Characterization of Aggregating Agents towards Sensitive Optical Detection of Tryptophan Using Lab-on-a-Chip
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characterization of Nanoparticles
3.2. SERS Study of L-Tryptophan
3.3. Computational Analysis
3.4. SERS Study Using Lab-on-a-Chip
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Calculated SERS Freq. | Exp. SERS Freq. (Liquid) | Exp. Freq. (Solid) | Calculated Freq. | PED% | |||
---|---|---|---|---|---|---|---|
Tryp- 1Ag | Tryp- 4 Ag | (Ag1) | (Ag2) | Scaled Freq. | Unscaled Freq. | ||
1612 | 1612 | 1621 | 1621 | 1620 | 1645 | 1657 | ν[R2(CC)](46) + δ(R2)(20) + ν(N1C8)(6) + δ(NH2)(4) |
1580 | 1580 | 1584 | 1591 | 1576 | 1601 | 1613 | ν[R2](55)+ R2(δCCH)(17)+ ν(R1)(6) |
1552 | 1552 | 1558 | 1567 | 1578 | ν(R1)(44) + δ(N1C2H14)(13)-ν(C3C10)(9) + ν[R2](9) + δ(R1)(6) | ||
1477 | 1477 | 1459 | 1459 | 1459 | 1468 | 1479 | R2(δCCH)(33) + ν[R2](22) + δ(CH2)(20) + ν(R1)(4) |
1444 | 1437 | 1432 | 1432 | 1424 | 1437 | 1448 | ν(R1)(31) + R1[δ(CN1H13)(27)] + δ(CC6H17)(12) + ν[R2](12) |
1373 | 1373 | 1355 | 1365 | 1358 | 1356 | 1366 | ν[R2](66) + R2[δ(CCH)(11)] + ω(CH2)(5) |
- | 1342 | 1342 | 1342 | 1339 | 1326 | 1336 | ω(CH2)(20) + ρ(NH2)(16) + δ(CHO)(10) + ν(C11C24)(6) + ρ(CC = O)(6) + ν(CO)(6) + ν(C10C11)(5) + δ(C10N12C11)(4) |
- | 1302 | 1306 | 1306 | 1302 | 1308 | 1318 | R1[ν(CC)(35) + δ(NCH)(16)] + R2[δ(CCH)(15)] + ν(C3C10)(5) + ω(CH2)(5) + R2[ν(CC)(10)] + δ(R1)(4) |
1255 | 1246 | 1235 | 1235 | 1233 | 1233 | 1242 | (δ + ρ)(C11H)(23) + φ(CH2)(13) + ν(C11N12)(10) + ω(CH2)(9)+ ν(C10 C11)(7)-R1 |
1166 | 1175 | 1154 | 1154 | 1161 | 1178 | 1186 | φ(CH2)(15) + R2[δ(CCH)(20)] + ρ(N12H2)(10) + ν(C11N12)(9) + δ(C11H)(5) + ν(C10C11)(5) + δ(C24N12C11)(4)+ν(C4C5)(4) |
1024 | 1025 | 1010 | 1010 | 1008 | 1026 | 1034 | R2[ν(CC)(75)]+R2[δ(CCH)(18)] |
881 | 881 | 878 | 878 | 873 | 880 | 886 | δ(R2)(35)+[R1(δ+ν)](26)+δ(R2)(8)+oop(NH2)(5)+ρ(CH2)(4)+ν(C11N12)(4) |
826 | 833 | 823 | 841 | 843 | 849 | R2[oop(CH)](59)+ι(R1)(7)+puck(R2)(6)+oop(N1H13)(5) | |
795 | 793 | 784 | 784 | 805 | 803 | 809 | oop(N1H13)(59) + ι(R1)(17) + ν(C11C24)(5) |
763 | 763 | 760 | 760 | 756 | 765 | 770 | δ(R2)(18) + puck(R2)(12) + δ(R1)(11) + R2[ν(22)] + R1[ν(9)] + ι(R1)(5) + ν+δ(R1)(4) |
730 | 730 | 736 | - | 741 | 738 | 744 | R2[oop(CH)(29) + ν(C11C24)(13) + oop(C = O)(10) ν(C10C11)(8) + ρ(CC = O)(7) + ν(CO)(5) + puck(R2)(4) + δ(COH)(7) |
- | - | 723 | 723 | 721 | 709 | 714 | ν(C3C10)(15) + δ(R2)(14) + δ(R1)(13) + oop(C = O)(10) + δ (C3C11C10) (7) + puck(R2)(5) + ι(CO)(4) |
627 | 627 | - | 618 | 627 | 625 | 630 | ρ(CC = O)(18) + ι(CO)(18) + ιasym(R1)(16) + δ(C24N12C11)(9) + ι(R1)(9) + oop(C3C10)(8) + puck (R2)(4) |
571 | 571 | 576 | 576 | 576 | 569 | 573 | δ(R1)(24) + δ(R2)(23) + ν(R2)(7) + ι(CO)(7) + ι(R2)(5) + ι(R1)(5) + ν(C3C10)(4) + puck(R2)(4) |
468 | 468 | 461 | 466 | 466 | 469 | δ(R2)(31) + δ(CC3C10)(26) + ρ(CH2)(7) + δ(R1)(5) + ν(R1)(5) |
References
- Good, D.M.; Thongboonkerd, V.; Novak, J.; Bascands, J.-L.; Schanstra, J.P.; Coon, J.J.; Dominiczak, A.; Mischak, H. Body Fluid Proteomics for Biomarker Discovery: Lessons from the Past Hold the Key to Success in the Future. J. Proteome Res. 2007, 6, 4549–4555. [Google Scholar] [CrossRef] [PubMed]
- Gautam, R.; Peoples, D.; Jansen, K.; O’Connor, M.; Thomas, G.; Vanga, S.; Pence, I.J.; Mahadevan-Jansen, A. Feature Selection and Rapid Characterization of Bloodstains on Different Substrates. Appl. Spectrosc. 2020, 74, 1238–1251. [Google Scholar] [CrossRef]
- Muro, C.K.; Doty, K.C.; de Souza Fernandes, L.; Lednev, I.K. Forensic body fluid identification and differentiation by Raman spectroscopy. Forensic Chem. 2016, 1, 31–38. [Google Scholar] [CrossRef]
- Gentile, F.; Das, G.; Coluccio, M.L.; Mecarini, F.; Accardo, A.; Tirinato, L.; Tallerico, R.; Cojoc, G.; Liberale, C.; Candeloro, P.; et al. Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices. Microelectron. Eng. 2010, 87, 798–801. [Google Scholar] [CrossRef]
- März, A.; Rösch, P.; Henkel, T.; Malsch, D.; Popp, J. Lab-on-a-Chip Surface-Enhanced Raman Spectroscopy. In Optical Nano- and Microsystems for Bioanalytics; Fritzsche, W., Popp, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 229–245. [Google Scholar]
- Bunaciu, A.A.; Fleschin, Ş.; Hoang, V.D.; Aboul-Enein, H.Y. Vibrational Spectroscopy in Body Fluids Analysis. Crit. Rev. Anal. Chem. 2016, 47, 67–75. [Google Scholar] [CrossRef]
- Hu, S.; Loo, J.A.; Wong, D.T. Human body fluid proteome analysis. Proteomics 2006, 6, 6326–6353. [Google Scholar] [CrossRef]
- Kuhar, N.; Sil, S.; Umapathy, S. Potential of Raman spectroscopic techniques to study proteins. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 258, 119712. [Google Scholar] [CrossRef] [PubMed]
- Gautam, R.; Samuel, A.; Sil, S.; Chaturvedi, D.; Dutta, A.; Ariese, F.; Umapathy, S. Raman and mid-infrared spectroscopic imaging: Applications and advancements. Curr. Sci. 2015, 108, 341–356. [Google Scholar]
- Kuhar, N.; Sil, S.; Verma, T.; Umapathy, S. Challenges in application of Raman spectroscopy to biology and materials. RSC Adv. 2018, 8, 25888–25908. [Google Scholar] [CrossRef]
- Gautam, R.; Oh, J.Y.; Patel, R.P.; Dluhy, R.A. Non-invasive analysis of stored red blood cells using diffuse resonance Raman spectroscopy. Analyst 2018, 143, 5950–5958. [Google Scholar] [CrossRef]
- Sil, S.; Gautam, R.; Umapathy, S. Chapter 6—Applications of Raman and Infrared Microscopy to Materials and Biology. In Molecular and Laser Spectroscopy; A2; Gupta, V.P., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 117–146. [Google Scholar]
- Muehlethaler, C.; Leona, M.; Lombardi, J.R. Review of Surface Enhanced Raman Scattering Applications in Forensic Science. Anal. Chem. 2016, 88, 152–169. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Li, B.; Wen, Z.; Luo, X.; Xue, L.; Li, L. Label-free blood serum detection by using surface-enhanced Raman spectroscopy and support vector machine for the preoperative diagnosis of parotid gland tumors. BMC Cancer 2015, 15, 650. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Goddard, J.M.; Barr, H.; Stone, N. Photodiagnosis using Raman and surface enhanced Raman scattering of bodily fluids. Photodiagnosis Photodyn. Ther. 2005, 2, 223–233. [Google Scholar] [CrossRef]
- Schlücker, S. SERS Microscopy: Nanoparticle Probes and Biomedical Applications. In Surface Enhanced Raman Spectroscopy; Wiley: Weinheim, Germany, 2010; pp. 263–283. [Google Scholar]
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Jeanmaire, D.L.; Van Duyne, R.P. Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1–20. [Google Scholar] [CrossRef]
- Albrecht, M.G.; Creighton, J.A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217. [Google Scholar] [CrossRef]
- Stiles, P.L.; Dieringer, J.A.; Shah, N.C.; Van Duyne, R.P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601–626. [Google Scholar] [CrossRef]
- Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 1985, 57, 783–826. [Google Scholar] [CrossRef]
- Ruperez, A.; Laserna, J. Surface-enhanced Raman spectroscopy. In Modern Technique in Raman Spectroscopy; Laserna, J.J., Ed.; Wiley & Sons: Chichester, UK, 1996; pp. 227–264. [Google Scholar]
- Arenas, J.F.; López-Tocón, I.; Castro, J.L.; Centeno, S.P.; López-Ramírez, M.R.; Otero, J.C. Resonant charge transfer on the nanoscale: Studying doublet states of adsorbates by surface-enhanced Raman scattering. J. Raman Spectrosc. 2005, 36, 515–521. [Google Scholar] [CrossRef]
- Sil, S.; Chaturvedi, D.; Krishnappa, K.B.; Kumar, S.; Asthana, S.N.; Umapathy, S. Density Functional Theoretical Modeling, Electrostatic Surface Potential and Surface Enhanced Raman Spectroscopic Studies on Biosynthesized Silver Nanoparticles: Observation of 400 pM Sensitivity to Explosives. J. Phys. Chem. A 2014, 118, 2904–2914. [Google Scholar] [CrossRef]
- Kandakkathara, A.; Utkin, I.; Fedosejevs, R. Surface-Enhanced Raman Scattering (SERS) Detection of Low Concentrations of Tryptophan Amino Acid in Silver Colloid. Appl. Spectrosc. 2011, 65, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Perumal, J.; Wang, Y.; Attia, A.B.E.; Dinish, U.S.; Olivo, M. Towards a point-of-care SERS sensor for biomedical and agri-food analysis applications: A review of recent advancements. Nanoscale 2021, 13, 553–580. [Google Scholar] [CrossRef] [PubMed]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef] [PubMed]
- März, A.; Ackermann, K.R.; Malsch, D.; Bocklitz, T.; Henkel, T.; Popp, J. Towards a quantitative SERS approach–online monitoring of analytes in a microfluidic system with isotope-edited internal standards. J. Biophotonics 2009, 2, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Strehle, K.R.; Cialla, D.; Rösch, P.; Henkel, T.; Köhler, M.; Popp, J. A Reproducible Surface-Enhanced Raman Spectroscopy Approach. Online SERS Measurements in a Segmented Microfluidic System. Anal. Chem. 2007, 79, 1542–1547. [Google Scholar] [CrossRef]
- Jeon, J.; Choi, N.; Chen, H.; Moon, J.-I.; Chen, L.; Choo, J. SERS-based droplet microfluidics for high-throughput gradient analysis. Lab A Chip 2019, 19, 674–681. [Google Scholar] [CrossRef]
- Andreou, C.; Hoonejani, M.R.; Barmi, M.R.; Moskovits, M.; Meinhart, C.D. Rapid Detection of Drugs of Abuse in Saliva Using Surface Enhanced Raman Spectroscopy and Microfluidics. ACS Nano 2013, 7, 7157–7164. [Google Scholar] [CrossRef]
- Wang, G.; Lim, C.; Chen, L.; Chon, H.; Choo, J.; Hong, J.; deMello, A.J. Surface-enhanced Raman scattering in nanoliter droplets: Towards high-sensitivity detection of mercury (II) ions. Anal. Bioanal. Chem. 2009, 394, 1827–1832. [Google Scholar] [CrossRef]
- Dimov, I.K.; Basabe-Desmonts, L.; Garcia-Cordero, J.L.; Ross, B.M.; Ricco, A.J.; Lee, L.P. Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS). Lab A Chip 2011, 11, 845–850. [Google Scholar] [CrossRef]
- Henkel, T.; März, A.; Popp, J. SERS and Microfluidics. In Surface Enhanced Raman Spectroscopy; Wiley: Weinheim, Germany, 2010; pp. 173–190. [Google Scholar]
- Mark, D.; Haeberle, S.; Roth, G.; von Stetten, F.; Zengerle, R. Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications. Chem. Soc. Rev. 2010, 39, 1153–1182. [Google Scholar] [CrossRef]
- Nasseri, B.; Soleimani, N.; Rabiee, N.; Kalbasi, A.; Karimi, M.; Hamblin, M.R. Point-of-care microfluidic devices for pathogen detection. Biosens. Bioelectron. 2018, 117, 112–128. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-H.; Chen, L.; Chen, G.; Xu, Y.; Wang, C.-Y. Microchannel-Based Surface-Enhanced Raman Spectroscopy for Integrated Microfluidic Analysis. Appl. Spectrosc. 2014, 68, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Szaniawska, A.; Kudelski, A. Applications of Surface-Enhanced Raman Scattering in Biochemical and Medical Analysis. Front. Chem. 2021, 9, 664134. [Google Scholar] [CrossRef]
- Lee, P.C.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982, 86, 3391–3395. [Google Scholar] [CrossRef]
- Podstawka, E.; Ozaki, Y.; Proniewicz, L.M. Adsorption of S–S Containing Proteins on a Colloidal Silver Surface Studied by Surface-Enhanced Raman Spectroscopy. Appl. Spectrosc. 2004, 58, 1147–1156. [Google Scholar] [CrossRef]
- Kahraman, M.; Tokman, N.; Çulha, M. Silver Nanoparticle Thin Films with Nanocavities for Surface-Enhanced Raman Scattering. ChemPhysChem 2008, 9, 902–910. [Google Scholar] [CrossRef]
- Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014, 4, 3974–3983. [Google Scholar] [CrossRef]
- Becke, A.D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Parr, R.G. Density Functional Theory of Atoms and Molecules. In Horizons of Quantum Chemistry, Proceedings of the Third International Congress of Quantum Chemistry, Kyoto, Japan, 29 October–3 November 1979; Fukui, K., Pullman, B., Eds.; Springer: Dordrecht, The Netherlands, 1980; pp. 5–15. [Google Scholar]
- García-Ramos, J.V.; Sánchez-Cortés, S. Metal colloids employed in the SERS of biomolecules: Activation when exciting in the visible and near-infrared regions. J. Mol. Struct. 1997, 405, 13–28. [Google Scholar] [CrossRef]
- Kämmer, E.; Dörfer, T.; Csáki, A.; Schumacher, W.; Da Costa Filho, P.A.; Tarcea, N.; Fritzsche, W.; Rösch, P.; Schmitt, M.; Popp, J. Evaluation of Colloids and Activation Agents for Determination of Melamine Using UV-SERS. J. Phys. Chem. C 2012, 116, 6083–6091. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Cortés, S.; García-Ramos, J.V.; Morcillo, G. Morphological Study of Metal Colloids Employed as Substrate in the SERS Spectroscopy. J. Colloid Interface Sci. 1994, 167, 428–436. [Google Scholar] [CrossRef]
- Han, X.X.; Huang, G.G.; Zhao, B.; Ozaki, Y. Label-Free Highly Sensitive Detection of Proteins in Aqueous Solutions Using Surface-Enhanced Raman Scattering. Anal. Chem. 2009, 81, 3329–3333. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Puebla, R.A.; Arceo, E.; Goulet, P.J.; Garrido, J.J.; Aroca, R.F. Role of nanoparticle surface charge in surface-enhanced Raman scattering. J. Phys. Chem. B 2005, 109, 3787–3792. [Google Scholar] [CrossRef] [PubMed]
- Mikac, L.; Ivanda, M.; Gotić, M.; Mihelj, T.; Horvat, L. Synthesis and characterization of silver colloidal nanoparticles with different coatings for SERS application. J. Nanoparticle Res. 2014, 16, 2748. [Google Scholar] [CrossRef]
- Osawa, Y.; Kanamori, H.; Seki, E.; Hoshi, M.; Ohtaki, H.; Yasuda, Y.; Ito, H.; Suetsugu, A.; Nagaki, M.; Moriwaki, H.; et al. l-Tryptophan-mediated Enhancement of Susceptibility to Nonalcoholic Fatty Liver Disease Is Dependent on the Mammalian Target of Rapamycin. J. Biol. Chem. 2011, 286, 34800–34808. [Google Scholar] [CrossRef]
- Badawy, A.A.-B.; Morgan, C.J.; Llewelyn, M.B.; Albuquerque, S.R.J.; Farmer, A. Heterogeneity of serum tryptophan concentration and availability to the brain in patients with the chronic fatigue syndrome. J. Psychopharmacol. 2005, 19, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Tu, Q.; Eisen, J.; Chang, C. Surface-enhanced Raman spectroscopy study of indolic molecules adsorbed on gold colloids. J. Biomed. Opt. 2010, 15, 020512. [Google Scholar] [CrossRef]
- Politzer, P.; Truhlar, D.G. Chemical Application of Atomic and Molecular Electrostatic Potentials; Springer: Boston, MA, USA, 1981. [Google Scholar]
- Fan, M.; Lu, D.; You, R.; Chen, C.; Lu, Y.; Wu, Y.; Shen, H.; Feng, S. Highly sensitive detection of tryptophan (Trp) in serum based on diazo-reaction coupling with Surface-Enhanced Raman Scattering and colorimetric assay. Anal. Chim. Acta 2020, 1119, 52–59. [Google Scholar] [CrossRef]
- Madzharova, F.; Heiner, Z.; Kneipp, J. Surface Enhanced Hyper-Raman Scattering of the Amino Acids Tryptophan, Histidine, Phenylalanine, and Tyrosine. J. Phys. Chem. C 2017, 121, 1235–1242. [Google Scholar] [CrossRef]
- Lee, D.; Hussain, S.; Yeo, J.; Pang, Y. Adsorption of dipeptide L-alanyl-L-tryptophan on gold colloidal nanoparticles studied by surface-enhanced Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 247, 119064. [Google Scholar] [CrossRef] [PubMed]
- Gautam, R.; Vanga, S.; Ariese, F.; Umapathy, S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech. Instrum. 2015, 2, 8. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gautam, R.; Chaturvedi, D.; Sil, S.; Kuhar, N.; Singh, S.; Umapathy, S. Characterization of Aggregating Agents towards Sensitive Optical Detection of Tryptophan Using Lab-on-a-Chip. Photonics 2022, 9, 648. https://doi.org/10.3390/photonics9090648
Gautam R, Chaturvedi D, Sil S, Kuhar N, Singh S, Umapathy S. Characterization of Aggregating Agents towards Sensitive Optical Detection of Tryptophan Using Lab-on-a-Chip. Photonics. 2022; 9(9):648. https://doi.org/10.3390/photonics9090648
Chicago/Turabian StyleGautam, Rekha, Deepika Chaturvedi, Sanchita Sil, Nikki Kuhar, Saumya Singh, and Siva Umapathy. 2022. "Characterization of Aggregating Agents towards Sensitive Optical Detection of Tryptophan Using Lab-on-a-Chip" Photonics 9, no. 9: 648. https://doi.org/10.3390/photonics9090648
APA StyleGautam, R., Chaturvedi, D., Sil, S., Kuhar, N., Singh, S., & Umapathy, S. (2022). Characterization of Aggregating Agents towards Sensitive Optical Detection of Tryptophan Using Lab-on-a-Chip. Photonics, 9(9), 648. https://doi.org/10.3390/photonics9090648