Design and Optimization of Asymmetric Grating Assisted Slot Microring
Abstract
:1. Introduction
2. Structure Design and Theoretical Analysis
2.1. Structure Design
2.2. Theoretical Analysis
3. Structural Optimization
3.1. Microring Radius
3.2. Grating Depth
3.3. Grating Duty Cycle
3.4. Grid Number/Period
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Battula, S.; Kumar, M.; Panda, S.K.; Pavan, K.; Rao, U. In-Situ Microplastic Detection Sensor Based on Cascaded Microring Resonators. In Proceedings of the OCEANS 2021, San Diego, CA, USA, 20–23 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Zuoqin, D.; Dai, D.; Shi, Y. Ultra-sensitive silicon temperature sensor based on cascaded Mach–Zehnder interferometers. Opt. Lett. 2021, 46, 2787–2790. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. A serially cascaded micro-ring resonator for simultaneous detection of multiple analytes. Laser Phys. 2019, 29, 046208. [Google Scholar] [CrossRef]
- Lei, J.; Mingyu, L.; Jianjun, H. Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect. Opt. Commun. 2011, 284, 156–159. [Google Scholar] [CrossRef]
- Kumar, B.S.; Varshney, S.K. Ultrawide FSR microring racetrack resonator with an integrated Fabry–Perot cavity for refractive index sensing. J. Opt. Soc. Am. B 2021, 38, 1669–1675. [Google Scholar] [CrossRef]
- Wu, J.; Moein, T.; Xu, X.; Ren, G.; Mitchell, A.; Moss, D.J. Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity. APL Photonics 2017, 2, 056103. [Google Scholar] [CrossRef] [Green Version]
- Malmir, K.; Habibiyan, H.; Ghafoorifard, H. An ultrasensitive optical label-free polymeric biosensor based on concentric triple microring resonators with a central microdisk resonator. Opt. Commun. 2016, 365, 150–156. [Google Scholar] [CrossRef]
- Bahram, A.; Shabankareh, M.A.G.; Farmani, A. Simulation of a refractive index sensor based on the Vernier effect and a cascaded PANDA and Mach–Zehnder interferometer. J. Comput. Electron. 2021, 20, 1599–1610. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, C.; Luo, Y.; Yang, Z.; Zhang, W.; Li, L.; Xu, P.; Zhang, P.; Xu, T. High Q-factor, ultrasensitivity slot microring resonator sensor based on chalcogenide glasses. Opt. Express 2022, 30, 3866–3875. [Google Scholar] [CrossRef]
- Yao, S.; Han, H.; Jiang, S.; Xiang, B.; Chai, G.; Ruan, S. Design, Simulation, and Analysis of Optical Microring Resonators in Lithium Tantalate on Insulator. Crystals 2021, 11, 480. [Google Scholar] [CrossRef]
- Ciminelli, C.; Dell’Olio, F.; Brunetti, G.; Conteduca, D.; Armenise, M.N. New microwave photonic filter based on a ring resonator including a photonic crystal structure. In Proceedings of the 19th International Conference on Transparent Optical Networks (ICTON), Girona, Spain, 2–6 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Capmany, J.; Domenech, D.; Muñoz, P. Silicon graphene reconfigurable CROWS and SCISSORS. IEEE Photonics J. 2015, 7, 2700609. [Google Scholar] [CrossRef]
- Brunetti, G.; Sasanelli, N.; Armenise, M.N.; Ciminelli, C. High performance and tunable optical pump-rejection filter for quantum photonic systems. Opt. Laser Technol. 2021, 139, 106978. [Google Scholar] [CrossRef]
- Ciminelli, C.; Innone, F.; Brunetti, G.; Conteduca, D.; Dell’Olio, F.; Tatoli, T.; Armenise, M.N. Rigorous model for the design of ultra-high Q-factor resonant cavities. In Proceedings of the 18th International Conference on Transparent Optical Networks (ICTON), Trento, Italy, 10–14 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Spencer, D.T.; Bauters, J.F.; Heck, M.J.R.; Bowers, J.E. Integrated waveguide coupled Si 3 N 4 resonators in the ultrahigh-Q regime. Optica 2014, 1, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Jin, N.; Cheng, H.; Chauhan, N.; Puckett, M.W.; Nelson, K.D.; Behunin, R.O.; Rakich, P.T.; Blumenthal, D.J. Ultralow 0.034 dB/m loss wafer-scale integrated photonics realizing 720 million Q and 380 μW threshold Brillouin lasing. Opt. Lett. 2022, 47, 1855–1858. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Shi, Y.; Lei, D.; He, D.; Mi, X. High Sensitivity Optical Sensor Based on Periodic Grating Waveguide Structure for Real-time Sensing. In Proceedings of the International Conference on Electronic Information Technology and Smart Agriculture (ICEITSA), Huaihua, China, 10–12 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 66–70. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, D.N.; Gao, F. Simultaneous refractive index and temperature sensing based on a fiber surface waveguide and fiber Bragg gratings. Opt. Lett. 2021, 46, 1209–1212. [Google Scholar] [CrossRef]
- Shi, W.; Wang, X.; Zhang, W.; Yun, H.; Lin, C.; Chrostowski, L.; Jaeger, N.A.F. Grating-coupled silicon microring resonators. Appl. Phys. Lett. 2012, 100, 121118. [Google Scholar] [CrossRef]
- Li, G.; Ji, L.; Li, G.; Su, J.; Wu, C. High-resolution and large-dynamic-range temperature sensor using fiber Bragg grating Fabry-Pérot cavity. Opt. Express 2021, 29, 18523–18529. [Google Scholar] [CrossRef]
- Sun, X.; Chang, Z.; Zeng, L.; Zhang, L.; Hu, Y.; Duan, J. Simultaneous vector bending and temperature sensing based on eccentric multi-mode fiber Bragg gratings. Sens. Actuators A Phys. 2021, 331, 112903. [Google Scholar] [CrossRef]
- Shu, Q.; Wu, L.; Lu, S.; Xiao, W. High-sensitivity structure based on fiber Bragg grating sensor and its application in nonintrusive detection of pipeline pressure change. Measurement 2022, 189, 110444. [Google Scholar] [CrossRef]
- Dong, X.; Liu, Y.; Liu, Z.; Dong, X. Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor. Opt. Commun. 2001, 192, 213–217. [Google Scholar] [CrossRef]
- Ying, Z.C.; Zhang, L.; Zhang, C.M. Compact SOI optimized slot microring coupled phase-shifted Bragg grating resonator for sensing. Opt. Commun. 2018, 414, 212–216. [Google Scholar] [CrossRef]
- Kavitha, B.S.; Sridevi, S.; Makam, P.; Ghosh, D.; Govindaraju, T.; Asokan, S.; Sood, A.K. Highly sensitive and Rapid detection of mercury in water using functionalized etched fiber Bragg grating sensors. Sens. Actuators B Chem. 2021, 333, 129550. [Google Scholar] [CrossRef]
- Gao, G.; Zhang, Y.; Zhang, H.; Xia, J. Air-mode photonic crystal ring resonator on silicon-on-insulator. Sci. Rep. 2016, 6, 19999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunetti, G.; Dell’Olio, F.; Conteduca, D.; Armenise, M.N.; Ciminelli, C. Comprehensive mathematical modelling of ultra-high Q grating-assisted ring resonators. J. Opt. 2020, 22, 035802. [Google Scholar] [CrossRef]
- Liu, C.; Sang, C.; Wu, X.; Cai, J.; Wang, J. Grating double-slot micro-ring resonator for sensing. Opt. Commun. 2021, 499, 127280. [Google Scholar] [CrossRef]
- Puckett, M.W.; Vallini, F.; Grieco, A.; Fainman, Y. Multichannel Bragg gratings in silicon waveguides with asymmetric sidewall modulation. Opt. Lett. 2015, 40, 379–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.H.; Kongnyuy, T.D.; De Heyn, P.; Lardenois, S.; Jansen, R.; Rottenberg, X. Enhanced Silicon Ring Resonators Using Low-Loss Bends. IEEE Photonics Technol. Lett. 2021, 33, 313–316. [Google Scholar] [CrossRef]
Refractive Index Sensor | Q | S (nm/RIU) | FSR (nm) |
---|---|---|---|
Serially cascaded microring resonator [3] (simulation results) | - | 232 | 160 |
Microring racetrack resonator with an integrated Fabry–Perot cavity [5] (simulation results) | - | 185 | 150 |
Compact SOI optimized slot microring coupled phase-shifted Bragg grating [24] (simulation results) | 2000 | 297.13 | 30 |
Slot microring resonator sensor based on chalcogenide glasses [9] (experimental results) | 10,000 | 471 | 2.2 |
Integrated waveguide coupled Si3N4 resonators [15] (experimental results) | 8 × 107 | - | 0.03 |
Air-mode photonic crystal ring resonator [26] (experimental results) | 14,600 | - | 3.38 |
Ultra-high Q grating-assisted ring resonators [27] (simulation results) | 1010 | - | 10−3 |
ASGMRR with grating periods of 70 and 90 (simulation results) | 5016 | 370 | 137 |
ASGMRR with grating periods of 70 and 50 (simulation results) | 10,730 | 370 | 92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Wang, J.; Wu, X.; Sun, X.; Qiao, Z.; Xin, Y.; Zhang, J. Design and Optimization of Asymmetric Grating Assisted Slot Microring. Photonics 2022, 9, 988. https://doi.org/10.3390/photonics9120988
Liu C, Wang J, Wu X, Sun X, Qiao Z, Xin Y, Zhang J. Design and Optimization of Asymmetric Grating Assisted Slot Microring. Photonics. 2022; 9(12):988. https://doi.org/10.3390/photonics9120988
Chicago/Turabian StyleLiu, Chunjuan, Jiawei Wang, Xiaosuo Wu, Xiaoli Sun, Ze Qiao, Yuqiang Xin, and Jiangfeng Zhang. 2022. "Design and Optimization of Asymmetric Grating Assisted Slot Microring" Photonics 9, no. 12: 988. https://doi.org/10.3390/photonics9120988
APA StyleLiu, C., Wang, J., Wu, X., Sun, X., Qiao, Z., Xin, Y., & Zhang, J. (2022). Design and Optimization of Asymmetric Grating Assisted Slot Microring. Photonics, 9(12), 988. https://doi.org/10.3390/photonics9120988