Recent Advances in 850 nm VCSELs for High-Speed Interconnects
Abstract
:1. Introduction
2. Basic Concepts of VCSELs
2.1. Device Structure
2.2. Pros and Cons of VCSELs
2.2.1. Pros
2.2.2. Cons
2.3. Applications of VCSELs
2.3.1. Datacom
2.3.2. Sensing
2.3.3. Autonomous Vehicle Systems (AVSs)
2.3.4. Computing
2.3.5. Next-Generation Computing
3. Evolution of High-Speed 850 nm VCSELs
3.1. Various Signal Modulation Formats
1. Channel frequency:
Increase the optical channel frequencies of the optical modulators.
2. Parallelism:
Increase the number of channels by either increasing the number of fibers or using multiple wavelengths in a single fiber, which is known as wavelength-division multiplexing (WDM). Technologies such as frequency-division multiplexing (FDM) also allow more efficient use of the channel modulation bandwidth.
3. Complexity:
Increase the number of bits per symbol by incorporating various advanced modulation formats.
3.1.1. Non-Return to Zero (NRZ)
3.1.2. PAM-4
3.1.3. QAM
3.1.4. FDM
3.2. Mode Control
4. Design and Optimization of High-Speed 850 nm VCSELs
4.1. Transfer Functions
- = the intrinsic transfer function of VCSELs
- = the electrical transfer function due to the RC parasitic roll-off
- = the fitting constant
- = the optical modulation amplitude
- = the modulated current through the active region of the VCSEL, as illustrated in Figure 11
- = the damping rate
- = the extra pole that resembles the RC parasitic roll-off
4.2. Active Region Design
4.3. Temperature Insensitive Design
4.4. Characteristics of Modern High-Speed 850 nm VCSELs
4.5. Small-Signal Modeling
4.6. D-Factor
- = the group velocity of the light
- = the material gain
- = the elementary electric charge
- = the internal quantum efficiency
- = the optical confinement factor in the active region
- = the volume of the active region (dependent on the oxide aperture size)
- = the carrier transport factor indicating the speed of the carrier flowing from the confinement layer to the quantum well.
- = the carrier density in the cavity
- = the material gain at the lasing threshold
- = the recombination carrier lifetime
- = the photon lifetime.
4.7. K-Factor
- =
- = the gain compression coefficient
- = the damping factor offset, which is inversely proportional to rec.
4.8. Extrinsic Parasitic Optimizations
4.8.1. Epilayer Optimizations
4.8.2. Layout Optimizations
4.8.3. Passivation Materials
4.8.4. Impurity-Induced Disordering
5. Historical Review of Modern 850 nm VCSELs and Features of Next-Generation High-Speed VCSELs
5.1. Benchmarking of the State-of-the-Art 850 nm VCSELs at RT
5.2. Features of Next-Generation VCSELs
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iga, K.; Kambayashi, T.; Kitahara, C. Surface-emitting GaInAsP/InP laser (I). In Proceedings of the 25th Joint Conference on Applied Physics, Tokyo, Japan, 27 March 1978; p. 63. [Google Scholar]
- Soda, H.; Iga, K.; Kitahara, C.; Suematsu, Y. GaInAsP/InP Surface Emitting Injection Lasers. Jpn. J. Appl. Phys. 1979, 18, 2329–2330. [Google Scholar] [CrossRef]
- Iga, K.; Koyama, F.; Kinoshita, S. Surface emitting semiconductor lasers. IEEE J. Quantum Electron. 1988, 24, 1845–1855. [Google Scholar] [CrossRef]
- Jewell, J.L.; Huang, K.F.; Tai, K.; Lee, Y.H.; Fischer, R.J.; McCall, S.L.; Cho, A.Y. Vertical cavity single quantum well laser. Appl. Phys. Lett. 1989, 55, 424–426. [Google Scholar] [CrossRef]
- Corzine, S.; Geels, R.; Scott, J.; Yan, R.H.; Coldren, L. Design of Fabry-Perot surface-emitting lasers with a periodic gain structure. IEEE J. Quantum Electron. 1989, 25, 1513–1524. [Google Scholar] [CrossRef]
- Jewell, J.; Scherer, A.; McCall, S.; Lee, Y.H.; Walker, S.; Harbison, J.; Florez, L. Low-Threshold Electrically Pumps Vertical-Cavity Surface-Emitting Microlasers. Electron. Lett. 1989, 25, 1123–1124. [Google Scholar] [CrossRef]
- Optical Transceivers for Datacom & Telecom Market 2021 Report. Available online: https://www.i-micronews.com/products/optical-transceivers-for-datacom-telecom-market-2021/?utm_source=PR&utm_medium=email&utm_campaign=PR_OPTICAL_TRANSCEIVERS_FOR_DATACOM_AND_TELECOM_YOLEGROUP_July2021 (accessed on 5 January 2022).
- Dallesasse, J.M.; Gavrilovic, P.; Holonyak, N.; Kaliski, R.W.; Nam, D.W.; Vesely, E.J.; Burnham, R.D. Stability of AlAs in AlxGa1-xAs-AlAs-GaAs quantum well heterostructures. Appl. Phys. Lett. 1990, 56, 2436–2438. [Google Scholar] [CrossRef]
- Huffaker, D.L.; Deppe, D.G.; Kumar, K.; Rogers, T.J. Native-oxide defined ring contact for low threshold vertical-cavity lasers. Appl. Phys. Lett. 1994, 65, 97–99. [Google Scholar] [CrossRef]
- Dallesasse, J.M.; Deppe, D.G. III–V Oxidation: Discoveries and Applications in Vertical-Cavity Surface-Emitting Lasers. Proc. IEEE 2013, 101, 2234–2242. [Google Scholar] [CrossRef]
- Afromowitz, M.A. Thermal conductivity of Ga1-xAlxAs alloys. J. Appl. Phys. 1973, 44, 1292–1294. [Google Scholar] [CrossRef]
- Corzine, S.W.; Yan, R.H.; Coldren, L.A. Theoretical gain in strained InGaAs/AlGaAs quantum wells including valence-band mixing effects. Appl. Phys. Lett. 1990, 57, 2835–2837. [Google Scholar] [CrossRef]
- Aggerstam, T.; von Wurtemberg, R.M.; Runnstrom, C.; Choumas, E. Large aperture 850 nm oxide-confined VCSELs for 10Gb/s data communication. In Vertical-Cavity Surface-Emitting Lasers VI; Lei, C., Kilcoyne, S.P., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2002; Volume 4649, pp. 19–24. [Google Scholar] [CrossRef]
- Coldren, L.; Corzine, S. Diode Lasers and Photonic Integrated Circuits; Wiley: Hoboken, NJ, USA, 1995. [Google Scholar]
- Young, D.; Kapila, A.; Scott, J.; Malhotra, V.; Coldren, L. Reduced threshold vertical-cavity surface-emitting lasers. Electron. Lett. 1994, 30, 233–235. [Google Scholar] [CrossRef]
- Lear, K.; Hietala, V.; Hou, H.; Banas, J.; Hammons, B.; Zolper, J.; Kilcoyne, S. Small and large signal modulation of 850 nm oxide-confined verticai-cavity surface-emitting lasers. In Proceedings of the CLEO’97, Summaries of Papers Presented at the Conference on Lasers and Electro-Optics, Baltimore, MD, USA, 18–23 May 1997; Volume 11, pp. 193–194. [Google Scholar] [CrossRef]
- AL-Omari, A.N.; Lear, K.L. Dielectric characteristics of spin-coated dielectric films using on-wafer parallel-plate capacitors at microwave frequencies. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 1151–1161. [Google Scholar] [CrossRef]
- Tanigawa, T.; Onishi, T.; Nagai, S.; Ueda, T. High-speed 850 nm AlGaAs/GaAs vertical cavity surface emitting laser with low parasitic capacitance fabricated using BCB planarization technique. In Proceedings of the CLEO, Conference on Lasers and Electro-Optics, Baltimore, MD, USA, 22–27 May 2005; Volume 2, pp. 1381–1383. [Google Scholar] [CrossRef]
- The Dow Chemical Company. Advanced Packaging Polymers Product Selection Guide. Available online: https://www.microresist.de/en/?jet_download=4823 (accessed on 5 January 2022).
- Jiang, W.J.; Chen, L.C.; Wu, M.C.; Yu, H.C.; Yang, H.P.; Sung, C.P.; Chi, J.Y.; Huang, C.Y.; Wu, Y.T. A new process to improve the performance of 850 nm wavelength GaAs VCSELs. Solid-State Electron. 2002, 46, 2287–2289. [Google Scholar] [CrossRef]
- Wang, C.Y.; Liu, M.; Feng, M.; Holonyak, N. Microwave extraction method of radiative recombination and photon lifetimes up to 85 °C on 50 Gb/s oxide-vertical cavity surface emitting laser. J. Appl. Phys. 2016, 120, 223103. [Google Scholar] [CrossRef]
- Wang, H.L.; Fu, W.; Qiu, J.; Feng, M. 850 nm VCSELs for 50 Gb/s NRZ Error-Free Transmission over 100-meter OM4 and up to 115 °C Operation. In Proceedings of the 2019 Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 3–7 March 2019; p. W3A.1. [Google Scholar] [CrossRef]
- Cheng, H.T.; Yang, Y.C.; Wu, C.H. High thermal stability of 850 nm VCSELs with enhanced mask margin up to 85 °C for 100G-SR4 Operation. In Proceedings of the 2021 30th Wireless and Optical Communications Conference (WOCC), Taipei, Taiwan, 7–8 October 2021; pp. 49–53. [Google Scholar] [CrossRef]
- Iga, K.; Li, H. Vertical-Cavity Surface-Emitting Laser Devices; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar] [CrossRef]
- Dummer, M.; Johnson, K.; Rothwell, S.; Tatah, K.; Hibbs-Brenner, M. The role of VCSELs in 3D sensing and LiDAR. In Optical Interconnects XXI; Schröder, H., Chen, R.T., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2021; Volume 11692, pp. 42–55. [Google Scholar] [CrossRef]
- CommScope. Solutions for Multi Tenant Data Centers: HD Fiber. Available online: https://www.flickr.com/photos/48464290@N05/36135239403 (accessed on 5 January 2022).
- Wu, H.; Fu, W.; Feng, M.; Deppe, D. 2.6 K VCSEL data link for cryogenic computing. Appl. Phys. Lett. 2021, 119, 041101. [Google Scholar] [CrossRef]
- Vishay Intertechnology. New IRED- and VCSEL-Powered VCNL36821S and VCNL36826S Proximity Sensors Feature Power Consumption Down to 6 µA in 2.55 mm × 2.05 mm × 1.0 mm SMD Package for Consumer and Industrial Applications. Available online: https://www.flickr.com/photos/43093990@N05/49339783313 (accessed on 5 January 2022).
- Jurvetson. Velodyne High-Def LIDAR Photo by Jurvetson. Available online: https://www.flickr.com/photos/44124348109@N01/4042817787 (accessed on 5 January 2022).
- Velodyne Lidar. Velodyne’s HDL-64E Lidar Sensor Looks Back on a Legendary Career. Available online: https://velodynelidar.com/products/hdl-64e (accessed on 5 January 2022).
- IEEE Standard for Information Technology–Local and Metropolitan Area Networks–Part 3: CSMA/CD Access Method and Physical Layer Specifications–Media Access Control (MAC) Parameters, Physical Layer, and Management Parameters for 10 Gb/s Operation. IEEE Std 802.3ae-2002 (Amendment to IEEE Std 802.3-2002). 2002, pp. 1–544. Available online: https://ieeexplore.ieee.org/document/1040118 (accessed on 5 January 2022). [CrossRef]
- IEEE Standard for Ethernet–Amendment 3: Physical Layer Specifications and Management Parameters for 40 Gb/s and 100 Gb/s Operation over Fiber Optic Cables. IEEE Std 802.3bm-2015 (Amendment to IEEE Std 802.3-2012 as amended by IEEE Std 802.3bk-2013 and IEEE Std 802.3bj-2014 ). 2015, pp. 1–172. Available online: https://standards.ieee.org/ieee/802.3bm/5657/ (accessed on 5 January 2022). [CrossRef]
- IEEE Standard for Ethernet—Amendment 10: Media Access Control Parameters, Physical Layers, and Management Parameters for 200 Gb/s and 400 Gb/s Operation. IEEE Std 802.3bs-2017 (Amendment to IEEE 802.3-2015 as amended by IEEE’s 802.3bw-2015, 802.3by-2016, 802.3bq-2016, 802.3bp-2016, 802.3br-2016, 802.3bn-2016, 802.3bz-2016, 802.3bu-2016, 802.3bv-2017, and IEEE 802.3-2015/Cor1-2017). 2017, pp. 1–372. Available online: https://ieeexplore.ieee.org/document/8207825 (accessed on 5 January 2022). [CrossRef]
- IEEE Standard for Ethernet–Amendment 7: Physical Layer and Management Parameters for 400 Gb/s over Multimode Fiber. IEEE Std 802.3cm-2020 (Amendment to IEEE Std 802.3-2018 as amended by IEEE Std 802.3cb-2018, IEEE Std 802.3bt-2018, IEEE Std 802.3cd-2018, IEEE Std 802.3cn-2019, IEEE Std 802.3cg-2019, and IEEE Std 802.3cq-2020). 2020, pp. 1–72. Available online: https://ieeexplore.ieee.org/document/9052826 (accessed on 5 January 2022). [CrossRef]
- Ethernet Alliance. The 2020 Ethernet Roadmap. Available online: https://ethernetalliance.org/wp-content/uploads/2020/03/EthernetRoadmap-2020-Side1-FINAL.pdf (accessed on 5 January 2022).
- Sun, P.; Kretzschmar, H.; Dotiwalla, X.; Chouard, A.; Patnaik, V.; Tsui, P.; Guo, J.; Zhou, Y.; Chai, Y.; Caine, B.; et al. Scalability in perception for autonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2446–2454. [Google Scholar] [CrossRef]
- SONY. Optical Disc Archive Generation 2. Available online: https://pro.sony/s3/cms-static-content/file/49/1237494482649.pdf (accessed on 5 January 2022).
- Mukoyama, N.; Otoma, H.; Sakurai, J.; Ueki, N.; Nakayama, H. VCSEL Array-Based Light Exposure System for Laser Printing. In Vertical-Cavity Surface-Emitting Lasers XII; Lei, C., Guenter, J.K., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2008; Volume 6908, pp. 146–156. [Google Scholar] [CrossRef]
- Krinner, S.; Storz, S.; Kurpiers, P.; Magnard, P.; Heinsoo, J.; Keller, R.; Lütolf, J.; Eichler, C.; Wallraff, A. Engineering cryogenic setups for 100-qubit scale superconducting circuit systems. EPJ Quantum Technol. 2019, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.T.; Wu, C.H.; Fu, W.; Wang, H.L.; Feng, M.; Wu, C.H. Cryogenic operation of a high speed 850 nm VCSEL with 40.1 GHz modulation bandwidth at 223 K. In Proceedings of the 2020 Opto-Electronics and Communications Conference (OECC), Taipei, Taiwan, 4–8 October 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Fu, W.; Wu, H.; Wu, D.; Feng, M.; Deppe, D. Cryogenic Oxide-VCSEL for PAM-4 Optical Data Transmission Over 50 Gb/s at 77 K. IEEE Photonics Technol. Lett. 2021, 33, 816–819. [Google Scholar] [CrossRef]
- SFF Committee. INF-8074 SFP (Small Formfactor Pluggable) Tansceiver. Available online: https://members.snia.org/document/dl/26184 (accessed on 5 January 2022).
- SFF Committee. SFF-8431 SFP+ 10 Gb/s and Low Speed Electrical Interface. Available online: https://members.snia.org/document/dl/25891 (accessed on 5 January 2022).
- SFF Committee. SFF-8402 SFP+ 1X 28 Gb/s Pluggable Transceiver Solution (SFP28). Available online: https://members.snia.org/document/dl/25869 (accessed on 5 January 2022).
- SFF Committee. SFF-8436 QSFP+ 4X 10 Gb/s Pluggable Transceiver. Available online: https://members.snia.org/document/dl/25896 (accessed on 5 January 2022).
- SFF Committee. SFF-8665 QSFP+ 28 Gb/s 4X Pluggable Transceiver Solution (QSFP28). Available online: https://members.snia.org/document/dl/25963 (accessed on 5 January 2022).
- Institute of Electrical and Electronics Engineers. IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force. Available online: http://www.ieee802.org/3/ck/index.html (accessed on 5 January 2022).
- Organisation internationale de la Francophonie. OIF CEI-112 G XSR, VSR, MR, and LR Working Group. Available online: https://www.oiforum.com/technical-work/current-work/ (accessed on 5 January 2022).
- Peng, C.Y.; Tsai, C.T.; Wang, H.Y.; Wu, Y.C.; Shih, T.T.; Huang, J.J.; Kuo, H.C.; Cheng, W.H.; Lin, G.R.; Wu, C.H.W. High-Temperature Insensitivity of 50-Gb/s 16-QAM-DMT Transmission by Using the Temperature-Compensated Vertical-Cavity Surface-Emitting Lasers. J. Light. Technol. 2018, 36, 3332–3343. [Google Scholar] [CrossRef]
- Huang, C.Y.; Wang, H.Y.; Peng, C.Y.; Tsai, C.T.; Wu, C.H.; Lin, G.R. Multimode VCSEL Enables 42-GBaud PAM-4 and 35-GBaud 16-QAM OFDM for 100-m OM5 MMF Data Link. IEEE Access 2020, 8, 36963–36973. [Google Scholar] [CrossRef]
- Lavrencik, J.; Varughese, S.; Ledentsov, N.; Chorchos, Ł.; Ledentsov, N.N.; Ralph, S.E. 168Gbps PAM-4 Multimode Fiber Transmission through 50m using 28GHz 850nm Multimode VCSELs. In Proceedings of the Optical Fiber Communication Conference (OFC) 2020, San Diego, CA, USA, 8–12 March 2020; p. W1D.3. [Google Scholar] [CrossRef]
- Zhong, K.; Zhou, X.; Gui, T.; Tao, L.; Gao, Y.; Chen, W.; Man, J.; Zeng, L.; Lau, A.P.T.; Lu, C. Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s Short Reach Optical Transmission Systems. Opt. Express 2015, 23, 1176–1189. [Google Scholar] [CrossRef] [Green Version]
- Puerta, R.; Agustin, M.; Chorchos, Ł.; Toński, J.; Kropp, J.R.; Ledentsov, N.; Shchukin, V.; Ledentsov, N.; Henker, R.; Monroy, I.T.; et al. 107.5 Gb/s 850 nm multi- and single-mode VCSEL transmission over 10 and 100 m of multi-mode fiber. In Proceedings of the Optical Fiber Communication Conference Postdeadline Papers, Anaheim, CA, USA, 20–22 March 2016; p. Th5B.5. [Google Scholar] [CrossRef] [Green Version]
- Ledentsov, N., Jr.; Chorchos, L.; Makarov, O.Y.; Shchukin, V.A.; Kalosha, V.P.; Kropp, J.R.; Turkiewicz, J.P.; Kottke, C.; Jungnickel, V.; Freund, R.; et al. Serial data transmission at 224 Gbit/s applying directly modulated 850 and 910 nm VCSELs. Electron. Lett. 2021, 57, 735–737. [Google Scholar] [CrossRef]
- Kao, H.Y.; Tsai, C.T.; Leong, S.F.; Peng, C.Y.; Chi, Y.C.; Huang, J.J.; Kuo, H.C.; Shih, T.T.; Jou, J.J.; Cheng, W.H.; et al. Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission. Opt. Express 2017, 25, 16347–16363. [Google Scholar] [CrossRef] [PubMed]
- Kao, H.Y.; Huang, C.Y.; Peng, C.Y.; Tsai, C.T.; Wang, H.Y.; Leong, S.F.; Kuo, H.C.; Wu, C.H.; Lin, G.R. Single-mode VCSEL for Nearly 100-Gbit/s QAM-OFDM transmission over 100-m OM4 multi-mode fiber. In Proceedings of the CLEO Pacific Rim Conference 2018, Hong Kong, China, 29 July–3 August 2018; Optical Society of America: Washington, DC, USA, 2018; p. W3A.12. [Google Scholar] [CrossRef]
- Wu, W.L.; Huang, C.Y.; Wang, H.Y.; Lin, Y.H.; Wu, C.H.; Kuo, H.C.; Cheng, W.H.; Wu, C.H.; Feng, M.; Lin, G.R. VCSEL with bi-layer oxidized aperture enables 140-Gbit/s OFDM Transmission over 100-m-long OM5 MMF. In Proceedings of the Optical Fiber Communication Conference (OFC) 2019, San Diego, CA, USA, 3–7 March 2019; Optical Society of America: Washington, DC, USA, 2019; p. Tu3A.3. [Google Scholar] [CrossRef]
- Lo, W.C.; Wu, W.L.; Peng, C.Y.; Wang, H.Y.; Tsai, C.T.; Su, B.; Wu, C.H.; Lin, G.R. Multimode VCSEL Enables Multi-Data-Format Encoding up to 124 Gbit/s. In Proceedings of the Conference on Lasers and Electro-Optics, Washington, DC, USA, 10–15 May 2020; Optical Society of America: Washington, DC, USA, 2020; p. STu4M.5. [Google Scholar] [CrossRef]
- Wu, C.H.; Huang, T.Y.; Qiu, J.; Fu, W.; Peng, C.Y.; Shih, T.T.; Huang, J.J.; Kuo, H.C.; Lin, G.R.; Cheng, W.H.; et al. 50 Gb/s Error-Free Data Transmission Using a NRZ-OOK Modulated 850 nm VCSEL. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Rome, Italy, 23–27 September 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Huang, T.Y.; Qiu, J.; Wu, C.H.; Cheng, H.T.; Feng, M.; Kuo, H.C.; Wu, C.H. A NRZ-OOK Modulated 850-nm VCSEL with 54 Gb/s Error-Free Data Transmission. In Proceedings of the 2019 Conference on Lasers and Electro-Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 23–27 June 2019; p. 1. [Google Scholar] [CrossRef]
- Chorchos, L.; Ledentsov, N.; Kropp, J.R.; Shchukin, V.A.; Kalosha, V.P.; Lewandowski, A.; Turkiewicz, J.P.; Ledentsov, N.N. Energy Efficient 850 nm VCSEL Based Optical Transmitter and Receiver Link Capable of 80 Gbit/s NRZ Multi-Mode Fiber Data Transmission. J. Light. Technol. 2020, 38, 1747–1752. [Google Scholar] [CrossRef]
- Haglund, E.; Westbergh, P.; Gustavsson, J.S.; Haglund, E.P.; Larsson, A.; Geen, M.; Joel, A. 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s. Electron. Lett. 2015, 51, 1096–1098. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Murty, M.V.R.; Feng, Z.W.; Joyo, S.T.; Sridhara, A.; Cai, X.; Harren, A.L.; Leong, N.; Koh, G.H.; Cheng, A.N.; et al. 100Gb/s PAM4 oxide VCSEL development progress at Broadcom. In Vertical-Cavity Surface-Emitting Lasers XXIV; Graham, L.A., Lei, C., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2020; Volume 11300, pp. 84–89. [Google Scholar] [CrossRef]
- Ledentsov, N.; Chorchos, L.; Makarov, O.; Kropp, J.R.; Shchukin, V.A.; Kalosha, V.P.; Turkiewicz, J.P.; Ledentsov, N.N. Narrow spectrum VCSEL development for high performance 100G transceivers and increased transmission distance over multimode fiber. In Vertical-Cavity Surface-Emitting Lasers XXV; Lei, C., Choquette, K.D., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2021; Volume 11704, pp. 78–84. [Google Scholar] [CrossRef]
- Yang, Y.C.; Cheng, H.T.; Wu, C.H. 30 GHz Highly Damped Oxide Confined Vertical-Cavity Surface-Emitting Laser. In Proceedings of the 2021 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 18–21 October 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Maki, J.J. Pivotal Issues for 400 Gb/s Ethernet. Available online: https://www.ieee802.org/3/bs/public/14_05/maki_3bs_01a_0514.pdf (accessed on 5 January 2022).
- Lee, J.; Chiang, P.C.; Peng, P.J.; Chen, L.Y.; Weng, C.C. Design of 56 Gb/s NRZ and PAM4 SerDes Transceivers in CMOS Technologies. IEEE J.-Solid-State Circuits 2015, 50, 2061–2073. [Google Scholar] [CrossRef]
- Li, M.J.; Li, K.; Chen, X.; Mishra, S.K.; Juarez, A.A.; Hurley, J.E.; Stone, J.S.; Wang, C.H.; Cheng, H.T.; Wu, C.H.; et al. Single-Mode VCSEL Transmission for Short Reach Communications. J. Light. Technol. 2021, 39, 868–880. [Google Scholar] [CrossRef]
- Kao, H.Y.; Chi, Y.C.; Peng, C.Y.; Leong, S.F.; Chang, C.K.; Wu, Y.C.; Shih, T.T.; Huang, J.J.; Kuo, H.C.; Cheng, W.H.; et al. Modal Linewidth Dependent Transmission Performance of 850-nm VCSELs With Encoding PAM-4 Over 100-m MMF. IEEE J. Quantum Electron. 2017, 53, 1–8. [Google Scholar] [CrossRef]
- Qiu, J.; Yu, X.; Feng, M. 85 °C Operation of Single-Mode 850 nm VCSELs for High Speed Error-Free Transmission up to 1 km in OM4 Fiber. In Proceedings of the Optical Fiber Communication Conference (OFC) 2019, San Diego, CA, USA, 3–7 March 2019; Optical Society of America: Washington, DC, USA, 2019; p. W3A.4. [Google Scholar] [CrossRef]
- Peng, C.Y.; Qiu, J.; Huang, T.Y.; Wu, C.H.; Feng, M.; Wu, C.H. 850-nm Single-Mode Vertical-Cavity Surface-Emitting Lasers for 40 Gb/s Error-Free Transmission up to 500 m in OM4 Fiber. IEEE Electron Device Lett. 2020, 41, 84–86. [Google Scholar] [CrossRef]
- Huang, C.Y.; Tsai, C.T.; Weng, J.H.; Cheng, C.H.; Wang, H.Y.; Wu, C.H.; Feng, M.; Lin, G.R. Temperature and Noise Dependence of Tri-Mode VCSEL Carried 120-Gbit/s QAM-OFDM Data in Back-to-Back and OM5-MMF Links. J. Light. Technol. 2020, 38, 6746–6758. [Google Scholar] [CrossRef]
- Haglund, E.; Haglund, Å.; Gustavsson, J.S.; Kögel, B.; Westbergh, P.; Larsson, A. Reducing the spectral width of high speed oxide confined VCSELs using an integrated mode filter. In Vertical-Cavity Surface-Emitting Lasers XVI; Lei, C., Choquette, K.D., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2012; Volume 8276, pp. 171–178. [Google Scholar] [CrossRef] [Green Version]
- Orenstein, M.; Stoffel, N.; Von Lehmen, A.; Harbison, J.; Florez, L. Efficient continuous wave operation of vertical-cavity semiconductor lasers using buried-compensation layers to optimize current flow. Appl. Phys. Lett. 1991, 59, 31–33. [Google Scholar] [CrossRef]
- Unold, H.; Mahmoud, S.; Jager, R.; Grabherr, M.; Michalzik, R.; Ebeling, K. Large-area single-mode VCSELs and the self-aligned surface relief. IEEE J. Sel. Top. Quantum Electron. 2001, 7, 386–392. [Google Scholar] [CrossRef]
- Gustavsson, J.; Haglund, A.; Bengtsson, J.; Modh, P.; Larsson, A. Dynamic behavior of fundamental-mode stabilized VCSELs using a shallow surface relief. IEEE J. Quantum Electron. 2004, 40, 607–619. [Google Scholar] [CrossRef]
- Song, D.S.; Kim, S.H.; Park, H.G.; Kim, C.K.; Lee, Y.H. Single-fundamental-mode photonic-crystal Vertical-Cavity Surface-Emitting Lasers. Appl. Phys. Lett. 2002, 80, 3901–3903. [Google Scholar] [CrossRef] [Green Version]
- Danner, A.; Kim, T.; Choquette, K. Single fundamental mode photonic crystal vertical cavity laser with improved output power. Electron. Lett. 2005, 41, 325–326. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.J.; Dziura, T.G.; Bardin, T.; Wang, S.C.; Fernandez, R. Continuous-wave single-transverse-mode vertical-cavity surface-emitting lasers fabricated by helium Implantation and zinc diffusion. Electron. Lett. 1992, 28, 274–276. [Google Scholar] [CrossRef]
- Shi, J.W.; Chen, C.C.; Wu, Y.S.; Guol, S.H.; Kuo, C.; Yang, Y.J. High-Power and High-Speed Zn-Diffusion Single Fundamental-Mode Vertical-Cavity Surface-Emitting Lasers at 850-nm Wavelength. IEEE Photonics Technol. Lett. 2008, 20, 1121–1123. [Google Scholar] [CrossRef]
- Shi, J.W.; Yan, J.C.; Wun, J.M.; Chen, J.; Yang, Y.J. Oxide-Relief and Zn-Diffusion 850-nm Vertical-Cavity Surface-Emitting Lasers With Extremely Low Energy-to-Data-Rate Ratios for 40 Gbit/s Operations. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 7900208. [Google Scholar] [CrossRef]
- Shi, J.W.; Wei, Z.R.; Chi, K.L.; Jiang, J.W.; Wun, J.M.; Lu, I.C.; Chen, J.; Yang, Y.J. Single-Mode, High-Speed, and High-Power Vertical-Cavity Surface-Emitting Lasers at 850 nm for Short to Medium Reach (2 km) Optical Interconnects. J. Light. Technol. 2013, 31, 4037–4044. [Google Scholar] [CrossRef]
- Shi, J.W.; Wei, C.C.; Chen, J.; Ledentsov, N.N.; Yang, Y.J. Single-mode 850-nm vertical-cavity surface-emitting lasers with Zn-diffusion and oxide-relief apertures for >50 Gbit/sec OOK and 4-PAM transmission. In Vertical-Cavity Surface-Emitting Lasers XXI; Choquette, K.D., Lei, C., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2017; Volume 10122, pp. 99–108. [Google Scholar] [CrossRef]
- Peng, C.Y.; Cheng, H.T.; Kuo, H.C.; Wu, C.H. Design and Optimization of VCSELs for up to 40-Gb/s Error-Free Transmission Through Impurity-Induced Disordering. IEEE Trans. Electron Devices 2020, 67, 1041–1046. [Google Scholar] [CrossRef]
- Lee, S.Y.; Chen, X.; Lo, W.C.; Li, K.; Wang, C.H.; Tsai, C.T.; Cheng, C.H.; Wu, C.H.; Kuo, H.C.; Li, M.J.; et al. 850-nm Dual-Mode VCSEL Carried 53-Gbps NRZ- OOK Transmission in 100-m Graded-Index Single-Mode Fiber. In Proceedings of the Optical Fiber Communication Conference (OFC) 2021, Washington, DC, USA, 6–11 June 2021; Optical Society of America: Washington, DC, USA, 2021; p. Tu5C.3. [Google Scholar] [CrossRef]
- Cheng, C.L.; Ledentsov, N.; Agustin, M.; Kropp, J.R.; Ledentsov, N.N.; Khan, Z.; Shi, J.W. Ultra-Fast Zn-Diffusion/Oxide-Relief 940 nm VCSELs. In Proceedings of the Optical Fiber Communication Conference (OFC) 2019, San Diego, CA, USA, 3–7 March 2019; Optical Society of America: Washington, DC, USA, 2019; p. W3A.2. [Google Scholar] [CrossRef]
- Wang, H.L.; Qiu, J.; Yu, X.; Fu, W.; Feng, M. The Modal Effect of VCSELs on Transmitting Data Rate Over Distance in OM4 Fiber. IEEE J. Quantum Electron. 2020, 56, 1–6. [Google Scholar] [CrossRef]
- Lu, D.; Ahn, J.; Huang, H.; Deppe, D.G. All-epitaxial mode-confined vertical-cavity surface-emitting laser. Appl. Phys. Lett. 2004, 85, 2169–2171. [Google Scholar] [CrossRef]
- Zhao, G.; Deppe, D. Thermal performance of oxide-free lithographic VCSELs. In Proceedings of the IEEE Photonic Society 24th Annual Meeting, Arlington, VA, USA, 9–13 October 2011; pp. 915–916. [Google Scholar] [CrossRef]
- Piprek, J. Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Haglund, E.P.; Westbergh, P.; Gustavsson, J.S.; Larsson, A. Impact of Damping on High-Speed Large Signal VCSEL Dynamics. J. Light. Technol. 2015, 33, 795–801. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Dutta, N.K. Vertical-Cavity Surface-Emitting Lasers: Technology and Applications; CRC Press: Boca Raton, FL, USA, 2000; Volume 10. [Google Scholar]
- Michalzik, R. VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Larsson, A.; Gustavsson, J.S.; Westbergh, P.; Haglund, E.; Haglund, E.P.; Simpanen, E.; Lengyel, T.; Szczerba, K.; Karlsson, M. VCSEL design and integration for high-capacity optical interconnects. In Optical Interconnects XVII; Schröder, H., Chen, R.T., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2017; Volume 10109, pp. 129–134. [Google Scholar] [CrossRef] [Green Version]
- Bond, A.; Dapkus, P.; O’brien, J. Aperture placement effects in oxide-defined vertical-cavity surface-emitting lasers. IEEE Photonics Technol. Lett. 1998, 10, 1362–1364. [Google Scholar] [CrossRef]
- Healy, S.B.; O’Reilly, E.P.; Gustavsson, J.S.; Westbergh, P.; Haglund, A.; Larsson, A.; Joel, A. Active Region Design for High-Speed 850-nm VCSELs. IEEE J. Quantum Electron. 2010, 46, 506–512. [Google Scholar] [CrossRef]
- Zhao, B.; Chen, T.; Yariv, A. The extra differential gain enhancement in multiple-quantum-well lasers. IEEE Photonics Technol. Lett. 1992, 4, 124–126. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ng, W.C.; Choquette, K.; Hess, K. Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 2005, 41, 15–25. [Google Scholar] [CrossRef]
- AL-Omari, A.N.; Lear, K.L. Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-GHz bandwidth. IEEE Photonics Technol. Lett. 2004, 16, 969–971. [Google Scholar] [CrossRef]
- Chang, Y.C.; Coldren, L.A. Efficient, High-Data-Rate, Tapered Oxide-Aperture Vertical-Cavity Surface-Emitting Lasers. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 704–715. [Google Scholar] [CrossRef]
- AL-Omari, A.N.; AL-Kofahi, I.K.; Lear, K.L. Fabrication, performance and parasitic parameter extraction of 850 nm high-speed vertical-cavity lasers. Semicond. Sci. Technol. 2009, 24, 095024. [Google Scholar] [CrossRef]
- Mutig, A.; Fiol, G.; Potschke, K.; Moser, P.; Arsenijevic, D.; Shchukin, V.A.; Ledentsov, N.N.; Mikhrin, S.S.; Krestnikov, I.L.; Livshits, D.A.; et al. Temperature-Dependent Small-Signal Analysis of High-Speed High-Temperature Stable 980-nm VCSELs. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 679–686. [Google Scholar] [CrossRef]
- Wu, C.H.; Tan, F.; Wu, M.K.; Feng, M.; Holonyak, N. The effect of microcavity laser recombination lifetime on microwave bandwidth and eye-diagram signal integrity. J. Appl. Phys. 2011, 109, 053112. [Google Scholar] [CrossRef]
- Hamad, W.; Wanckel, S.; Hofmann, W.H.E. Small-Signal Analysis of Ultra-High-Speed Multi-Mode VCSELs. IEEE J. Quantum Electron. 2016, 52, 1–11. [Google Scholar] [CrossRef]
- Hamad, W.; Bou Sanayeh, M.; Hamad, M.M.; Hofmann, W.H.E. Impedance Characteristics and Chip-Parasitics Extraction of High-Performance VCSELs. IEEE J. Quantum Electron. 2020, 56, 1–11. [Google Scholar] [CrossRef]
- Gębski, M.; Wong, P.S.; Riaziat, M.; Lott, J.A. 30 GHz bandwidth temperature stable 980 nm vertical-cavity surface-emitting lasers with AlAs/GaAs bottom distributed Bragg reflectors for optical data communication. J. Phys. Photonics 2020, 2, 035008. [Google Scholar] [CrossRef]
- Larisch, G.; Tian, S.; Bimberg, D. Optimization of VCSEL photon lifetime for minimum energy consumption at varying bit rates. Opt. Express 2020, 28, 18931–18937. [Google Scholar] [CrossRef]
- Feng, M.; Wu, C.H.; Holonyak, N. Oxide-Confined VCSELs for High-Speed Optical Interconnects. IEEE J. Quantum Electron. 2018, 54, 1–15. [Google Scholar] [CrossRef]
- van Eisden, J.; Yakimov, M.; Tokranov, V.; Varanasi, M.; Mohammed, E.M.; Young, I.A.; Oktyabrsky, S. Modulation properties of VCSEL with intracavity modulator. In Vertical-Cavity Surface-Emitting Lasers XI; Choquette, K.D., Guenter, J.K., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2007; Volume 6484, pp. 84–93. [Google Scholar] [CrossRef]
- Kojima, K.; Morgan, A.; Mullally, T.; Guth, G.D.; Focht, M.W.; Leibenguth, K.E.; Asom, M.T. Reduction of p-doped mirror electrical resistance of GaAs/AIGaAs vertical-cavity surface-emitting lasers by delta-doping. In Proceedings of the Conference on Lasers and Electro-Optics, Baltimore, MD, USA, 2–7 May 1993; Optical Society of America: Washington, DC, USA, 1993; pp. 1771–1772. [Google Scholar] [CrossRef]
- Peters, M.G.; Thibeault, B.J.; Young, D.B.; Scott, J.W.; Peters, F.H.; Gossard, A.C.; Coldren, L.A. Band-gap engineered digital alloy interfaces for lower resistance vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 1993, 63, 3411–3413. [Google Scholar] [CrossRef]
- Liu, Y.; Ng, W.C.; Oyafuso, F.; Klein, B.; Hess, K. Simulating the modulation response of VCSELs: The effects of diffusion capacitance and spatial hole-burning. Optoelectron. IEE Proc. 2002, 149, 182–188. [Google Scholar] [CrossRef]
- Nishiyama, N.; Arai, M.; Shinada, S.; Suzuki, K.; Koyama, F.; Iga, K. Multi-oxide layer structure for single-mode operation in Vertical-Cavity Surface-Emitting Lasers. IEEE Photonics Technol. Lett. 2000, 12, 606–608. [Google Scholar] [CrossRef]
- Azuchi, M.; Jikutani, N.; Arai, M.; Kondo, T.; Koyama, F. Multioxide layer vertical-cavity surface-emitting lasers with improved modulation bandwidth. In Proceedings of the CLEO/Pacific Rim 2003, the 5th Pacific Rim Conference on Lasers and Electro-Optics (IEEE Cat. No.03TH8671), Taipei, Taiwan, 15–19 December 2003; Volume 1, p. 163. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Wang, C.S. High-efficiency, high-speed VCSELs with 35 Gbit/s error-free operation. Electron. Lett. 2007, 43, 1022–1023. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.C.; Cheng, H.T.; Wu, C.H. Ultra-fast and Highly Efficient 850-nm VCSELs for Next-gen PAM-4 Transceivers. In Proceedings of the Asia Communications and Photonics Conference 2021, Shanghai, China, 24–27 October 2021; Chang-Hasnain, C., Willner, A., Shieh, W., Shum, P., Su, Y., Li, G., Eggleton, B., Essiambre, R., Dai, D., Ma, D., Eds.; Optical Society of America: Washington, DC, USA, 2021; p. W3D.4. [Google Scholar] [CrossRef]
- Kuchta, D.; Pepeljugoski, P.; Kwark, Y. VCSEL modulation at 20 Gb/s over 200 m of multimode fiber using a 3.3 V SiGe laser driver IC. In Proceedings of the 2001 Digest of LEOS Summer Topical Meetings: Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Compo, Copper Mountain, CO, USA, 30 July–1 August 2001; p. 2. [Google Scholar] [CrossRef]
- Westbergh, P.; Gustavsson, J.S.; Kögel, B.; Haglund, Å.; Larsson, A.; Mutig, A.; Nadtochiy, A.; Bimberg, D.; Joel, A. 40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL. Electron. Lett. 2010, 46, 1014–1016. [Google Scholar] [CrossRef] [Green Version]
- Westbergh, P.; Safaisini, R.; Haglund, E.; Gustavsson, J.S.; Larsson, A.; Joel, A. High-speed 850-nm VCSELs with 28 GHz modulation bandwidth for short reach communication. In Vertical-Cavity Surface-Emitting Lasers XVII; Choquette, K.D., Guenter, J.K., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2013; Volume 8639, pp. 251–256. [Google Scholar] [CrossRef] [Green Version]
- Westbergh, P.; Gustavsson, J.S.; Haglund, A.; Sunnerud, H.; Larsson, A. Large aperture 850 nm VCSELs operating at bit rates up to 25 Gbit/s. Electron. Lett. 2008, 44, 907–908. [Google Scholar] [CrossRef]
- Tan, F.; Wu, C.H.; Feng, M.; Holonyak, N. Energy efficient microcavity lasers with 20 and 40 Gb/s data transmission. Appl. Phys. Lett. 2011, 98, 191107. [Google Scholar] [CrossRef]
- Kuchta, D.M.; Rylyakov, A.V.; Schow, C.L.; Proesel, J.E.; Baks, C.; Kocot, C.; Graham, L.; Johnson, R.; Landry, G.; Shaw, E.; et al. A 55Gb/s directly modulated 850nm VCSEL-based optical link. IEEE Photonics Conf. 2012, 2012, 1–2. [Google Scholar] [CrossRef]
- Szczerba, K.; Westbergh, P.; Karlsson, M.; Andrekson, P.; Larsson, A. 60 Gbits error-free 4-PAM operation with 850 nm VCSEL. Electron. Lett. 2013, 49, 953–955. [Google Scholar] [CrossRef] [Green Version]
- Westbergh, P.; Haglund, E.; Haglund, E.; Safaisini, R.; Gustavsson, J.; Larsson, A. High-speed 850 nm VCSELs operating error free up to 57 Gbit/s. Electron. Lett. 2013, 49, 1021–1023. [Google Scholar] [CrossRef] [Green Version]
- Chi, K.L.; Jiang, J.W.; Yen, J.L.; Lu, I.C.; Kuo, H.C.; Chen, J.J.; Yang, Y.J.; Wei, C.C.; Shi, J.W. Energy Efficient 850 nm Vertical-Cavity Surface-Emitting Lasers with Extremely Low Driving-Current Density for >40 Gbit/sec Error-Free Transmissions from RT to 85 °C. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 22–26 March 2015; Optical Society of America: Washington, DC, USA, 2015; p. M2D.6. [Google Scholar] [CrossRef]
- Chi, K.L.; Yen, J.L.; Wun, J.M.; Jiang, J.W.; Lu, I.C.; Chen, J.; Yang, Y.J.; Shi, J.W. Strong Wavelength Detuning of 850 nm Vertical-Cavity Surface-Emitting Lasers for High-Speed (>40 Gbit/s) and Low-Energy Consumption Operation. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 470–479. [Google Scholar] [CrossRef]
- Giovane, L.M.; Wang, J.; Murty, M.V.R.; Harren, A.L.; Chang, H.H.; Wang, C.; Hui, D.; Feng, Z.W.; Fanning, T.R.; Sridhara, A.; et al. Volume Manufacturable High speed 850nm VCSEL for 100G Ethernet and Beyond. In Proceedings of the Optical Fiber Communication Conference, Anaheim, CA, USA, 20–22 March 2016; Optical Society of America: Washington, DC, USA, 2016; p. Tu3D.5. [Google Scholar] [CrossRef]
- Liu, M.; Wang, C.Y.; Feng, M.; Holonyak, N. 50 Gb/s Error-Free Data Transmission of 850 nm Oxide-Confined VCSELs. In Proceedings of the Optical Fiber Communication Conference, Anaheim, CA, USA, 20–22 March 2016; Optical Society of America: Washington, DC, USA, 2016; p. Tu3D.2. [Google Scholar] [CrossRef]
- Liu, M.; Wang, C.Y.; Feng, M.; Holonyak, N. Advanced Development of 850 nm Oxide-Confined VCSELs with 57 Gb/s Error-Free Data Transmission. In Proceedings of the Government Microcircuit Applications Critical Technology Conference (GOMACTech), Orlando, FL, USA, 14–17 March 2016. [Google Scholar]
- Wang, J.; Murty, M.V.R.; Wang, C.; Hui, D.; Harren, A.L.; Chang, H.H.; Feng, Z.W.; Fanning, T.R.; Sridhara, A.; Joyo, S.T.; et al. 50Gb/s PAM-4 oxide VCSEL development progress at Broadcom. In Vertical-Cavity Surface-Emitting Lasers XXI; Choquette, K.D., Lei, C., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2017; Volume 10122, pp. 1–6. [Google Scholar] [CrossRef]
- Ledentsov, N., Jr.; Agustin, M.; Chorchos, L.; Kropp, J.R.; Shchukin, V.A.; Kalosha, V.P.; Koepp, M.; Caspar, C.; Turkiewicz, J.P.; Ledentsov, N.N. Energy efficient 850-nm VCSEL based optical transmitter and receiver link capable of 56 Gbit/s NRZ operation. In Vertical-Cavity Surface-Emitting Lasers XXIII; Choquette, K.D., Graham, L.A., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2019; Volume 10938, pp. 77–84. [Google Scholar] [CrossRef]
- Hecht, U.; Ledentsov, N.; Chorchos, L.; Scholz, P.; Schulz, P.; Turkiewicz, J.P.; Ledentsov, N.N.; Gerfers, F. 120Gbit/s multi-mode fiber transmission realized with feed forward equalization using 28GHz 850nm VCSELs. In Proceedings of the 45th European Conference on Optical Communication (ECOC 2019), Dublin, Ireland, 22–26 September 2019; IET: London, UK, 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Murty, M.V.R.; Wang, J.; Harren, A.L.; Cheng, A.N.; Dolfi, D.W.; Feng, Z.W.; Sridhara, A.; Joyo, S.T.; Chu, J.; Giovane, L.M. Development and Characterization of 100 Gb/s Data Communication VCSELs. IEEE Photonics Technol. Lett. 2021, 33, 812–815. [Google Scholar] [CrossRef]
- Qiu, J.; Wu, D.; Wang, H.L.; Feng, M.; Yu, X. Advanced Single-Mode 850 nm VCSELs for Record NRZ and PAM4 Data Rate on SMF-28 Fiber up to 1 km. In Proceedings of the Optical Fiber Communication Conference (OFC) 2021, Washington, DC, USA, 6–11 June 2021; Optical Society of America: Washington, DC, USA, 2021; p. Tu5C.2. [Google Scholar] [CrossRef]
- Westbergh, P.; Gustavsson, J.S.; Haglund, Å.; Larsson, A.; Hopfer, F.; Bimberg, D.; Joel, A. 32 Gb/s transmission experiments using high speed 850 nm VCSELs. In Proceedings of the 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, Baltimore, MD, USA, 31 May–5 June 2009; Optical Society of America: Washington, DC, USA, 2009; pp. 1–2. [Google Scholar] [CrossRef]
- Wolf, P.; Moser, P.; Larisch, G.; Li, H.; Lott, J.; Bimberg, D. Energy efficient 40 Gbit/s transmission with 850 nm VCSELs at 108 fJ/bit dissipated heat. Electron. Lett. 2013, 49, 666–667. [Google Scholar] [CrossRef]
- Stepniak, G.; Lewandowski, A.; Kropp, J.; Ledentsov, N.; Shchukin, V.; Ledentsov, N., Jr.; Schaefer, G.; Agustin, M.; Turkiewicz, J. 54 Gbit/s OOK transmission using single-mode VCSEL up to 2.2 km MMF. Electron. Lett. 2016, 52, 633–635. [Google Scholar] [CrossRef]
- Motaghiannezam, S.; Lyubomirsky, I.; Daghighian, H.; Kocot, C.; Gray, T.; Tatum, J.; Amezcua-Correa, A.; Bigot-Astruc, M.; Molin, D.; Achten, F.; et al. 180 Gbps PAM4 VCSEL Transmission over 300m Wideband OM4 Fibre. In Proceedings of the Optical Fiber Communication Conference, Anaheim, CA, USA, 20–22 March 2016; Optical Society of America: Washington, DC, USA, 2016; p. Th3G.2. [Google Scholar] [CrossRef]
- Castro, J.M.; Pimpinella, R.; Kose, B.; Huang, Y.; Lane, B.; Szczerba, K.; Westbergh, P.; Lengyel, T.; Gustavsson, J.S.; Larsson, A.; et al. 50 Gb/s 4-PAM over 200 m of High Bandwidth MMF using a 850 nm VCSEL. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 22–26 March 2015; Optical Society of America: Washington, DC, USA, 2015; p. W1D.1. [Google Scholar] [CrossRef] [Green Version]
- Kao, H.Y.; Tsai, C.T.; Leong, S.F.; Peng, C.Y.; Chi, Y.C.; Wang, H.Y.; Kuo, H.C.; Wu, C.H.; Cheng, W.H.; Lin, G.R. Single-mode VCSEL for pre-emphasis PAM-4 transmission up to 64 Gbit/s over 100–300 m in OM4 MMF. Photonics Res. 2018, 6, 666–673. [Google Scholar] [CrossRef]
- Yang, Y.; Dziura, T.; Wang, S.; Du, G.; Wang, S. Single-mode operation of mushroom structure surface emitting lasers. IEEE Photonics Technol. Lett. 1991, 3, 9–11. [Google Scholar] [CrossRef]
- Broadcom Inc. 112-Gb/s (56-GBd) 850-nm 1 × 4 Array Oxide VCSEL. Available online: https://www.broadcom.com/products/fiber-optic-modules-components/components-broadband/short-reach-gaas-die/lasers/afcd-v84lp/ (accessed on 5 January 2022).
- VI Systems GmbH. VIS-Datasheet-V50-850C. Available online: https://v-i-systems.com/wp-content/uploads/2020/12/VIS-Datasheet-V50-850C-1.pdf (accessed on 5 January 2022).
- Shannon, C. Communication in the Presence of Noise. Proc. IRE 1949, 37, 10–21. [Google Scholar] [CrossRef]
- Moser, P.; Hofmann, W.; Wolf, P.; Lott, J.A.; Larisch, G.; Payusov, A.; Ledentsov, N.N.; Bimberg, D. 81 fJ/bit energy-to-data ratio of 850 nm vertical-cavity surface-emitting lasers for optical interconnects. Appl. Phys. Lett. 2011, 98, 231106. [Google Scholar] [CrossRef]
- Moser, P.; Lott, J.A.; Bimberg, D. Energy Efficiency of Directly Modulated Oxide-Confined High Bit Rate 850-nm VCSELs for Optical Interconnects. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1702212. [Google Scholar] [CrossRef]
- Szczerba, K.; Westbergh, P.; Gustavsson, J.S.; Karlsson, M.; Andrekson, P.A.; Larsson, A. Energy Efficiency of VCSELs in the Context of Short-Range Optical Links. IEEE Photonics Technol. Lett. 2015, 27, 1749–1752. [Google Scholar] [CrossRef] [Green Version]
SiN | Polyimide | BCB | |
---|---|---|---|
Dielectric constant () | 7.5 [15] | 3.4 [17] | 2.5 [19] |
First applied on VCSEL | 1994 [15] | 1997 [16] | 2005 [18] |
Common deposition method | CVD | Spin coating | Spin coating |
Pad capacitance | Large ∼ pF | Small ≤ 100 fF | Minimal ≤ 100 fF |
Step coverage | Excellent | Good | Good |
Planarization effect | Mediocre | Excellent | Excellent |
Cost | Cheap | Moderate | Expensive |
Group | Data Rate (Gb/s) | Modulation Format | 3 dB Bandwidth (GHz) | Temperature (°C) | Distance (m) | Reference | Year | Bare Chip/ Packaged |
---|---|---|---|---|---|---|---|---|
CUT | 25 | NRZ | 20 | 25 | BtB | [120] | 2008 | Bare chip |
CUT | 47 | NRZ | 28 | 25 | BtB | [119] | 2013 | Bare chip |
CUT | 60 (30 GBd) | PAM-4 | 24 | 25 | BtB | [123] | 2013 | Bare chip |
CUT | 57 | NRZ | 24 | 25 | BtB | [124] | 2013 | Bare chip |
CUT | 50 | NRZ | 30 | 25 | BtB | [62] | 2015 | Bare chip |
UIUC | 40 | NRZ | 19.2 | 25 | BtB | [121] | 2011 | Bare chip |
UIUC | 50 | NRZ | 28.2 | 25 | BtB | [128] | 2016 | Bare chip |
UIUC | 57 | NRZ | 29.2 | 25 | BtB | [129] | 2016 | Bare chip |
UIUC | 28 | NRZ | 17.3 | 25 | 1000 | [70] | 2019 | Bare chip |
UIUC | 50 | NRZ | 30.03 | 25 | 100 | [22] | 2019 | Bare chip |
UIUC | 44 | NRZ | N/A | 25 | 500 | [134] | 2021 | Bare chip |
UIUC | 64 (32 GBd) | PAM-4 | N/A | 25 | 500 | [134] | 2021 | Bare chip |
CUT-TUB | 32 | NRZ | 20 | 25 | 50 | [135] | 2009 | Bare Chip |
CUT-TUB | 40 | NRZ | 23 | 25 | BtB | [118] | 2010 | Bare chip |
TUB | 40/36 | NRZ | N/A | 25 | BtB/200 | [136] | 2013 | Bare chip |
TUB-VIS-WUT | 120 (60 GBd) | PAM-4 | 28 | 25 | BtB | [132] | 2019 | Bare chip |
NCU | 40 | NRZ | 22.4 | 25 | BtB | [81] | 2013 | Bare chip |
NCU | 41 | NRZ | 26 | 25 | BtB & 100 | [125] | 2015 | Bare chip |
NCU | 41 | NRZ | 27 | 25 | BtB & 100 | [126] | 2015 | Bare chip |
NCU-VIS | 54 | NRZ | 29 | 25 | BtB & 1000 | [83] | 2017 | Bare chip |
IBM | 20 | NRZ | 15.4 | 25 | BtB | [117] | 2001 | Packaged |
IBM-Finisar | 55 | NRZ | 24 | 25 | BtB | [122] | 2012 | Packaged |
WUT-VIS | 54 | NRZ | N/A | 25 | 2200 | [137] | 2015 | Packaged |
VIS-WUT-FHHI | 56 | NRZ | 22 & 26 | 25 | BtB | [131] | 2019 | Packaged (56 Gb/s w/ 22 GHz VCSEL) |
VIS-WUT | 80 | NRZ | 30 | 25 | BtB | [61] | 2020 | Packaged |
GIT-VIS-WUT | 168 (84 GBd) | PAM-4 | 28 | 25 | BtB | [51] | 2020 | Packaged |
VIS-WUT | 50 | NRZ | 30 | 25 | BtB | [64] | 2021 | Packaged |
VIS-WUT | 106 (53 GBd) | PAM-4 | 30 | 25 | BtB | [64] | 2021 | Packaged |
VIS-WUT-FHHI | 224 | 4-QAM DMT | ∼26.8 | 25 | BtB | [54] | 2021 | Packaged |
Finisar | 45 (22.5 GBd) | PAM-4 | N/A | 25 | BtB | [138] | 2016 | Packaged |
Finisar | 50 (25 GBd) | PAM-4 | 20 | 25 | BtB & 200 | [139] | 2015 | Packaged |
Broadcom | 54 (27 GBd) | PAM-4 | 19 | 25 | BtB | [127] | 2016 | Bare Chip |
Broadcom | 53.125 (26.5625 GBd) | PAM-4 | 20 (15 °C) | 15 | 200 | [130] | 2017 | Bare Chip |
Broadcom | 106.25 (53.125 GBd) | PAM-4 | 30 (5 °C) | 25 | 75 | [63] | 2020 | Bare Chip |
Broadcom | 106.25 (53.125 GBd) | PAM-4 | 29 (5 °C) | 25 | 100 | [133] | 2021 | Bare Chip |
NTU | 80 | 16-QAM OFDM | 21.5 | 25 | 100 | [55] | 2017 | Bare chip |
NTU | 50 | NRZ | 25 | 25 | BtB | [59] | 2018 | Bare chip |
NTU | 96 | 16-QAM OFDM | 22.1 | 25 | 100 | [56] | 2018 | Bare chip |
NTU | 64 (32 GBd) | PAM-4 | 18.9 | 25 | BtB | [140] | 2018 | Bare chip |
NTU | 54 | NRZ | N/A | 25 | BtB | [60] | 2019 | Bare chip |
NTU | 140 | 16-QAM OFDM | 25.2 | 25 | BtB | [57] | 2019 | Bare chip |
NTU | 40 | NRZ | 26.6 | 25 | 500 | [71] | 2020 | Bare chip |
NTU | 61 | NRZ | 20.7 | 25 | BtB | [58] | 2020 | Bare chip |
NTU | 82 (42 GBd) | PAM-4 | 17.7 | 25 | BtB | [50] | 2020 | Bare chip |
NTU | 132 | 16-QAM OFDM | 17.7 | 25 | BtB | [50] | 2020 | Bare chip |
NTU | 102 (51 GBd) | PAM-4 | 20.7 | 25 | BtB | [58] | 2020 | Bare chip |
NTU | 124 | 32-QAM GFDM | 20.7 | 25 | BtB | [58] | 2020 | Bare chip |
NTU-Corning | 53 | NRZ | N/A | 25 | 100 | [85] | 2021 | Bare chip |
NTU | N/A | N/A | 30 | 25 | BtB | [65] | 2021 | Bare chip |
NTU | N/A | N/A | 32.4 | 25 | BtB | [116] | 2021 | Bare chip |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, H.-T.; Yang, Y.-C.; Liu, T.-H.; Wu, C.-H. Recent Advances in 850 nm VCSELs for High-Speed Interconnects. Photonics 2022, 9, 107. https://doi.org/10.3390/photonics9020107
Cheng H-T, Yang Y-C, Liu T-H, Wu C-H. Recent Advances in 850 nm VCSELs for High-Speed Interconnects. Photonics. 2022; 9(2):107. https://doi.org/10.3390/photonics9020107
Chicago/Turabian StyleCheng, Hao-Tien, Yun-Cheng Yang, Te-Hua Liu, and Chao-Hsin Wu. 2022. "Recent Advances in 850 nm VCSELs for High-Speed Interconnects" Photonics 9, no. 2: 107. https://doi.org/10.3390/photonics9020107
APA StyleCheng, H. -T., Yang, Y. -C., Liu, T. -H., & Wu, C. -H. (2022). Recent Advances in 850 nm VCSELs for High-Speed Interconnects. Photonics, 9(2), 107. https://doi.org/10.3390/photonics9020107