Iridium(III) and Rhodium(III) Half-Sandwich Coordination Compounds with 11H-Indeno[1,2-b]quinoxalin-11-one Oxime: A Case of Spontaneous Resolution of Rh(III) Complex
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Coordination Compounds
2.2. Spectroscopic Characterization
2.3. Crystal Structures of the Coordination Compounds
3. Materials and Methods
3.1. Starting Materials and Synthetic Procedures
3.2. Spectral Methods and Elemental Analysis
3.3. X-Ray Crystal Structure Determination
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.; Zhang, S.-W.; Wu, C.; Li, W.; Wu, Y.; Yang, C.; Meng, Z.; Xu, W.; Tang, M.-C.; Xie, R.; et al. Fine Emission Tuning from Near-Ultraviolet to Saturated Blue with Rationally Designed Carbene-Based [3 + 2 + 1] Iridium(III) Complexes. ACS Appl. Mater. Interfaces 2022, 14, 1546–1556. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Chen, S.; Zhao, H.; Zhang, X. Alkyl-promoted iridium complex for high-performance deep-red phosphorescent organic light-emitting diodes. Dye. Pigment. 2022, 204, 110484. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, L.; Han, W.; Bin, Z.; You, J. Intramolecular C−H Activation as an Easy Toolbox to Synthesize Pyridine-Fused Bipolar Hosts for Blue Organic Light-Emitting Diodes. Angew. Chem. Int. Ed. 2022, 61, e202205380. [Google Scholar]
- Li, H.; Jia, D.; Yao, C.; Jing, Y.; Li, B.; Yang, X.; Sun, Y.; Su, B.; Zhou, G.; Jiao, B. Red-emitting IrIII(C^N)2(P-donor ligand)Cl-type complexes showing aggregation-induced phosphorescent emission (AIPE) behavior for both red and white OLEDs. Dye. Pigment. 2022, 205, 110538. [Google Scholar] [CrossRef]
- Yoshihara, T.; Matsumura, N.; Tamura, T.; Shiozaki, S.; Tobita, S. Intracellular and Intravascular Oxygen Sensing of Pancreatic Tissues Based on Phosphorescence Lifetime Imaging Microscopy Using Lipophilic and Hydrophilic Iridium(III) Complexes. ACS Sens. 2022, 7, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zou, S.; Wang, S.; Li, Z.; Ma, D.-L.; Miao, X. CTnI diagnosis in myocardial infarction using G-quadruplex selective Ir(Ⅲ) complex as effective electrochemiluminescence probe. Talanta 2022, 248, 123622. [Google Scholar] [CrossRef]
- Ge, Z.-R.; Tong, X.; Huang, Y.-C.; Li, W.-H.; Li, H.-Y.; Lu, A.-D.; Li, T.-Y. Highly Luminescent Dinuclear Iridium(III) Complexes Containing Phenanthroline-Based Neutral Ligands as Chemosensors for Cu2+ Ion. Organometallics 2022, 41, 706–715. [Google Scholar] [CrossRef]
- Rashid, A.; Mondal, S.; Mondal, S.; Ghosh, P. A Bis-heteroleptic Imidazolium-bipyridine Functionalized Iridium(III) Complex for Fluorescence Lifetime-based Recognition and Sensing of Phosphates. Chem.-Asian J. 2022, 17, e202200393. [Google Scholar] [CrossRef]
- Štarha, P. Multinuclear biologically active Ru, Rh, Os and Ir arene complexes. Coord. Chem. Rev. 2021, 431, 213690. [Google Scholar] [CrossRef]
- Máliková, K.; Masaryk, L.; Štarha, P. Anticancer Half-Sandwich Rhodium(III) Complexes. Inorganics 2021, 9, 26. [Google Scholar] [CrossRef]
- Pete, S.; Roy, N.; Kar, B.; Paira, P. Construction of homo and heteronuclear Ru(II), Ir(III) and Re(I) complexes for target specific cancer therapy. Coord. Chem. Rev. 2022, 460, 214462. [Google Scholar] [CrossRef]
- Gao, J.; Guo, L.; Wu, Y.; Cheng, Y.; Hu, X.; Liu, J.; Liu, Z. 16-Electron Half-Sandwich Rhodium(III), Iridium(III), and Ruthenium(II) Complexes as Lysosome-Targeted Anticancer Agents. Organometallics 2021, 40, 3999–4010. [Google Scholar] [CrossRef]
- Matton, P.; Huvelle, S.; Haddad, M.; Phansavath, P.; Ratovelomanana-Vidal, V. Recent Progress in Metal-Catalyzed [2+2+2] Cycloaddition Reactions. Synthesis 2021, 54, 4–32. [Google Scholar]
- Kharitonov, V.B.; Muratov, D.V.; Loginov, D.A. Cyclopentadienyl complexes of group 9 metals in the total synthesis of natural products. Coord. Chem. Rev. 2022, 471, 214744. [Google Scholar] [CrossRef]
- Li, P.; Liu, J.-B.; Han, S.; Deng, W.; Yao, Z.-J. Half-sandwich Ir (III) and Rh (III) complexes as catalysts for water oxidation with double-site. Appl. Organomet. Chem. 2019, 33, e5040. [Google Scholar] [CrossRef]
- Burman, J.S.; Harris, R.J.; Farr, C.M.B.; Bacsa, J.; Blakey, S.B. Rh(III) and Ir(III)Cp* Complexes Provide Complementary Regioselectivity Profiles in Intermolecular Allylic C–H Amidation Reactions. ACS Catal. 2019, 9, 5474–5479. [Google Scholar] [CrossRef]
- Yoshino, T.; Satake, S.; Matsunaga, S. Diverse Approaches for Enantioselective C−H Functionalization Reactions Using Group 9 CpxMIII Catalysts. Chem. Eur. J. 2020, 26, 7346–7357. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, J. Recent Advances on Transition-Metal-Catalyzed Asymmetric C–H Arylation Reactions. Synthesis 2021, 54, 4734–4752. [Google Scholar]
- Liu, C.-X.; Zhang, W.-W.; Yin, S.-Y.; Gu, Q.; You, S.-L. Synthesis of Atropisomers by Transition-Metal-Catalyzed Asymmetric C–H Functionalization Reactions. J. Am. Chem. Soc. 2021, 143, 14025–14040. [Google Scholar] [CrossRef]
- Nielsen, C.D.-T.; Linfoot, J.D.; Williams, A.F.; Spivey, A.C. Recent progress in asymmetric synergistic catalysis—The judicious combination of selected chiral aminocatalysts with achiral metal catalysts. Org. Biomol. Chem. 2022, 20, 2764–2778. [Google Scholar] [CrossRef]
- Bauer, E.B. Chiral-at-metal complexes and their catalytic applications in organic synthesis. Chem. Soc. Rev. 2012, 41, 3153–3167. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Imamura, T.; Kaizaki, S.; Kashiwabara, K. Preparation, crystal structures and spectroscopic properties of chloro(pentane-2,4-dionato){1,1,1-tris(dimethylphosphinomethyl)ethane}chromium(III), cobalt(III) and rhodium(III) hexafluorophosphate: Comparison of the M-P, M-Cl and M-O (M=Cr, Co and Rh) bo. Polyhedron 2002, 21, 835–841. [Google Scholar] [CrossRef]
- Odinets, I.L.; Artyushin, O.I.; Sharova, E.V.; Goryunov, E.I.; Golovanov, D.G.; Lyssenko, K.A.; Petrovskii, P.V.; Mastryukova, T.A. Generation of an optically active rhodium(III) complex by crystallization-induced spontaneous resolution of a racemic mixture. Mendeleev Commun. 2003, 13, 102–103. [Google Scholar] [CrossRef]
- Gillard, R.D.; Tipping, L.R.H. Optically active co-ordination compounds. Part 39. Resolutions and configurations of compounds containing the cis-bis(ethylenediamine)rhodium(III) moiety. J. Chem. Soc. Dalt. Trans. 1977, 1241–1247. [Google Scholar] [CrossRef]
- Schmid, B.; Frieß, S.; Herrera, A.; Linden, A.; Heinemann, F.W.; Locke, H.; Harder, S.; Dorta, R. Chiral amino-phosphine and amido-phosphine complexes of Ir and Mg. Catalytic applications in olefin hydroamination. Dalton Trans. 2016, 45, 12028–12040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matveevskaya, V.V.; Pavlov, D.I.; Sukhikh, T.S.; Gushchin, A.L.; Ivanov, A.Y.; Tennikova, T.B.; Sharoyko, V.V.; Baykov, S.V.; Benassi, E.; Potapov, A.S. Arene-Ruthenium(II) Complexes Containing 11 H-Indeno[1,2- b]quinoxalin-11-one Derivatives and Tryptanthrin-6-oxime: Synthesis, Characterization, Cytotoxicity, and Catalytic Transfer Hydrogenation of Aryl Ketones. ACS Omega 2020, 5, 11167–11179. [Google Scholar] [CrossRef]
- Matveevskaya, V.V.; Pavlov, D.I.; Samsonenko, D.G.; Bonfili, L.; Cuccioloni, M.; Benassi, E.; Pettinari, R.; Potapov, A.S. Arene-ruthenium(II) complexes with tetracyclic oxime derivatives: Synthesis, structure and antiproliferative activity against human breast cancer cells. Inorg. Chim. Acta 2022, 535, 120879. [Google Scholar] [CrossRef]
- Schepetkin, I.A.; Khlebnikov, A.I.; Potapov, A.S.; Kovrizhina, A.R.; Matveevskaya, V.V.; Belyanin, M.L.; Atochin, D.N.; Zanoza, S.O.; Gaidarzhy, N.M.; Lyakhov, S.A.; et al. Synthesis, biological evaluation, and molecular modeling of 11H-indeno[1,2-b]quinoxalin-11-one derivatives and tryptanthrin-6-oxime as c-Jun N-terminal kinase inhibitors. Eur. J. Med. Chem. 2019, 161, 179–191. [Google Scholar] [CrossRef]
- Plotnikov, M.B.; Chernysheva, G.A.; Smolyakova, V.I.; Aliev, O.I.; Trofimova, E.S.; Sherstoboev, E.Y.; Osipenko, A.N.; Khlebnikov, A.I.; Anfinogenova, Y.J.; Schepetkin, I.A.; et al. Neuroprotective Effects of a Novel Inhibitor of c-Jun N-Terminal Kinase in the Rat Model of Transient Focal Cerebral Ischemia. Cells 2020, 9, 1860. [Google Scholar] [CrossRef]
- Liakhov, S.A.; Schepetkin, I.A.; Karpenko, O.S.; Duma, H.I.; Haidarzhy, N.M.; Kirpotina, L.N.; Kovrizhina, A.R.; Khlebnikov, A.I.; Bagryanskaya, I.Y.; Quinn, M.T. Novel c-Jun N-Terminal Kinase (JNK) Inhibitors with an 11H-Indeno[1,2-b]quinoxalin-11-one Scaffold. Molecules 2021, 26, 5688. [Google Scholar] [CrossRef]
- Kovrizhina, A.R.; Samorodova, E.I.; Khlebnikov, A.I. 11H-Indeno[1,2-b]quinoxalin-11-one 2-(4-ethylbenzylidene)hydrazone. Molbank 2021, 2021, M1299. [Google Scholar] [CrossRef]
- Tseng, C.-H.H.; Chen, Y.-R.Y.-L.L.Y.R.; Tzeng, C.-C.C.; Liu, W.; Chou, C.-K.K.; Chiu, C.-C.C.; Chen, Y.-R.Y.-L.L.Y.R. Discovery of indeno[1,2-b]quinoxaline derivatives as potential anticancer agents. Eur. J. Med. Chem. 2016, 108, 258–273. [Google Scholar] [CrossRef] [PubMed]
- Mo, X.-F.; Liu, C.; Chen, Z.-W.; Ma, F.; He, P.; Yi, X.-Y. Metal–Ligand Cooperation in Cp*Ir-Pyridylpyrrole Complexes: Rational Design and Catalytic Activity in Formic Acid Dehydrogenation and CO2 Hydrogenation under Ambient Conditions. Inorg. Chem. 2021, 60, 16584–16592. [Google Scholar] [CrossRef] [PubMed]
- Jordaan, L.; Ndlovu, M.T.; Mkhize, S.; Ngubane, S.; Loots, L.; Duffy, S.; Avery, V.M.; Chellan, P. Investigating the antiplasmodial activity of substituted cyclopentadienyl rhodium and iridium complexes of 2-(2-pyridyl)benzimidazole. J. Organomet. Chem. 2022, 962, 122273. [Google Scholar] [CrossRef]
- Maji, M.; Chakrabarti, K.; Panja, D.; Kundu, S. Sustainable synthesis of N-heterocycles in water using alcohols following the double dehydrogenation strategy. J. Catal. 2019, 373, 93–102. [Google Scholar] [CrossRef]
- Sairem, G.; Anna, V.R.; Wang, P.; Das, B.; Kollipara, M.R. η5 and η6-Cyclic π-perimeter hydrocarbon platinum group metal complexes of 3-(2-pyridyl)pyrazole derived ligands with a pendant nitrile group: Syntheses, spectral and structural studies. J. Chem. Sci. 2012, 124, 411–419. [Google Scholar] [CrossRef]
- Singh, K.S.; Wang, P.; Narkhede, N.A.; Mozharivskyj, Y. Iridium(III) and Rhodium(III) compounds of dipyridyl-N-alkylimine and dipyridyl-NH-ketimine: Spectral characterization and crystal structure. J. Chem. Sci. 2017, 129, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Thangavel, S.; Boopathi, S.; Mahadevaiah, N.; Kolandaivel, P.; Pansuriya, P.B.; Friedrich, H.B. Catalytic oxidation of primary aromatic alcohols using half sandwich Ir(III), Rh(III) and Ru(II) complexes: A practical and theoretical study. J. Mol. Catal. A Chem. 2016, 423, 160–171. [Google Scholar] [CrossRef]
- White, C.; Yates, A.; Maitlis, P.M.; Heinekey, D.M. (η5-Pentamethylcyclopentadienyl)Rhodium and -Iridium Compounds. In Inorganic Syntheses; Inorganic Syntheses: Hoboken, NJ, USA, 1992; pp. 228–234. ISBN 9780470132609. [Google Scholar]
- Schepetkin, I.A.; Kirpotina, L.N.; Hammaker, D.; Kochetkova, I.; Khlebnikov, A.I.; Lyakhov, S.A.; Firestein, G.S.; Quinn, M.T. Anti-inflammatory effects and joint protection in collagen-induced arthritis after treatment with IQ-1S, a selective c-Jun n-terminal kinase inhibitor. J. Pharmacol. Exp. Ther. 2015, 353, 505–516. [Google Scholar] [CrossRef] [Green Version]
- APEX2 (Version 2.0), SAINT (Version 8.18c), and SADABS (Version 2.11), Bruker Advanced X-ray Solutions; Bruker AXS Inc.: Madison, WI, USA, 2012.
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Compound | 1 | S-2 | R-2 |
---|---|---|---|
Empirical formula | C25H23N3OClIr | C25H23N3OClRh | C25H23N3OClRh |
Formula weight | 609.15 | 519.82 | 519.82 |
Temperature, K | 150(2) | 150(2) | 150(2) |
Crystal system | monoclinic | orthorhombic | orthorhombic |
Space group | P21/c | P212121 | P212121 |
a, Å | 8.0606(5) | 7.5540(2) | 7.5556(2) |
b, Å | 8.2190(5) | 16.0255(4) | 16.0214(4) |
c, Å | 32.182(2) | 17.7087(4) | 17.7094(4) |
α, ° | 90 | 90 | 90 |
β, ° | 96.916(2) | 90 | 90 |
γ, ° | 90 | 90 | 90 |
Volume, Å3 | 2116.5(2) | 2143.76(9) | 2143.75(9) |
Z | 4 | 4 | 4 |
ρcalc, g/cm3 | 1.912 | 1.611 | 1.611 |
μ, mm−1 | 6.458 | 0.944 | 0.944 |
F(000) | 1184 | 1056 | 1056 |
Crystal size, mm3 | 0.064 × 0.08 × 0.008 | 0.12 × 0.03 × 0.03 | 0.11 × 0.08 × 0.08 |
2Θ range for data collection, ° | 5.1176 to 61.1154 | 3.428 to 61.120 | 5.085 to 57.3712 |
Index ranges | −11≤ h ≤ 11 −11 ≤ k ≤11 −46 ≤ l ≤ 45 | −10 ≤ h ≤ 10 −22 ≤ k ≤ 22 −25 ≤ l ≤ 25 | −10 ≤ h ≤ 10 −21 ≤ k ≤ 21 −23 ≤ l ≤ 23 |
Reflections collected | 41,035 | 40,248 | 38,575 |
Independent reflections | 6502 [Rint = 0.0269, Rsigma = 0.0168] | 6556 [Rint = 0.0624, Rsigma = 0.0453] | 5524 [Rint = 0.0386, Rsigma = 0.0252] |
Restraints/Parameters | 0/285 | 0/285 | 0/285 |
Goodness-of-fit on F2 | 1.097 | 1.043 | 1.045 |
Final R indices [I >= 2σ (I)] | R1 = 0.0140, wR2 = 0.0318 | R1 = 0.0310 wR2 = 0.0605 | R1 = 0.0174 wR2 = 0.0392 |
Final R indices [all data] | R1 = 0.0153, wR2 = 0.0322 | R1 = 0.0387, wR2 = 0.0628 | R1 = 0.0184, wR2 = 0.0398 |
Flack parameter | - | −0.028(15) | −0.015(9) |
Largest diff. peak/hole, e·Å−3 | 0.699/−0.758 | 1.236/−0.518 | 0.271/−0.267 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matveevskaya, V.V.; Pavlov, D.I.; Potapov, A.S. Iridium(III) and Rhodium(III) Half-Sandwich Coordination Compounds with 11H-Indeno[1,2-b]quinoxalin-11-one Oxime: A Case of Spontaneous Resolution of Rh(III) Complex. Inorganics 2022, 10, 179. https://doi.org/10.3390/inorganics10110179
Matveevskaya VV, Pavlov DI, Potapov AS. Iridium(III) and Rhodium(III) Half-Sandwich Coordination Compounds with 11H-Indeno[1,2-b]quinoxalin-11-one Oxime: A Case of Spontaneous Resolution of Rh(III) Complex. Inorganics. 2022; 10(11):179. https://doi.org/10.3390/inorganics10110179
Chicago/Turabian StyleMatveevskaya, Vladislava V., Dmitry I. Pavlov, and Andrei S. Potapov. 2022. "Iridium(III) and Rhodium(III) Half-Sandwich Coordination Compounds with 11H-Indeno[1,2-b]quinoxalin-11-one Oxime: A Case of Spontaneous Resolution of Rh(III) Complex" Inorganics 10, no. 11: 179. https://doi.org/10.3390/inorganics10110179
APA StyleMatveevskaya, V. V., Pavlov, D. I., & Potapov, A. S. (2022). Iridium(III) and Rhodium(III) Half-Sandwich Coordination Compounds with 11H-Indeno[1,2-b]quinoxalin-11-one Oxime: A Case of Spontaneous Resolution of Rh(III) Complex. Inorganics, 10(11), 179. https://doi.org/10.3390/inorganics10110179