Generalized Peukert Equation with Due Account of Temperature for Estimating the Remaining Capacity of Nickel–Metal Hydride Batteries
Abstract
:1. Introduction
2. Theory
3. Experimental
4. Results
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coleman, M.; Lee, C.K.; Zhu, C.; Hurley, W.G. State-of-charge determination from EMF voltage estimation: Using impedance, terminal voltage, and current for lead-acid and lithium-ion batteries. IEEE Trans. Ind. Electron. 2007, 54, 2550–2557. [Google Scholar] [CrossRef]
- Omar, N.; Daowd, M.; Van den Bossche, P.; Hegazy, O.; Smekens, J.; Coosemans, T.; van Mierlo, J. Rechargeable energy storage systems for plug-in hybrid electric vehicles—Assessment of electrical characteristics. Energies 2012, 5, 2952–2988. [Google Scholar] [CrossRef] [Green Version]
- Yazvinskaya, N.N.; Lipkin, M.S.; Galushkin, N.E.; Galushkin, D.N. Analysis of Peukert Generalized Equations Use for Estimation of Remaining Capacity of Automotive-Grade Lithium-Ion Batteries. Batteries 2022, 8, 118. [Google Scholar] [CrossRef]
- Chen, H.; Buston, J.E.H.; Gill, J.; Howard, D.; Williams, R.C.E.; Read, E.; Abaza, A.; Cooper, B.; Wen, J.X. Simplified Mathematical Model for Heating-Induced Thermal Runaway of Lithium-Ion Batteries. J. Electrochem. Soc. 2021, 168, 010502. [Google Scholar] [CrossRef]
- Cugnet, M.; Laruelle, S.; Grugeon, S.; Sahut, B.; Sabatier, J.; Tarascon, J.-M.; Oustaloup, A. A mathematical model for the simulation of new and aged automotive lead-acid batteries. J. Electrochem. Soc. 2009, 156, A974–A985. [Google Scholar] [CrossRef]
- Arunachalam, H.; Onori, S.; Battiato, I. On Veracity of Macroscopic Lithium-Ion Battery Models. J. Electrochem. Soc. 2015, 162, A1940–A1951. [Google Scholar] [CrossRef]
- Fan, G.; Pan, K.; Canova, M.; Marcicki, J.; Yang, X.G. Modeling of Li-Ion cells for fast simulation of high C-rate and low temperature operations. J. Electrochem. Soc. 2016, 163, A666–A676. [Google Scholar] [CrossRef]
- Liu, S.; Dougal, R.A.; Weidner, J.W.; Gao, L. A simplified physics-based model for nickel hydrogen battery. J. Power Sources 2005, 141, 326–339. [Google Scholar] [CrossRef]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. Analytical model of thermal runaway in alkaline batteries. Int. J. Electrochem. Sci. 2018, 13, 1275–1282. [Google Scholar] [CrossRef]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. Mechanism of thermal runaway as a cause of Fleischmann-Pons effect. J. Electroanal. Chem. 2020, 870, 114237. [Google Scholar] [CrossRef]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. Pocket electrodes as hydrogen storage units of high-capacity. Int. J. Electrochem. Sci. 2017, 164, A2555–A2558. [Google Scholar] [CrossRef] [Green Version]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. Nickel-cadmium batteries with pocket electrodes as hydrogen energy storage units of high-capacity. J. Energy Storage 2021, 39, 102597. [Google Scholar] [CrossRef]
- Hausmann, A.; Depcik, C. Expanding the Peukert equation for battery capacity modeling through inclusion of a temperature dependency. J. Power Sources 2013, 235, 148–158. [Google Scholar] [CrossRef]
- Feng, F.; Lu, R.; Wei, G.; Zhu, C. Online estimation of model parameters and state of charge of LiFePO4 batteries using a novel open-circuit voltage at various ambient temperatures. Energies 2015, 8, 2950–2976. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, O.; Dessaint, L.A. Experimental validation of a battery dynamic model for EV applications. World Electr. Veh. J. 2009, 3, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. Analysis of generalized Peukert’s equations for capacity calculation of lithium-ion cells. J. Electrochem. Soc. 2020, 167, 013535. [Google Scholar] [CrossRef]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. Models for Evaluation of capacitance of Batteries. Int. J. Electrochem. Sci. 2014, 9, 1911–1919. [Google Scholar]
- Zou, Y.; Hu, X.; Ma, H.; Li, S.E. Combined State of Charge and State of Health estimation over lithium-ion battery cell cycle lifespan for electric vehicles. J. Power Sources 2015, 273, 793–803. [Google Scholar] [CrossRef]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. Nonlinear Structural Model of the Battery. Int. J. Electrochem. Sci. 2014, 9, 6305–6327. [Google Scholar]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. Model of Relaxation Processes in Batteries. ECS Electrochem. Lett. 2015, 4, A94–A96. [Google Scholar] [CrossRef]
- Han, J.; Kim, D.; Sunwoo, M. State-of-charge estimation of lead-acid batteries using an adaptive extended Kalman filter. J. Power Sources 2009, 188, 606–612. [Google Scholar] [CrossRef]
- He, W.; Williard, N.; Chen, C.; Pecht, M. State of charge estimation for electric vehicles batteries using unscented Kalman filtering. Microelectron. Reliab. 2013, 53, 840–847. [Google Scholar] [CrossRef]
- Peukert, W. About the dependence of the capacity of the discharge current magnitude and lead acid batterie. Elektrotech. Z. 1897, 20, 287–288. [Google Scholar]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N.; Galushkina, I.A. Generalized Analytical Models of Batteries, Capacitance Dependence on Discharge Currents. Int. J. Electrochem. Sci. 2014, 9, 4429–4439. [Google Scholar]
- Galushkin, N.E.; Yazvinskaya, N.N.; Ruslyakov, D.V.; Galushkin, D.N. Analysis of Peukert and Liebenow Equations Use for Evaluation of Capacity Released by Lithium-Ion Batteries. Processes 2021, 9, 1753–1763. [Google Scholar]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. Generalized analytical model for capacity evaluation of automotive-grade lithium batteries. J. Electrochem. Soc. 2015, 162, A308–A314. [Google Scholar] [CrossRef]
- Wu, G.; Lu, R.; Zhu, C.; Chan, C.C. Apply a Piece-wise Peukert’s Equation with Temperature Correction Factor to NiMH Battery State of Charge Estimation. J. Asian Electr. Veh. 2010, 8, 1419–1423. [Google Scholar] [CrossRef] [Green Version]
- Cugnet, M.G.; Dubarry, M.; Liaw, B.Y. Peuket’s Law of a Lead-Acid Battery Simulated by a Mathematical Model. ECS Trans. 2010, 25, 223–233. [Google Scholar] [CrossRef]
- Doerffel, D.; Sharkh, S.A. A critical review of using the Peukert equation for determining the remaining capacity of lead-acid and lithium-ion batteries. J. Power Sources 2006, 155, 395–400. [Google Scholar] [CrossRef]
- Omar, N.; van den Bossche, P.; Coosemans, T.; Mierlo, J.V. Peukert Revisited—Critical Appraisal and Need for Modification for Lithium-Ion Batteries. Energies 2013, 6, 5625–5641. [Google Scholar] [CrossRef]
- Larminie, J.; Lowry, J.; NetLibrary, I. Electric Vehicle Technology Explained; John Wiley & Sons Ltd.: Chichester, UK, 2003. [Google Scholar]
Temperature (°C) | −18 | −12 | 0 | +25 |
---|---|---|---|---|
Cm (Ah) | 1.212 | 1.614 | 2.428 | 2.826 |
i0 (A) | 3.478 | 5.947 | 13.792 | 15.725 |
n | 9.645 | 4.989 | 2.099 | 1.899 |
δ (%) 1 | 0.7 | 2.2 | 2.7 | 2.1 |
Parameters | Cm | i0 | 1/n |
---|---|---|---|
Tk (K) | 239.7 | 240.1 | 239.8 |
2.2 | 3.884 | 4.219 | |
K | 1.087 | 1.026 | 1.019 |
δ (%) 1 | 2.3 | 2.9 | 2.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yazvinskaya, N.N. Generalized Peukert Equation with Due Account of Temperature for Estimating the Remaining Capacity of Nickel–Metal Hydride Batteries. Inorganics 2022, 10, 255. https://doi.org/10.3390/inorganics10120255
Yazvinskaya NN. Generalized Peukert Equation with Due Account of Temperature for Estimating the Remaining Capacity of Nickel–Metal Hydride Batteries. Inorganics. 2022; 10(12):255. https://doi.org/10.3390/inorganics10120255
Chicago/Turabian StyleYazvinskaya, Nataliya N. 2022. "Generalized Peukert Equation with Due Account of Temperature for Estimating the Remaining Capacity of Nickel–Metal Hydride Batteries" Inorganics 10, no. 12: 255. https://doi.org/10.3390/inorganics10120255
APA StyleYazvinskaya, N. N. (2022). Generalized Peukert Equation with Due Account of Temperature for Estimating the Remaining Capacity of Nickel–Metal Hydride Batteries. Inorganics, 10(12), 255. https://doi.org/10.3390/inorganics10120255