Preparation and Characterization of Nanostructured Inorganic Copper Zinc Tin Sulfide-Delafossite Nano/Micro Composite as a Novel Photodetector with High Efficiency
Abstract
:1. Introduction
2. Experimental Part
2.1. Preparation of Copper Zinc Tin Sulphide (CZTS)
2.2. Preparation of Cu/CuFeO2
2.3. Synthesis of Cu/CuFeO2/CZTS
2.4. Characterization
2.5. Photodetector Fabrication Process
3. Results and Discussion
3.1. SEM and TEM Analyses
3.2. XRD Analyses
3.3. Optical Analyses of the Prepared Materials
3.4. Testing Cu/CuFeO2/CZTS as a Photodetector
3.4.1. Effect of Light Power Intensity
3.4.2. Light Wavelength
3.4.3. Reproducibility and Stability
3.5. Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, W.; Yang, J.; Zhao, K.; Cui, A.; Zhou, J.; Tian, W.; Chu, J. High responsivity and external quantum efficiency photodetectors based on solution-processed Ni-doped CuO films. ACS Appl. Mater. Interfaces 2020, 12, 11797–11805. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, J.; Shi, S.; Dong, H.; Cheng, Y.; Wei, C.; Li, L. TiO2 nanorod arrays based self-powered UV photodetector: Heterojunction with NiO nanoflakes and enhanced UV photoresponse. ACS Appl. Mater. Interfaces 2018, 10, 11269–11279. [Google Scholar] [CrossRef]
- Shashanka, R.; Esgin, H.; Yilmaz, V.; Caglar, Y. Fabrication and characterization of green synthesized ZnO nanoparticle based dye-sensitized solar cells. Adv. Mater. Devices 2020, 5, 185–191. [Google Scholar] [CrossRef]
- Bera, A.; Deb, K.; Chattopadhyay, K.; Thapa, R.; Saha, B. Mixed phase delafossite structured p type CuFeO2/CuO thin film on FTO coated glass and its Schottky diode characteristics. Microelectron. Eng. 2016, 162, 23–26. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, X.; Lim, D.; Gong, H. A New Highly Conductive Direct Gap p-Type Semiconductor La1–x Y x CuOS for Dual Applications: Transparent Electronics and Thermoelectricity. ACS Appl. Mater. Interfaces 2020, 12, 6090–6096. [Google Scholar] [CrossRef]
- Min, W.; Park, K.; Kim, H.; Lee, J.; Park, K.; Kim, D.; Kim, H. Switching enhancement via a back-channel phase-controlling layer for p-type copper oxide thin-film transistors. ACS Appl. Mater. Interfaces 2020, 12, 24929–24939. [Google Scholar] [CrossRef]
- Gao, F.; Liu, X.; Zhang, J.; Song, M.; Li, N. Photovoltaic properties of the p-CuO/n-Si heterojunction prepared through reactive magnetron sputtering. J. Appl. Phys. 2012, 111, 084507. [Google Scholar] [CrossRef]
- Prabhu, R.; Saritha, A.; Shijeesh, M.; Jayaraj, M. Fabrication of p-CuO/n-ZnO heterojunction diode via sol-gel spin coating technique. Mater. Sci. Eng. 2017, 220, 82–90. [Google Scholar] [CrossRef]
- Hong, Q.; Cao, Y.; Xu, J.; Lu, H.; He, J.; Sun, J. Self-powered ultrafast broadband photodetector based on p–n heterojunctions of CuO/Si nanowire array. ACS Appl. Mater. Interfaces 2014, 6, 20887–20894. [Google Scholar] [CrossRef]
- Bera, A.; Deb, K.; Bera, T.; Sinthika, S.; Thapa, R.; Saha, B. Effect of Mg substitution in delafossite structured CuFeO2 thin film deposited on FTO coated glass substrate and its diode characteristics. Thin Solid Film. 2017, 642, 316–323. [Google Scholar] [CrossRef]
- Kawazoe, H.; Yasukawa, M.; Hyodo, H.; Kurita, M.; Yanagi, H.; Hosono, H. P-type electrical conduction in transparent thin films of CuAlO2. Nature 1997, 389, 939–942. [Google Scholar] [CrossRef]
- Zhang, B.; Thampy, S.; Dunlap-Shohl, W.; Xu, A.; Zheng, W.; Cao, Y.; Hsu, J. Mg doped CuCrO2 as efficient hole transport layers for organic and perovskite solar cells. Nanomaterials 2019, 9, 1311. [Google Scholar] [CrossRef] [Green Version]
- Hermans, Y.; Klein, A.; Sarker, H.P.; Huda, M.N.; Junge, H.; Toupance, T.; Jaegermann, W. Pinning of the Fermi Level in CuFeO2 by Polaron Formation Limiting the Photovoltage for Photochemical Water Splitting. Adv. Funct. Mater. 2020, 30, 1910432. [Google Scholar] [CrossRef] [Green Version]
- Vojkovic, S.; Fernandez, J.; Elgueta, S.; Vega, F.E.; Rojas, S.D.; Wheatley, R.A.; Seifert, B.; Wallentowitz, S.; Cabrera, A.L. Band Gap Determination in Multi-Band-Gap CuFeO2 Delafossite Epitaxial Thin Film by Photoconductivity. SN Appl. Sci. 2019, 1, 1322. [Google Scholar] [CrossRef] [Green Version]
- Alkallas, F.H.; Ben Gouider Trabelsi, A.; Alrebdi, T.A.; Ahmed, A.M.; Rabia, M. Development of a Highly Efficient Optoelectronic Device Based on CuFeO2/CuO/Cu Composite Nanomaterials. Materials 2022, 15, 6857. [Google Scholar] [CrossRef]
- Lee, S.; Lee, W.; Jang, Y.; Kim, B.; Bae, T.; Cho, J.; Jang, J. Sol-gel processed p-type CuO phototransistor for a near-infrared sensor. IEEE Electron. Device Lett. 2017, 39, 47–50. [Google Scholar] [CrossRef]
- Ruzgar, S.; Pehlivanoglu, S. The effect of Fe dopant on structural, optical properties of TiO2 thin films and electrical performance of TiO2 based photodiode. Superlattices Microstruct. 2020, 145, 106636. [Google Scholar] [CrossRef]
- Ruzgar, S.; Caglar, Y.; Polat, O.; Sobola, D.; Caglar, M. The influence of Fe substitution into photovoltaic performance of p-CuO/n-Si heterojunctions. J. Mater. Sci. Mater. Electron. 2021, 32, 20755–20766. [Google Scholar] [CrossRef]
- Li, J.; Wu, Q.; Wu, J. Synthesis of Nanoparticles via Solvothermal and Hydrothermal Methods. Nanoparticles 2016, 12, 295–328. [Google Scholar]
- Wang, L.; Wang, W.; Sun, S. A simple template-free synthesis of ultrathin Cu2ZnSnS4 nanosheets for highly stable photocatalytic H2 evolution. J. Mater. Chem. 2012, 22, 6553–6555. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.; Liao, H.; Yang, S.; Wang, T.; Liu, X. The preparation of Cu2ZnSnS4 thin film solar cell based on oxygen containing precursor. J. Mater. Sci. Mater. Electron. 2020, 31, 19309–19317. [Google Scholar] [CrossRef]
- Li, Q.; Yu, H.; Cui, Y.; Wang, J.; Du, J.; Wang, M.; Gao, S. Effect of Sulfurization Temperature on the Preparation of Cu2ZnSnS4 Thin Films for Solar Cells via a Nanoink Coating Method. Int. J. Electrochem. Sci. 2021, 16, 210558. [Google Scholar] [CrossRef]
- Yanalak, G.; Sarılmaz, A.; Aslan, E.; Ozel, F.; Patir, I. Photocatalytic hydrogen evolution reaction activity comparable to 1-D nanofiber materials exhibited by the kesterite nanorods catalysts. Renew. Energy 2020, 150, 469–475. [Google Scholar] [CrossRef]
- Ha, E.; Lee, L.; Man, H.; Tsang, S.; Wong, K. Morphology-controlled synthesis of Au/Cu2FeSnS4 core–shell nanostructures for plasmon-enhanced photocatalytic hydrogen generation. ACS Appl. Mater. Interfaces 2015, 7, 9072–9077. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Shavel, A.; An, X.; Luo, Z.; Ibanez, M.; Cabot, A. Cu2ZnSnS4-Pt and Cu2ZnSnS4-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. J. Am. Chem. Soc. 2014, 136, 9236–9239. [Google Scholar] [CrossRef]
- Guo, Q.; Hillhouse, H.; Agrawal, R. Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J. Am. Chem. Soc. 2009, 131, 11672–11673. [Google Scholar] [CrossRef] [PubMed]
- Steinhagen, C.; Panthani, M.; Akhavan, V.; Goodfellow, B.; Koo, B.; Korgel, B. Synthesis of Cu2ZnSnS4 nanocrystals for use in low-cost photovoltaics. J. Am. Chem. Soc. 2009, 131, 12554–12555. [Google Scholar] [CrossRef]
- Singh, A.; Geaney, H.; Laffir, F.; Ryan, K. Colloidal synthesis of wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly. J. Am. Chem. Soc. 2012, 134, 2910–2913. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhou, W.; Du, Y.; Li, M.; Wu, S. Sphere-like kesterite Cu2ZnSnS4 nanoparticles synthesized by a facile solvothermal method. Mater. Lett. 2011, 65, 1535–1537. [Google Scholar] [CrossRef]
- Nishi, H.; Kuwabata, S.; Torimoto, T. Composition-dependent photoelectrochemical properties of nonstoichiometric Cu2ZnSnS4 nanoparticles. J. Phys. Chem. 2013, 117, 21055–21063. [Google Scholar] [CrossRef]
- Ju, D.; Jiang, X.; Xiao, H.; Chen, X.; Hu, X.; Tao, X. Narrow band gap and high mobility of lead-free perovskite single crystal Sn-doped MA3Sb2I9. J. Mater. Chem. 2018, 6, 20753–20759. [Google Scholar] [CrossRef]
- Fadel, M.; Rabia, M.; Ezzat, S.; Mansour, N.; Saeed, E.; Sayyah, S. Effect of annealing temperature on VO2(M)/ITO film nanomaterials for thermochromic smart windows application and study its contact angle. J. Nanophotonics 2018, 12, 016009. [Google Scholar]
- Chen, C.; Yu, W.; Liu, T.; Cao, S.; Tsang, Y. Graphene oxide/WS2/Mg-doped ZnO nanocomposites for solar-light catalytic and anti-bacterial applications. Sol. Energy Mater. Sol. Cells 2017, 160, 43–53. [Google Scholar] [CrossRef]
- Shinde, N.M.; Deshmukh, P.R.; Patil, S.V.; Lokhande, C.D. Development of polyaniline/Cu2ZnSnS4 (CZTS) thin film based heterostructure as room temperature LPG sensor. Sens. Actuators A Phys. 2013, 193, 79–86. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, X.; Wang, H.; Feng, G. High coverage water adsorption on the CuO(111) surface. Appl. Surf. Sci. 2017, 425, 803–810. [Google Scholar] [CrossRef]
- Wang, X.; Tian, W.; Liao, M.; Bando, Y.; Golberg, D. Recent advances in solution-processed inorganic nanofilm photodetectors. Chem. Soc. Rev. 2014, 43, 1400–1422. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Zeng, B.; Xie, L.; Yu, C.; Liang, Q.; Wu, F.; Hu, J. Light trapping and surface plasmon enhanced high-performance NIR photodetector. Sci. Rep. 2014, 4, 3914. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhang, P.; Yu, J.; Wang, Y.; Zheng, D.; Zheng, W.; Pang, J. Constraints on mountain building in the northeastern Tibet: Detrital zircon records from synorogenic deposits in the Yumen Basin. Sci. Rep. 2016, 6, 27604. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Ouyang, B.; Han, L.; Mishra, Y.; Zhang, Z.; Yang, Y. Conjuncted photo-thermoelectric effect in ZnO–graphene nanocomposite foam for self-powered simultaneous temperature and light sensing. Sci. Rep. 2020, 10, 11864. [Google Scholar] [CrossRef]
- Jia, R.; Zhao, D.; Gao, N.; Liu, D. Polarization enhanced charge transfer: Dual-band GaN-based plasmonic photodetector. Sci. Rep. 2017, 7, 40483. [Google Scholar] [CrossRef] [Green Version]
- Kunwar, S.; Pandit, S.; Jeong, J.; Lee, J. Improved photoresponse of UV photodetectors by the incorporation of plasmonic nanoparticles on GaN through the resonant coupling of localized surface plasmon resonance. Nano-Micro Lett. 2020, 12, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, S.; Will, G.; Bell, J. Light intensity effects on photocatalytic water splitting with a titania catalyst. Int. J. Hydrog. Energy 2013, 38, 6938–6947. [Google Scholar] [CrossRef]
- Shaban, M.; Rabia, M.; El-Sayed, A.A.; Ahmed, A.; Sayed, S. Photocatalytic properties of PbS/graphene oxide/polyaniline electrode for hydrogen generation. Sci. Rep. 2017, 7, 14100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malerba, C.; Biccari, F.; Ricardo, C.; Valentini, M.; Chierchia, R.; Muller, M.; Mittiga, A. CZTS stoichiometry effects on the band gap energy. J. Alloy. Compd. 2014, 582, 528–534. [Google Scholar] [CrossRef]
- Khammar, M.; Ynineb, F.; Guitouni, S.; Bouznit, Y.; Attaf, N. Crystallite size and intrinsic strain contribution in band gap energy redshift of ultrasonic-sprayed kesterite CZTS nanostructured thin films. Appl. Phys. A 2020, 126, 398. [Google Scholar] [CrossRef]
- Aqaei, F.; Zare, M.; Shafiekhani, A. Role of plasmonic Au nanoparticles embedded in the diamond-like carbon overlayer in the performance of CuFeO2 solar photocathodes. J. Solid State Electrochem. 2021, 25, 1139–1150. [Google Scholar] [CrossRef]
- Madusanka, H.; Herath, H.; Fernando, C. High photoresponse performance of self-powered n-Cu2O/p-CuI heterojunction based UV-Visible photodetector. Sens. Actuators A Phys. 2019, 296, 61–69. [Google Scholar] [CrossRef]
- Guo, D.; Li, W.; Wang, D.; Meng, B.; Fang, D.; Wei, Z. High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition. Chin. Phys. B 2020, 29, 098504. [Google Scholar] [CrossRef]
- Wu, H.; Ma, C.; Zhang, J.; Cao, H.; Lin, R.; Bai, W.; Chu, J. High-Performance Photodetectors with an Ultrahigh Photoswitching Ratio and a Very Fast Response Speed in Self-Powered Cu2ZnSnS4/CdS PN Heterojunctions. ACS Appl. Electron. Mater. 2021, 3, 4135–4143. [Google Scholar] [CrossRef]
- Lai, B.; Shen, H.; Zhao, Q.; Li, Y.; Fan, W. Self-driven heterostructure photodetector of sputtered CZTS film on c-Si with an inverted pyramid structure. Ceram. Int. 2022, 48, 2105–2111. [Google Scholar] [CrossRef]
- Gour, K.; Singh, O.; Bhattacharyya, B.; Parmar, R.; Husale, S.; Senguttuvan, T.; Singh, V. Enhanced photoresponse of Cu2ZnSn(S,Se)4 based photodetector in visible range. J. Alloy. Compd. 2017, 694, 119–123. [Google Scholar] [CrossRef]
- Han, M.; Sun, J.; Peng, M.; Han, N.; Chen, Z.; Liu, D.; Yang, Z. Controllable growth of lead-free all-inorganic perovskite nanowire array with fast and stable near-infrared photodetection. J. Phys. Chem. C 2019, 123, 17566–17573. [Google Scholar] [CrossRef]
- Cao, F.; Tian, W.; Wang, M.; Wang, M.; Li, L. Stability enhancement of lead-free CsSnI3 perovskite photodetector with reductive ascorbic acid additive. InfoMat 2020, 2, 577–584. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Liang, J.; Yang, J.; Soni, K.; Fang, Q.; Wang, W.; Lou, J. Lead-free double perovskite Cs2SnX6: Facile solution synthesis and excellent stability. Small 2019, 15, 1901650. [Google Scholar] [CrossRef]
- Tao, S.; Chen, Y.; Cui, J.; Zhou, H.; Yu, N.; Gao, X.; Wu, M. Organic–inorganic hybrid (CH3NH3)2FeCuI4Cl2 and (CH3NH3)2InCuI6 for ultraviolet light photodetectors. Chem. Commun. 2020, 56, 1875–1878. [Google Scholar] [CrossRef]
- Chang, C.; Chen, W.; Chen, Y.; Ding, F.; Liu, Z. Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 2021, 37, 2108017. [Google Scholar] [CrossRef]
- Lan, T.; Fallatah, A.; Suiter, E.; Padalkar, S. Size controlled copper(I)oxide nanoparticles influence sensitivity of glucose biosensor. Sensors 2017, 17, 1944. [Google Scholar] [CrossRef] [Green Version]
- An, Q.; Meng, X.; Xiong, K.; Qiu, Y. Self-powered ZnS nanotubes/Ag nanowires MSM UV photodetector with high on/off ratio and fast response speed. Sci. Rep. 2017, 7, 4885. [Google Scholar] [CrossRef]
Structure | Wavelength (nm) | Bais (V) | R (AW−1) | D (Jone) |
---|---|---|---|---|
n-Cu2O/p-CuI [47] | 465 | 0 | 0.25 | - |
Cu2O/ZnO [48] | 596 | 0 | 0.288 × 10–3 | - |
CZTS/Cds [49] | 300 | 0 | 0.12 | - |
CZTS/Si [50] | 780 | 0 | 0.122 × 10–2 | 1.98 × 1010 |
Cu2ZnSn(S, Se)4 [51] | 532 | 5 | 0.0146 | 3.5 × 109 |
CsSnI3 [52] | 940 | 0.1 | 0.054 | 3.85 × 105 |
TiO2/CsSnI3/P3HT [53] | 350–1000 | 0 | 0.257 | 1.5 × 1010 |
Cs2SnI6 [54] | - | 3 | - | - |
(MA)2FeCuI4Cl2 [55] | - | 0.3 | 1.4 × 10–5 | - |
TiO2/MAFeCl4 [56] | - | 0 | - | - |
GO/Cu2O [57] | 300 | 2 | 0.0005 | 1.0 × 106 |
ZnS/Ag [58] | 300 | 0 | 0.100 | 1.67 × 1010 |
Cu/CuFeO2/CZTS (this work) | 400 | 1 | 0.127 | 1.7 × 1010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.H.; Hassan, A.S.; Ahmed, A.M.; Abdel-Khaliek, A.A.; Abd El Khalik, S.; Abass, S.M.; Shaban, M.; Alzahrani, F.M.; Rabia, M. Preparation and Characterization of Nanostructured Inorganic Copper Zinc Tin Sulfide-Delafossite Nano/Micro Composite as a Novel Photodetector with High Efficiency. Photonics 2022, 9, 979. https://doi.org/10.3390/photonics9120979
Ali AH, Hassan AS, Ahmed AM, Abdel-Khaliek AA, Abd El Khalik S, Abass SM, Shaban M, Alzahrani FM, Rabia M. Preparation and Characterization of Nanostructured Inorganic Copper Zinc Tin Sulfide-Delafossite Nano/Micro Composite as a Novel Photodetector with High Efficiency. Photonics. 2022; 9(12):979. https://doi.org/10.3390/photonics9120979
Chicago/Turabian StyleAli, Amira H., Asmaa S. Hassan, Ashour M. Ahmed, Ahmed A. Abdel-Khaliek, Sawsan Abd El Khalik, Safaa M. Abass, Mohamed Shaban, Fatimah Mohammed Alzahrani, and Mohamed Rabia. 2022. "Preparation and Characterization of Nanostructured Inorganic Copper Zinc Tin Sulfide-Delafossite Nano/Micro Composite as a Novel Photodetector with High Efficiency" Photonics 9, no. 12: 979. https://doi.org/10.3390/photonics9120979
APA StyleAli, A. H., Hassan, A. S., Ahmed, A. M., Abdel-Khaliek, A. A., Abd El Khalik, S., Abass, S. M., Shaban, M., Alzahrani, F. M., & Rabia, M. (2022). Preparation and Characterization of Nanostructured Inorganic Copper Zinc Tin Sulfide-Delafossite Nano/Micro Composite as a Novel Photodetector with High Efficiency. Photonics, 9(12), 979. https://doi.org/10.3390/photonics9120979