Non-Drude-Type Response of Photocarriers in Fe-Doped β-Ga2O3 Crystal
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Higashiwaki, M.; Sasaki, K.; Murakami, H.; Kumagai, Y.; Koukitu, A.; Kuramaya, A.; Masui, T.; Yamakoshi, S. Recent progress in Ga2O3 power devices. Semicond. Sci. Technol. 2016, 31, 034001. [Google Scholar] [CrossRef]
- Pearton, S.J.; Yang, J.; Cary, P.H.; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018, 5, 011301. [Google Scholar] [CrossRef] [Green Version]
- Pearton, S.J.; Ren, F.; Tadjer, M.; Kim, J. Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS. J. Appl. Phys. 2018, 124, 220901. [Google Scholar] [CrossRef] [Green Version]
- Moser, N.; McCandless, J.; Crespo, A.; Leedy, K.D.; Green, A.; Neal, A.; Mou, S.; Ahmadi, E.; Speck, J.; Chabak, K.D.; et al. Ge-Doped β-Ga2O3 MOSFETs. IEEE Electron Dev. Lett. 2017, 38, 775. [Google Scholar] [CrossRef]
- Galazka, Z. β-Ga2O3 for wide-bandgap electronics and optoelectronics. Semicond. Sci. Technol. 2018, 33, 113001. [Google Scholar] [CrossRef]
- Chen, J.; Tang, H.; Li, Z.; Zhu, Z.; Gu, M.; Xu, J.; Ouyang, X.; Liu, B. Highly sensitive X-ray detector based on a β-Ga2O3: Fe single crystal. Opt. Express 2021, 29, 23292. [Google Scholar] [CrossRef]
- Binet, L.; Gourier, D. Origin of the blue luminescence of β-Ga2O3. J. Phys. Chem. Solids 1998, 59, 1241. [Google Scholar] [CrossRef]
- Ma, N.; Tanen, N.; Verma, A.; Guo, Z.; Luo, T.; Xing, H.; Jena, D. Intrinsic electron mobility limits in β-Ga2O3. Appl. Phys. Lett. 2016, 109, 212101. [Google Scholar] [CrossRef] [Green Version]
- Polyakov, A.Y.; Smirnov, N.B.; Shchemerov, I.V.; Pearton, S.J.; Ren, F.; Chernykh, A.V.; Kochkova, A.I. Electrical properties of bulk semi-insulating β-Ga2O3 (Fe). Appl. Phys. Lett. 2018, 113, 142102. [Google Scholar] [CrossRef] [Green Version]
- Tadjer, M.J.; Lyons, J.L.; Nepal, N.; Freitas, J.A., Jr.; Koehler, A.D.; Foster, G.M. Theory and Characterization of Doping and Defects in β-Ga2O3. ECS J. Solid State Sci. Technol. 2019, 8, Q3187. [Google Scholar] [CrossRef]
- Farzana, E.; Zhang, Z.; Paul, P.K.; Arehart, A.R.; Ringel, S.A. Influence of metal choice on (010) β-Ga2O3 Schottky diode properties. Appl. Phys. Lett. 2017, 110, 202102. [Google Scholar] [CrossRef]
- Neal, T.A.; Mou, S.; Rafique, S.; Zhao, H.; Ahmadi, E.; Speck, J.S.; Stevens, K.T.; Blevins, J.D.; Thomson, D.B.; Moser, N.; et al. Donors and deep acceptors in β-Ga2O3. Appl. Phys. Lett. 2018, 113, 062101. [Google Scholar] [CrossRef] [Green Version]
- Geller, S. Crystal Structure of β-Ga2O3. J. Chem. Phys. 1960, 33, 676. [Google Scholar] [CrossRef]
- Peelaers, H.; Van de Walle, C.G. Brillouin zone and band structure of β-Ga2O3. Phys. Status Solidi B 2015, 252, 828–832. [Google Scholar] [CrossRef]
- He, H.; Orlando, R.; Blanco, M.A.; Pandey, R.; Amzallag, E.; Baraille, I.; Rérat, M. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys. Rev. B 2006, 74, 195123. [Google Scholar] [CrossRef] [Green Version]
- Peelaers, H.; Van de Walle, C.G. Sub-band-gap absorption in Ga2O3. Appl. Phys Lett. 2017, 111, 182104. [Google Scholar] [CrossRef]
- Ricci, F.; Boschi, F.; Baraldi, A.; Filippetti, A.; Higashiwaki, M.; Kuramata, A.; Fiorentini, V.; Fornari, R. Theoretical and experimental investigation of optical absorption anisotropy in β-Ga2O3. J. Phys. Condens. Matter 2016, 28, 224005. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, K.; Singisetti, U. Electron mobility in monoclinic β-Ga2O3-Effect of plasmon-phonon coupling, anisotropy, and confinement. J. Mater. Res. 2017, 32, 4142–4152. [Google Scholar] [CrossRef] [Green Version]
- Ueda, N.; Hosono, H. Anisotropy of electrical and optical properties in β-Ga2O3 single crystals. Appl. Phys. Lett. 1997, 71, 933. [Google Scholar] [CrossRef]
- Chen, H.; Fu, H.; Huang, X.; Montes, J.A.; Yang, T.-H.; Baranowski, I.; Zhao, Y. Characterizations of the nonlinear optical properties for (010) and (-201) beta-phase gallium oxide. Opt. Express 2018, 26, 3938–3946. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Chen, H.; Huang, X.; Baranowski, I.; Montes, J.A.; Yang, T.H.; Zhao, Y. A Comparative study on the electrical properties of vertical (-201) and (010) β-Ga2O3 Schottky Barrier Diodes on EFG Single-Crystal substrates. IEEE Trans. Electron Devices 2018, 65, 3507–3513. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Dickens, P.T.; Varley, J.B.; Ni, X.; Lotubai, E.; Sprawls, S.; Liu, F.; Lordi, V.; Krishnamoorthy, S.; Blair, S.; et al. Incident wavelength and polarization dependence of spectral shifts in β-Ga2O3 UV photoluminescence. Sci. Rep. 2018, 8, 18075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koksal, O.; Tanen, N.; Jena, D.; Xing, H.; Rana, F. Measurement of ultrafast dynamics of photoexcited carriers in β-Ga2O3 by two-color optical pump-probe spectroscopy. Appl. Phys. Lett. 2018, 113, 252102. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Gong, C.; Nishimura, T.; Murakami, H.; Kawayama, I.; Nakanishi, H.; Tonouchi, M. Terahertz Emission Spectroscopy and Microscopy on Ultrawide Bandgap Semiconductor β-Ga2O3. Photonics 2020, 7, 73. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, X.; Ren, F.-F.; Gi, S.; Ye, J. Depp-level defects in gallium oxide. J. Phys. D Appl. Phys. 2021, 54, 043002. [Google Scholar] [CrossRef]
- Islam, M.M.; Rana, D.; Hernandez, A.; Haseman, M.; Selim, F. Study of trap levels in β-Ga2O3 by thermoluminescence spectroscopy. J. Appl. Phys. 2019, 125, 055701. [Google Scholar] [CrossRef]
- Bhandari., S.; Zvanut, M.E. Charge trapping at Fe due to midgap levels in Ga2O3. J. Appl. Phys. 2021, 129, 085703. [Google Scholar] [CrossRef]
- Ichimura, M.; Tajiri, H.; Morita, Y.; Yamada, I.M.; Usami, A. Excess carrier lifetime of 3C-SiC measured by the microwave photoconductivity decay method. Appl. Phys. Lett. 1997, 70, 1745–1747. [Google Scholar] [CrossRef]
- Neu., J.; Shmuttenmaer, C.A. Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS). J. Appl. Phys. 2018, 124, 231101. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.S.; Prajapati, G.L.; Dagar, R.; Vagadia, M.; Rana, D.S.; Tonouchi, M. Terahertz Electrodynamics in Transition Metal Oxides. Adv. Opt. Mater. 2020, 8, 1900958. [Google Scholar] [CrossRef]
- Tachi, K.; Asagami, S.; Fujii, T.; Araki, T.; Nanishi, Y.; Nagashima, T.; Iwamoto, T.; Sato, Y.; Morita, N.; Sugie, R.; et al. Measurement of the properties of GaN layers using terahertz time-domain spectroscopic ellipsometry. Phys. Status Solidi B 2017, 254, 1600767. [Google Scholar] [CrossRef]
- Blumenschein, N.; Kadlec, C.; Romanyuk, O.; Paskova, T.; Muth, J.F.; Kadlec, F. Dielectric and conducting properties of unintentionally and Sn-doped β-Ga2O3 studied by terahertz spectroscopy. J. Appl. Phys. 2020, 127, 165702. [Google Scholar] [CrossRef]
- Gopalan, P.; Knight, S.; Chanana, A.; Stokey, M.; Ranga, P.; Scarpulla, M.A.; Krishnamoorthy, S.; Darakchieva, V.; Galazka, Z.; Irmscher, K.; et al. The anisotropic quasi-static permittivity of single-crystal β-Ga2O3 measured by terahertz spectroscopy. Appl. Phys. Lett. 2020, 117, 252103. [Google Scholar] [CrossRef]
- Salek, K.A.; Takayama, K.; Kawayama, I.; Murakami, H.; Tonouchi, M. Evaluation of surface carrier recombination of optically excited silicon using terahertz time-domain spectroscopy. Terahertz Sci. Technol. 2014, 7, 100. [Google Scholar]
- Salek, K.A.; Nakanishi, H.; Ito, A.; Takayama, K.; Kawayama, I.; Murakami, H.; Tonouchi, M. Laser terahertz emission microscopy studies of a polysilicon solar cell under the illumination of continuous laser light. Opt. Eng. 2014, 53, 031204. [Google Scholar] [CrossRef]
- Withayachumnankul, W.; Fischer, B.M.; Lin, H.; Abbott, D. Uncertainty in terahertz time-domain spectroscopy Measurement. J. Opt. Soc. Am. B 2008, 25, 1059. [Google Scholar] [CrossRef] [Green Version]
- Baxter, J.B.; Schmuttenmaer, C.A. Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved Terahertz spectroscopy. J. Phys. Chem. B 2006, 110, 25229. [Google Scholar] [CrossRef]
- Walther, M.; Cooke, D.G.; Sherstan, C.; Hajar, M.; Freeman, M.R.; Hegmann, F.A. Terahertz conductivity of thin gold films at the metal-insulator percolation transition. Phys. Rev. B 2007, 76, 125408. [Google Scholar] [CrossRef] [Green Version]
- Beard, M.C.; Turner, G.M.; Murphy, J.E.; Micic, O.I.; Hanna, M.C.; Nozik, A.J.; Schmuttenmaer, C.A. Electronic coupling in InP Nanoparticle Arrays. Nano Lett. 2003, 3, 1695–1699. [Google Scholar] [CrossRef]
- Mengle, K.A.; Kioupakis, E. Vibrational and electron-phonon coupling properties of β-Ga2O3 from first-principles calculations: Impact on the mobility and breakdown field. AIP Adv. 2019, 9, 015313. [Google Scholar] [CrossRef] [Green Version]
- Gong, C.; Kawayama, I.; Murakami, H.; Teramoto, T.; Tonouchi, M. Intensity-dependent self-induced dual-color laser phase modulation and its effect on terahertz generation. Sci. Rep. 2021, 11, 498. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.; Janowitz, C.; Unger, I.; Manzke, R.; Galazka, Z.; Uecker, R.; Fornari, R.; Weber, J.R.; Varley, J.B.; Van de Walle, C.G. The electronic structure of β-Ga2O3. Appl. Phys. Lett. 2010, 97, 211903. [Google Scholar] [CrossRef]
- Smith, N.V. Classical generalization of the Drude formula for the optical conductivity. Phys. Rev. B 2001, 64, 155106. [Google Scholar] [CrossRef]
- Matsushita, Y.; Furuya, S.; Oshiyama, A. Floating Electron States in Covalent Semiconductors. Phys. Rev. Lett. 2012, 108, 246404. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Wang, K.; Murakami, H.; Tonouchi, M. Non-Drude-Type Response of Photocarriers in Fe-Doped β-Ga2O3 Crystal. Photonics 2022, 9, 233. https://doi.org/10.3390/photonics9040233
Jiang H, Wang K, Murakami H, Tonouchi M. Non-Drude-Type Response of Photocarriers in Fe-Doped β-Ga2O3 Crystal. Photonics. 2022; 9(4):233. https://doi.org/10.3390/photonics9040233
Chicago/Turabian StyleJiang, Hao, Ke Wang, Hironaru Murakami, and Masayoshi Tonouchi. 2022. "Non-Drude-Type Response of Photocarriers in Fe-Doped β-Ga2O3 Crystal" Photonics 9, no. 4: 233. https://doi.org/10.3390/photonics9040233
APA StyleJiang, H., Wang, K., Murakami, H., & Tonouchi, M. (2022). Non-Drude-Type Response of Photocarriers in Fe-Doped β-Ga2O3 Crystal. Photonics, 9(4), 233. https://doi.org/10.3390/photonics9040233