Design and Performance of a Near-Infrared Spectroscopy Measurement System for In-Field Alfalfa Moisture Measurement
Abstract
:1. Introduction
2. System Description
2.1. Measuring Principle
2.2. System Block Diagram
2.2.1. Illumination Unit
2.2.2. Detection Unit
2.2.3. Control and Data Acquisition Unit
2.3. Measurement Procedure
- Step 1: Halogen lamp: off, flap mechanism: close. Instrument offset intensity spectrum is acquired.
- Step 2: Halogen lamp: off, flap mechanism: open. Ambient offset intensity spectrum is acquired.
- Step 3: Halogen lamp: on, flap mechanism: close. RRT faces the optical system. Reference intensity is acquired.
- Step 4: Halogen lamp: on, flap mechanism: open. Sample intensity spectrum is acquired.
3. System Performance
3.1. System Calibration
3.2. Instrument Warm-Up
3.3. Instrument Linearity
3.4. Measurement Repeatability
4. In-Field Results
4.1. Sample Preparation
4.2. NIRS Absorbance Measurement Procedure and Data Analysis
4.3. Crop Moisture Estimation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- ASAE. ASAE S352.2—Moisture Measurement—Forages; American Society of Agricultural Engineers: St. Joseph, MI, USA, 2017. [Google Scholar]
- Moisture Analyzers. Available online: www.mt.com/int/en/home/products/Laboratory_Weighing_Solutions/moisture-analyzer.html (accessed on 6 March 2021).
- Agreto. Available online: www.agreto.com/en/hay-moisture-tester/ (accessed on 6 March 2021).
- Liang, X.; Li, X.; Lei, T. A new NIR technique for rapid determination of soil moisture content. In Proceedings of the 2012 International Conference on Systems and Informatics (ICSAI2012), Yantai, China, 19–20 May 2012; pp. 16–20. [Google Scholar]
- Ribeiro, L.d.S.; Gentilin, F.A.; Franca, J.A.d.; Felicio, A.L.d.S.M.; Franca, M.B.d.M. Development of a Hardware Platform for Detection of Milk Adulteration Based on Near-Infrared Diffuse Reflection. IEEE Trans. Instrum. Meas. 2016, 65, 1698–1706. [Google Scholar] [CrossRef]
- Wang, H.; Gao, S.; Yue, X.; Cheng, X.; Liu, Q.; Min, R.; Qu, H.; Hu, X. Humidity-Sensitive PMMA Fiber Bragg Grating Sensor Probe for Soil Temperature and Moisture Measurement Based on Its Intrinsic Water Affinity. Sensors 2021, 21, 6946. [Google Scholar] [CrossRef] [PubMed]
- Cassanelli, D.; Lenzini, N.; Ferrari, L.; Rovati, L. Partial Least Squares Estimation of Crop Moisture and Density by Near-Infrared Spectroscopy. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Lenzini, N.; Rovati, L.; Ferrari, L. Effects of the density and homogeneity in NIRS crop moisture estimation. In Proceedings of the Optical Measurement Systems for Industrial Inspection X, Munich, Germany, 26–29 June 2017; Volume 10329, pp. 1147–1152. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Höskuldsson, A. PLS regression methods. J. Chemom. 1988, 2, 211–228. [Google Scholar] [CrossRef]
- Shawky, E.; Selim, D.A. NIR spectroscopy-multivariate analysis for discrimination and bioactive compounds prediction of different Citrus species peels. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 219, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, Y.; Jiang, L. Multivariate Modeling Dahurian Larch Plantation Wood Density Based on Near Infrared Spectroscopy. In Proceedings of the 2010 International Conference on Measuring Technology and Mechatronics Automation, Changsha, China, 13–14 March 2010; Volume 2, pp. 748–751. [Google Scholar]
- Fornasini, P. The Uncertainty in Physical Measurements: An Introduction to Data Analysis in the Physics Laboratory; Springer Science & Business Media: New York, NY, USA, 2008. [Google Scholar] [CrossRef] [Green Version]
- Abasi, S.; Minaei, S.; Jamshidi, B.; Fathi, D. Development of an Optical Smart Portable Instrument for Fruit Quality Detection. IEEE Trans. Instrum. Meas. 2020, 70, 1–9. [Google Scholar] [CrossRef]
- Rodriguez-Saona, L.E.; Fry, F.S.; McLaughlin, M.A.; Calvey, E.M. Rapid analysis of sugars in fruit juices by FT-NIR spectroscopy. Carbohydr. Res. 2001, 336, 63–74. [Google Scholar] [CrossRef]
- Fan, Q.; Wang, Y.; Sun, P.; Liu, S.; Li, Y. Discrimination of Ephedra plants with diffuse reflectance FT-NIRS and multivariate analysis. Talanta 2010, 80, 1245–1250. [Google Scholar] [CrossRef] [PubMed]
- da Silva Dias, L.; da Silva Junior, J.C.; de Souza Maudeira Felício, A.L.; de França, J.A. A NIR Photometer Prototype with Integrating Sphere for the Detection of Added Water in Raw Milk. IEEE Trans. Instrum. Meas. 2018, 67, 2812–2819. [Google Scholar] [CrossRef]
- Salvatori, G.; Suh, K.; Ansari, R.; Rovati, L. Instrumentation and calibration protocol for a continuous wave near infrared hemoximeter. IEEE Trans. Instrum. Meas. 2006, 55, 1368–1376. [Google Scholar] [CrossRef]
- Mesic, M.; Corluka, V.; Valter, Z. Analysis of some parameters influencing moisture quantity measurements in wheat with NIR technique. In Proceedings of the 2005 18th International Conference on Applied Electromagnetics and Communications, Dubrovnik, Croatia, 12–14 October 2005; pp. 1–4. [Google Scholar]
- Palmer, K.F.; Williams, D. Optical properties of water in the near infrared. J. Opt. Soc. Am. JOSA 1974, 64, 1107–1110. [Google Scholar] [CrossRef]
- Rovati, L.; Bandera, A.; Donini, M.; Salvatori, G.; Pollonini, L. Design and performance of a wide-bandwidth and sensitive instrument for near-infrared spectroscopic measurements on human tissue. Rev. Sci. Instrum. 2004, 75, 5315–5325. [Google Scholar] [CrossRef]
- Szłyk, E.; Szydłowska-Czerniak, A.; Kowalczyk-Marzec, A. NIR Spectroscopy and Partial Least-Squares Regression for Determination of Natural α-Tocopherol in Vegetable Oils. J. Agric. Food Chem. 2005, 53, 6980–6987. [Google Scholar] [CrossRef] [PubMed]
- García-Sánchez, F.; Galvez-Sola, L.; Martínez-Nicolás, J.J.; Muelas-Domingo, R.; Nieves, M. Using near-infrared spectroscopy in agricultural systems. Dev. Near-Infrared Spectrosc. 2017, 1, 97–127. [Google Scholar]
Electrical Parameters | |
Nominal Power | 20.0 W |
Nominal Voltage | 12.0 V |
Photometric Parameters | |
Optical Power | 0.81 W/sr |
Color Temperature | 2800 K |
Illuminometric Parameters | |
Beam Size | 36 |
Parameter | Results |
---|---|
C-RMSE | 0.1671 |
C- | 0.9507 |
V-RMSE | 0.0897 |
V- | 0.9846 |
C_MEAN_ERR | 14.83% |
V_MEAN_ERR | 7.11% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gibertoni, G.; Lenzini, N.; Ferrari, L.; Rovati, L. Design and Performance of a Near-Infrared Spectroscopy Measurement System for In-Field Alfalfa Moisture Measurement. Photonics 2022, 9, 178. https://doi.org/10.3390/photonics9030178
Gibertoni G, Lenzini N, Ferrari L, Rovati L. Design and Performance of a Near-Infrared Spectroscopy Measurement System for In-Field Alfalfa Moisture Measurement. Photonics. 2022; 9(3):178. https://doi.org/10.3390/photonics9030178
Chicago/Turabian StyleGibertoni, Giovanni, Nicola Lenzini, Luca Ferrari, and Luigi Rovati. 2022. "Design and Performance of a Near-Infrared Spectroscopy Measurement System for In-Field Alfalfa Moisture Measurement" Photonics 9, no. 3: 178. https://doi.org/10.3390/photonics9030178
APA StyleGibertoni, G., Lenzini, N., Ferrari, L., & Rovati, L. (2022). Design and Performance of a Near-Infrared Spectroscopy Measurement System for In-Field Alfalfa Moisture Measurement. Photonics, 9(3), 178. https://doi.org/10.3390/photonics9030178