef] [PubMed]
- Glaze, J.A.; Guch, S.; Trenholme, J.B. Parasitic Suppression in Large Aperture Nd:Glass Disk Laser Amplifiers. Appl. Opt. 1974, 13, 2808–2811. [Google Scholar] [CrossRef]
- Guch, S. Parasitic suppression in large aperture disk lasers employing liquid edge claddings. Appl. Opt. 1976, 15, 1453–1457. [Google Scholar] [CrossRef]
- Marker, A.; Mader, K.-H. Light Scattering from an Interface Bubble. In Proceedings of the 26th Annual Technical Symposium, Montreal, QC, Canada, 26–28 September 2011. [Google Scholar]
- Powell, H.T.; Riley Michael, O.; Wolfe Charles, R.; Lyon Richard, E.; Campbell John, H.; Jessop Edward, S.; Murray James, E. Composite Polymer-Glass Edge Cladding for Laser Disks. U.S. Patent 4,849,036, 18 July 1989. [Google Scholar]
- Zapata, L.E. Parasitic Oscillation Suppression in Solid State Lasers Using Absorbing Thin Films. U.S. Patent 5,335,237, 2 August 1994. [Google Scholar]
- Hackel, L.; Soules Thomas, F.; Fochs Scott, N.; Rotter Mark, D.; Letts Stephan, A. Gain Media Edge Treatment to Suppress Amplified Spontaneous Emission in a High Power Laser. U.S. Patent 7,894,496, 5 March 2005. [Google Scholar]
- Zhang, Y.; Wei, X.; Li, M.; Zheng, J.; Zhang, J.; Xie, N.; Wang, Z.; Wang, M.; Yan, X.; Jiang, X. Parasitic oscillation suppression in high-gain solid-state amplifiers. Laser Phys. 2013, 23, 055802. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, H.; Li, M.; Zheng, J.; Wei, X.; Gao, S.; Deng, Q.; Jiang, X.; Yan, X.; Wang, Z. ASE suppression in high-gain solid-state amplifiers by a leak method. Laser Phys. 2013, 23, 075802. [Google Scholar] [CrossRef]
- Wang, B.; Li, H.; Xiong, H.; Zhu, J. Explore on Inorganic Cladding of Neodymium Phosphate Glass used in Slab Amplifier. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 14 May 2017; p. JW2A.86. [Google Scholar]
- Wang, B.; Zhu, J.; Li, H.; Xiong, H.; Li, Y.; Zhang, Y.; Zhou, S. Research on inorganic cladding of neodymium phosphate glass in slab amplifier. In Proceedings of the SPIE LASE, High-Power Laser Materials Processing: Applications, Diagnostics, and Systems VII, San Francisco, CA, USA, 21 May 2018. [Google Scholar]
- Asahara, Y.; Tetsuro, I. Sealing Glass for Laser Glass. U.S. Patent 3,885,974, 27 May 1975. [Google Scholar]
- Toratani, H. Edge-Cladding Glass of Disc Laser Glass. U.S. Patent 4,217,382, 12 August 1980. [Google Scholar]
- Murray, J.E.; Riley, M.O.; Poli, R.J.; Powell, H.T. Silicone rubber edge claddings for laser disk amplifiers. In Proceedings of the Conference on Lasers and Electro-Optics, Anaheim, CA, USA, 19 June 1984; p. THF2. [Google Scholar]
- Marker, A.; Campbell, J. Low-expansion filter glass ceramics for the suppression of ASE. In Proceedings of the SPIE’s 1994 International Symposium on Optics, Imaging, and Instrumentation, San Jose, CA, USA, 6–10 February 1994. [Google Scholar]
- Marker, A.J. Cladding Glass Ceramic for Use in High Powered Lasers. U.S. Patent 5,508,235, 16 April 1996. [Google Scholar]
- Marker, A.J.; Campbell John, H. Cladding Glass Ceramic for Use in High Powered Lasers. U.S. Patent 5,718,979, 1 January 1998. [Google Scholar]
- Chen, H.; Wang, X.; Chen, Y.; Shen, Y.; Cheng, J.; Wen, L.; Tang, J.; Chen, W.; Chen, S.; Hu, L. Optimized monolithic edge-cladding glass for N31-type Nd-doped high power laser glass. Opt. Mater. 2021, 117, 111207. [Google Scholar] [CrossRef]
- Kiriyama, H.; Pirozhkov, A.S.; Nishiuchi, M.; Fukuda, Y.; Sagisaka, A.; Kon, A.; Miyasaka, Y.; Ogura, K.; Dover, N.P.; Kondo, K.; et al. Petawatt Femtosecond Laser Pulses from Titanium-Doped Sapphire Crystal. Crystals 2020, 10, 783. [Google Scholar] [CrossRef]
- Divoky, M.; Pilar, J.; Hanus, M.; Navratil, P.; Sawicka-Chyla, M.; De Vido, M.; Phillips, P.J.; Ertel, K.; Butcher, T.; Fibrich, M.; et al. Performance comparison of Yb:YAG ceramics and crystal gain material in a large-area, high-energy, high average-power diode-pumped laser. Opt. Express 2020, 28, 3636–3646. [Google Scholar] [CrossRef]
- Ogino, J.; Tokita, S.; Kitajima, S.; Yoshida, H.; Li, Z.; Motokoshi, S.; Morio, N.; Tsubakimoto, K.; Fujioka, K.; Kodama, R.; et al. 10 J operation of a conductive-cooled Yb:YAG active-mirror amplifier and prospects for 100 Hz operation. Opt. Lett. 2021, 46, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Ogino, J.; Tokita, S.; Kitajima, S.; Yoshida, H.; Li, Z.; Motokoshi, S.; Morio, N.; Tsubakimoto, K.; Fujioka, K.; Kodama, R.; et al. 10-J, 100-Hz conduction-cooled active-mirror laser. Opt. Contin. 2022, 1, 1270–1277. [Google Scholar] [CrossRef]
- Osipov, V.V.; Shitov, V.A.; Solomonov, V.I.; Lukyashin, K.E.; Spirina, A.V.; Maksimov, R.N. Composite Nd:YAG/Cr4+:YAG transparent ceramics for thin disk lasers. Ceram. Int. 2015, 41, 13277–13280. [Google Scholar] [CrossRef]
- Slezak, O.; Lucianetti, A.; Divoky, M.; Sawicka, M.; Mocek, T. Optimization of Wavefront Distortions and Thermal-Stress Induced Birefringence in a Cryogenically-Cooled Multislab Laser Amplifier. IEEE J. Quantum Electron. 2013, 49, 960–966. [Google Scholar] [CrossRef]
- Slezak, O.; Lucianetti, A.; Mocek, T. Efficient ASE Management in Disk Laser Amplifiers with Variable Absorbing Clads. IEEE J. Quantum Electron. 2014, 50, 1–9. [Google Scholar] [CrossRef]
- Spaeth, M.L.; Wegner, P.J.; Suratwala, T.I.; Nostrand, M.C.; Bude, J.D.; Conder, A.D.; Folta, J.A.; Heebner, J.E.; Kegelmeyer, L.M.; MacGowan, B.J.; et al. Optics Recycle Loop Strategy for NIF Operations above UV Laser-Induced Damage Threshold. Fusion Sci. Technol. 2016, 69, 265–294. [Google Scholar] [CrossRef]
- Di Nicola, J.M.; Bond, T.; Bowers, M.; Chang, L.; Hermann, M.; House, R.; Lewis, T.; Manes, K.; Mennerat, G.; MacGowan, B.; et al. The national ignition facility: Laser performance status and performance quad results at elevated energy. Nucl. Fusion 2018, 59, 032004. [Google Scholar] [CrossRef]
- Campbell, J.H.; Suratwala, T.I.; Thorsness, C.B.; Hayden, J.S.; Thorne, A.J.; Cimino, J.M.; Marker Iii, A.J.; Takeuchi, K.; Smolley, M.; Ficini-Dorn, G.F. Continuous melting of phosphate laser glasses. J. Non-Cryst. Solids 2000, 263–264, 342–357. [Google Scholar] [CrossRef]
- Zheng, W.; Wei, X.; Zhu, Q.; Jing, F.; Hu, D.; Su, J.; Zheng, K.; Yuan, X.; Zhou, H.; Dai, W.; et al. Laser performance of the SG-III laser facility. High Power Laser Sci. Eng. 2016, 4, e21. [Google Scholar] [CrossRef] [Green Version]
- Sutton, S.; Erlandson, A.; London, R.; Manes, K.; Marshall, C.; Petty, C.; Pierce, R.; Smith, L.; Zapata, L.; Beullier, J.; et al. Thermal recovery of the NIF amplifiers. In Proceedings of the Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, Monterey, CA, USA, 7–12 June 1999; pp. 665–675. [Google Scholar]
- Yu, H.W.; Zheng, W.G.; He, S.B.; Wang, C.C.; Chun, Y.Y.M.; Liu, Y.; Zhou, H. Numerical simulation of thermal recovery of the multi-segment amplifiers. High Power Laser Part. Beams 2000, 12, 411–415. [Google Scholar]
- Rek, Z.; Chapman, H.N.; Šarler, B.; Bajt, S. Numerical Simulation of Heat Load for Multilayer Laue Lens under Exposure to XFEL Pulse Trains. Photonics 2022, 9, 362. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Guo, J.; Lu, X.; Wang, Y.; Xiao, Q.; Fan, W.; Li, X. Numerical Simulation of Thermo-Optic Effects in an Nd: Glass Slab with Low Thermally Induced Wavefront Distortion. Photonics 2021, 8, 91. [Google Scholar] [CrossRef]
- Yu, H.W.; Zheng, W.G.; Wang, C.C.; Tang, J.; He, S.B.; Liu, Y.; Chun, Y.Y.M.; Wang, L. Investigation of Thermal Recovery of Wavefront Distortion of the Single-segment Amplifier. Chin. J. Lasers 2001, 28, 961–965. [Google Scholar]
- Guerrero, P.; Mikellides, I.G.; Polk, J.E.; Monreal, R.C.; Meiron, D.I. Critical implications of ion-surface energy accommodation and neutralization mechanism in hollow cathode physics. J. Appl. Phys. 2021, 130, 043306. [Google Scholar] [CrossRef]
- Evseeva, I.E.; Tanaeva, S.A. Thermophysical properties of epoxy composite materials at low temperatures. Cryogenics 1995, 35, 277–279. [Google Scholar] [CrossRef]
- Van Wonterghem, B.; Burkhart, S.; Haynam, C.; Manes, K.; Marshall, C.; Murray, J.; Spaeth, M.; Speck, D.; Sutton, S.; Wegner, P. National Ignition Facility commissioning and performance. In Proceedings of the Lasers and Applications in Science and Engineering, San Jose, CA, USA, 28 May 2004. [Google Scholar]
- Miller, G.; Moses, E.; Wuest, C. The National Ignition Facility. Opt. Eng. 2004, 43, 2841–2853. [Google Scholar] [CrossRef]
- Dantas, N.O.; Qu, F.; Monte, A.F.G.; Silva, R.S.; Morais, P.C. Optical properties of IV–VI quantum dots embedded in glass: Size-effects. J. Non-Cryst. Solids 2006, 352, 3525–3529. [Google Scholar] [CrossRef]
- Kolobkova, E.; Lipatova, Z.; Abdrshin, A.; Nikonorov, N. Luminescent properties of fluorine phosphate glasses doped with PbSe and PbS quantum dots. Opt. Mater. 2017, 65, 124–128. [Google Scholar] [CrossRef]
- Brumer, M.; Kigel, A.; Amirav, L.; Sashchiuk, A.; Solomesch, O.; Tessler, N.; Lifshitz, E. PbSe/PbS and PbSe/PbSexS1−x Core/Shell Nanocrystals. Adv. Funct. Mater. 2005, 15, 1111–1116. [Google Scholar] [CrossRef]
- Wehrenberg, B.L.; Wang, C.; Guyot-Sionnest, P. Interband and Intraband Optical Studies of PbSe Colloidal Quantum Dots. J. Phys. Chem. B 2002, 106, 10634–10640. [Google Scholar] [CrossRef]
- Wang, H.; Liu, C.; Pan, X.; Zhu, J. The application of ptychography in the field of high power laser. In Proceedings of the XX International Symposium on High Power Laser Systems and Applications, Chengdu, China, 3 February 2015. [Google Scholar]
- Doehring, T.; Jedamzik, R.; Hartmann, P.; Esemann, H.; Kunisch, C. Forming mandrels for x-ray telescopes made of modified Zerodur. In Proceedings of the Optical Science and Technology, SPIE’s 48th Annual Meeting, San Diego, CA, USA, 29 January 2004. [Google Scholar]
- Colak, S.C.; Aral, E. Optical and thermal properties of P2O5–Na2O–CaO–Al2O3:CoO glasses doped with transition metals. J. Alloys Compd. 2011, 509, 4935–4939. [Google Scholar] [CrossRef]
- Chethan, M.; Sudhakar Reddy, M.; Abhiram, J.; Rajiv, A. Optical Properties of Calcium Sodium Phosphate Glasses Doped with Strontium. In Proceedings of the Journal of Physics: Conference Series, Sanya, China, 1 May 2020; p. 012030. [Google Scholar]
- Moore, D.G.; Barbera, L.; Masania, K.; Studart, A.R. Three-dimensional printing of multicomponent glasses using phase-separating resins. Nat. Mater. 2020, 19, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Kotz, F.; Risch, P.; Helmer, D.; Rapp, B.E. High-Performance Materials for 3D Printing in Chemical Synthesis Applications. Adv. Mater. 2019, 31, 1805982. [Google Scholar] [CrossRef] [PubMed]
- Zaki, R.M.; Strutynski, C.; Kaser, S.; Bernard, D.; Hauss, G.; Faessel, M.; Sabatier, J.; Canioni, L.; Messaddeq, Y.; Danto, S.; et al. Direct 3D-printing of phosphate glass by fused deposition modeling. Mater. Des. 2020, 194, 108957. [Google Scholar] [CrossRef]
- Chen, H.; Qian, M.; Chen, Y.; Wang, X.; Tang, J.; Wen, L.; Hu, J.; Chen, W.; Chen, S.; Hu, L. Monolithic edge-cladding process for the elliptical disk of N31-type Nd-doped high-power laser glass. High Power Laser Sci. Eng. 2022, 10, e14. [Google Scholar] [CrossRef]
- Stolz, C. The National Ignition Facility: The World’s Largest Optical System; SPIE: Beijing, China, 2007; Volume 6834. [Google Scholar]
- Baisden, P.A. National Ignition Facility (NIF) program update. In Proceedings of the Optical Fabrication and Testing, Québec City, QC, Canada, 18 June 2000; p. OMC1. [Google Scholar]
- Chonion, R.; Sajer, J.M.; Bordenave, E.; Le Palud, F.; Dalbies, P.M.; Neauport, J. Multiphysics model of liquid-cooled Nd:phosphate split-slabs in large aperture optical amplifiers. Opt. Express 2020, 28, 20162–20176. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Li, W.; Wang, X.; Tang, J.; Chen, W.; Chen, S.; Hu, L. Numerical Simulations of the Influence on the Temperature Fields of Large-Sized Nd-Glass Slab with Designed Edge-Cladding Materials, Methods, and Structures. Photonics 2022, 9, 931. https://doi.org/10.3390/photonics9120931
Xu J, Li W, Wang X, Tang J, Chen W, Chen S, Hu L. Numerical Simulations of the Influence on the Temperature Fields of Large-Sized Nd-Glass Slab with Designed Edge-Cladding Materials, Methods, and Structures. Photonics. 2022; 9(12):931. https://doi.org/10.3390/photonics9120931
Chicago/Turabian StyleXu, Jixi, Weichang Li, Xin Wang, Jingping Tang, Wei Chen, Shubin Chen, and Lili Hu. 2022. "Numerical Simulations of the Influence on the Temperature Fields of Large-Sized Nd-Glass Slab with Designed Edge-Cladding Materials, Methods, and Structures" Photonics 9, no. 12: 931. https://doi.org/10.3390/photonics9120931
APA StyleXu, J., Li, W., Wang, X., Tang, J., Chen, W., Chen, S., & Hu, L. (2022). Numerical Simulations of the Influence on the Temperature Fields of Large-Sized Nd-Glass Slab with Designed Edge-Cladding Materials, Methods, and Structures. Photonics, 9(12), 931. https://doi.org/10.3390/photonics9120931