Trigonal Bipyramidal Rhodium(I) Methyl and Phenyl Complexes: Precursors of Oxidative Methyl and Phenyl Radical Generation
Abstract
:1. Introduction
2. Results and Discussion
ΔE (kcal∙mol−1) | ||
[Rh(I)(CH3)(trop3P)] (2) → [Rh(I)(trop3P]• + CH3• | 60.6 | (1) |
[Rh(I)(C6H5)(trop3P)] (3) → [Rh(I)(trop3P]• + C6H5• | 70.3 | (2) |
[Rh(II)(CH3)(trop3P)]+ (2+) → [Rh(I)(trop3P]+ + CH3• | 13.8 | (3) |
[Rh(II)(C6H5)(trop3P)]+ (3+) → [Rh(I)(trop3P]+ + C6H5• | 23.5 | (4) |
3. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gibian, M.J.; Corley, R.C. Organic radical-radical reactions. Disproportionation vs. combination. Chem. Rev. 1973, 73, 441–464. [Google Scholar] [CrossRef]
- Leffler, J.E. An Introduction to Free Radicals; John Wiley & Sons, Inc.: New York, NY, USA, 1993. [Google Scholar]
- Forbes, M.D.E. Carbon-Centered Free Radicals and Radical Cations: Structure, Reactivity, and Dynamics; John Wiley & Sons, Inc.: New York, NY, USA, 2010. [Google Scholar]
- Fagnoni, M.; Ravelli, D.; Protti, S. Generation of Carbon-Centered Radicals by Photochemical Methods; Georg Thieme Verlag: Stuttgart, Germany, 2021. [Google Scholar]
- Kolbe, H. Untersuchungen über die Elektrolyse organischer Verbindungen. Liebigs Ann. Der Chem. Und Pharm. 1849, 69, 257–274. [Google Scholar] [CrossRef] [Green Version]
- Fossey, J.; Lefort, D.; Sorba, J. Free Radicals in Organic Chemistry; John Wiley & Sons: Chichester, UK, 1995. [Google Scholar]
- Dixon, W.T.; Norman, R.O.C.; Buley, A.L. Electron spin resonance studies of oxidation. Part II.1 aliphatic acids and substituted acids. J. Chem. Soc. 1964, 3621–3625. [Google Scholar] [CrossRef]
- Lagercranz, C.; Forshult, S. Trapping of short-lived free radicals as nitroxide radicals detectable by ESR spectroscopy. The radicals formed in the reaction between OH-radicals and some sulphoxides and sulphones. Acta Chem. Scand. 1969, 23, 811–817. [Google Scholar] [CrossRef]
- Dorfmann, L.M.; Sauer, M.C., Jr. Investigation of Rates and Mechanisms of Reactions, Part II: Investigation of Elementary Reaction Steps in Solution and Fast Reaction Techniques; Bernasconi, C.F., Ed.; Wiley-Interscience: New York, NY, USA, 1986. [Google Scholar]
- Gray, P.; Herod, A.A.; Jones, A. Kinetic data for hydrogen and deuterium atom abstraction by methyl and trifluoromethyl radicals in the gaseous phase. Chem. Rev. 1971, 71, 247–294. [Google Scholar] [CrossRef]
- Hioe, J.; Zipse, H. Radical stability and its role in synthesis and catalysis. Org. Biomol. Chem. 2010, 8, 3609–3617. [Google Scholar] [CrossRef]
- Haynes, D.S. Fossil Fuel Combustion; Wiley-Interscience: New York, NY, USA, 1991; p. 261. [Google Scholar]
- Bockhorn, H. Soot Formation in Combustion; Springer: New York, NY, USA, 1993. [Google Scholar]
- Glassmann, I. Combustion, 2nd ed.; Academic Press: New York, NY, USA, 1986. [Google Scholar]
- Engert, J.M.; Dick, B. The UV absorption spectrum of the phenyl radical isolated in solid argon. Appl. Phys. B-Lasers Opt. 1996, 63, 531–535. [Google Scholar] [CrossRef]
- Friderichsen, A.V.; Radziszewski, J.G.; Nimlos, M.R.; Winter, P.R.; Dayton, D.C.; David, D.E.; Ellison, G.B. The infrared spectrum of the Matrix-isolated phenyl radical. J. Am. Chem. Soc. 2001, 123, 1977–1988. [Google Scholar] [CrossRef]
- Lapinski, A.; Spanget-Larsen, J.; Langgard, M.; Waluk, J.; Radziszewski, J.G. Raman spectrum of the phenyl radical. J. Phys. Chem. A 2001, 105, 10520–10524. [Google Scholar] [CrossRef]
- Park, J.; Nam, G.J.; Tokmakov, I.V.; Lin, M.C. Experimental and theoretical studies of the phenyl radical reaction with propene. J. Phys. Chem. A 2006, 110, 8729–8735. [Google Scholar] [CrossRef]
- Choi, Y.M.; Lin, M.C. Kinetics and mechanisms for the reactions of phenyl radical with ketene and its deuterated isotopomer: An experimental and theoretical study. ChemPhysChem 2004, 5, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, R.I.; Asvany, O.; Lee, Y.T.; Bettinger, H.F.; Schleyer, P.V.; Schaefer, H.F. Crossed beam reaction of phenyl radicals with unsaturated hydrocarbon molecules. I. Chemical dynamics of phenylmethylacetylene (C6H5CCCH3;X1𝐴′) formation from reaction of C6H5(X2𝐴1) with methylacetylene, CH3CCH(X1𝐴1). J. Chem. Phys. 2000, 112, 4994–4999. [Google Scholar] [CrossRef] [Green Version]
- Garden, S.J.; Avila, D.V.; Beckwith, A.L.J.; Bowry, V.W.; Ingold, K.U.; Lusztyk, J. Absolute rate constant for the reaction of aryl radicals with tri-n-butyltin hydride. J. Org. Chem. 1996, 61, 805–809. [Google Scholar] [CrossRef] [PubMed]
- Pacansky, J.; Bargon, J. Low temperature photochemical studies on acetyl benzoyl peroxide. the observation of methyl and phenyl radicals by matrix isolation infrared spectroscopy. J. Am. Chem. Soc. 1975, 97, 6896–6897. [Google Scholar] [CrossRef]
- Pacansky, J.; Gardini, G.P.; Bargon, J. Low temperature studies on propionyl benzoyl peroxide and propionyl peroxide. The ethyl radical. J. Am. Chem. Soc. 1976, 98, 2665–2666. [Google Scholar] [CrossRef]
- Pacansky, J.; Brown, D.W. Photolysis of acetyl benzoyl peroxide isolated in an argon matrix: The stability of the benzoyloxy and acetoxy radicals toward decarboxylation. J. Phys. Chem. 1983, 87, 1553–1559. [Google Scholar] [CrossRef]
- Jacox, M.E. Reaction of F atoms with C6H6. Vibrational spectrum of the C6H6F intermediate trapped in solid argon. J. Phys. Chem. 1982, 86, 670–675. [Google Scholar] [CrossRef]
- Radziszewski, J.G.; Nimlos, M.R.; Winter, P.R.; Ellison, G.B. Infrared absorption spectroscopy of the phenyl radical. J. Am. Chem. Soc. 1996, 118, 7400–7401. [Google Scholar] [CrossRef]
- Porter, G.; Ward, B. The electronic spectra of phenyl radicals. Proc. R. Soc. Lond. Ser.-Math. Phys. Sci. 1965, 287, 457–470. [Google Scholar]
- Jaquiss, M.T.; Szwarc, M. Reactions of phenyl radicals in solution and in the gaseous phase. Nature 1952, 170, 312–314. [Google Scholar] [CrossRef]
- Hatton, W.G.; Hacker, N.P.; Kasai, P.H. The photochemistry of nitrosobenzene: Direct observation of the phenyl radical–nitric oxide triplet radical pair in argon at 12 K. J. Chem. Soc. Chem. Commun. 1990, 227–229. [Google Scholar] [CrossRef]
- Scaiano, J.C.; Stewart, L.C. Phenyl radical kinetics. J. Am. Chem. Soc. 1983, 105, 3609–3614. [Google Scholar] [CrossRef]
- Preidel, M.; Zellner, R. A cw laser absorption study of the reactions of phenyl radicals with NO, NO2, O2 and selected organics between 298-404 K. Ber. Bunsen-Ges. Phys. Chem. Chem. Phys. 1989, 93, 1417–1423. [Google Scholar] [CrossRef]
- Wallington, T.J.; Egsgaard, H.; Nielsen, O.J.; Platz, J.; Sehested, J.; Stein, T. UV–visible spectrum of the phenyl radical and kinetics of its reaction with NO in the gas phase. Chem. Phys. Lett. 1998, 290, 363–370. [Google Scholar] [CrossRef]
- Cheng, P.Y.; Zhong, D.; Zewail, A.H. Kinetic-energy, femtosecond resolved reaction dynamics. Modes of dissociation (in iodobenzene) from time-velocity correlations. Chem. Phys. Lett. 1995, 237, 399–405. [Google Scholar] [CrossRef]
- Kadi, M.; Davidsson, J.; Tarnovsky, A.N.; Rasmusson, M.; Akesson, E. Photodissociation of aryl halides in the gas phase studied with femtosecond pump-probe spectroscopy. Chem. Phys. Lett. 2001, 350, 93–98. [Google Scholar] [CrossRef]
- Alt, H.G. Photochemistry of alkyltransition-metal complexes. Angew. Chem. Int. Ed. 1984, 23, 766–782. [Google Scholar] [CrossRef]
- Toscano, P.J.; Marzilli, L.G. B12 and related organocobalt chemistry: Formation and cleavage of cobalt carbon bonds. Prog. Inorg. Chem. 1984, 31, 105–205. [Google Scholar]
- Demarteau, J.; Debuigne, A.; Detrembleur, C. Organocobalt complexes as sources of carbon-centered radicals for organic and polymer chemistries. Chem. Rev. 2019, 119, 6906–6955. [Google Scholar] [CrossRef]
- Bakac, A.; Espenson, J.H. Photochemical generation of alkyl radicals and their reactions with methyl viologen radical cation and with transition-metal complexes in aqueous solution. Inorg. Chem. 1989, 28, 3901–3904. [Google Scholar] [CrossRef]
- Morandini, F.; Pilloni, G.; Consiglio, G.; Sironi, A.; Moret, M. Cyclopentadienyl and indenyl complexes of rhodium(I) and rhodium(III) containing chiral diphosphines. X-ray structure of (R)c(S)Rh-[(.eta.5-C9H7)Rh(Ph2PCH(CH3)CH2PPh2)(CH3)]BPh4. Organometallics 1993, 12, 3495–3503. [Google Scholar] [CrossRef]
- Hay-Motherwell, R.S.; Koschmieder, S.U.; Wilkinson, G.; Hussain-Bates, B.; Hursthouse, M.B. Aryl compounds of rhodium: Syntheses and X-ray crystal structures. J. Chem. Soc. Dalton Trans. 1991, 2821–2830. [Google Scholar] [CrossRef]
- Zecchin, S.; Zotti, G.; Pilloni, G. Electrochemistry of coordination compounds: XXII. Electrogeneration and characterization of monomeric iridium(II) organometallic complexes [Ir(R)(CO)(PPh3)3]+. J. Organomet. Chem. 1985, 294, 379–388. [Google Scholar] [CrossRef]
- Hetterscheid, D.G.H.; Koekkoek, A.J.J.; Grützmacher, H.; de Bruin, B. The organometallic chemistry of Rh-, Ir-, Pd-, and Pt-based radicals: Higher valent species. Prog. Inorg. Chem. 2007, 55, 247–347. [Google Scholar]
- Fischbach, U.; Rüegger, H.; Grützmacher, H. Tris(dibenzo[a,d]cycloheptenyl)phosphane: A bulky monodentate or tetrapodal ligand. Eur. J. Inorg. Chem. 2007, 2007, 2654–2667. [Google Scholar] [CrossRef]
- Fischbach, U.; Trincado, M.; Grützmacher, H. Oxidative formation of phosphinyl radicals from a trigonal pyramidal terminal phosphide Rh(I) complex, with an unusually long Rh–P bond. Dalton Trans. 2017, 46, 3443–3448. [Google Scholar] [CrossRef]
- Thaler, E.G.; Folting, K.; Caulton, K.G. eta.3-MeC(CH2PPh2)3/rhodium complexes utilize phosphine arm dissociation mechanisms at 25 C. J. Am. Chem. Soc. 1990, 112, 2664. [Google Scholar] [CrossRef]
- Boyd, S.E.; Field, L.D.; Hambley, T.W.; Partridge, M.G. Synthesis and characterization of Rh[P(CH3)3]2(CO)CH3 and Rh[P(CH3)3]2(CO)Ph. Organometallics 1993, 12, 1720–1724. [Google Scholar] [CrossRef]
- Shafiq, F.; Kramarz, K.W.; Eisenberg, R. Binuclear rhodium alkyl and acyl A-frame complexes: Synthesis, structure and reactivity. Inorg. Chim. Acta 1993, 213, 111–119. [Google Scholar] [CrossRef]
- Sterenberg, B.T.; Hilts, R.W.; Moro, G.; McDonald, R.; Cowie, M. Heterobinuclear hydrido, alkyl, and related complexes of Rh/Os. Site-specific reductive elimination of methane from a Rh/Os core and the structures of [RhOs(CH2CN)(CO)3(dppm)2] and [RhOs(CH3)(CO)3(dppm)2]. J. Am. Chem. Soc. 1995, 117, 245–258. [Google Scholar] [CrossRef]
- Antonelli, D.M.; Cowie, M. Unusual, coordinatively unsaturated rhodium/rhenium and iridium/rhenium, alkyl, acyl, and hydrido complexes. Structure of [RhRe(CH3)(CO)4(Ph2PCH2PPh2)2][CF3SO3].3CH2Cl2. Organometallics 1991, 10, 2550–2559. [Google Scholar] [CrossRef]
- Anderson, D.J.; Kramarz, K.W.; Eisenberg, R. Synthesis and structure of the diphenyl binuclear rhodium A-frame complex Rh2(μ-CO)(Ph)2(dmpm)2. Inorg. Chem. 1996, 35, 2688–2691. [Google Scholar]
- Addison, A.W.; Rao, T.N.; Reedijk, J.; van Rijn, J.; Verschoor, G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984, 7, 1349–1356. [Google Scholar] [CrossRef]
- Darensbourg, D.J.; Grotsch, G.; Wiegreffe, P.; Rheingold, A.L. Insertion reactions of carbon dioxide with square-planar rhodium alkyl and aryl complexes. Inorg. Chem. 1987, 26, 3827–3830. [Google Scholar]
- Norcott, P.L.; Hammill, C.L.; Noble, B.B.; Robertson, J.C.; Olding, A.; Bissember, A.C.; Coote, M.L. TEMPO–Me: An electrochemically activated methylating agent. J. Am. Chem. Soc. 2019, 141, 15450–15455. [Google Scholar] [CrossRef]
- Omelka, L.; Vrabel, I.; Erentova, K.; Dauth, J.; Deubzer, B.; Weis, J. ESR Study of nitroxide radicals generated from triaz-2-en-1-ols. Helv. Chim. Acta 1996, 79, 663–669. [Google Scholar] [CrossRef]
- Bevington, J.C.; Fridd, P.F.; Tabner, B.J. An electron spin resonance study of some trapped primary radicals. J. Chem. Soc. Perkin Trans. 1982, 2, 1389–1391. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef]
- Kendall, R.A.; Früchtl, H.A. The impact of the resolution of the identity approximate integral method on modern ab initio algorithm development. Theor. Chem. Acc. 1997, 97, 158–163. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chem. Phys. 2009, 356, 98–109. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Brandenburg, J.G.; Bannwarth, C.; Hansen, A.; Grimme, S. B97-3c: A revised low-cost variant of the B97-D density functional method. J. Chem. Phys. 2018, 148, 064104. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Truhlar, D.G. Applications and validations of the Minnesota density functionals. Chem. Phys. Lett. 2011, 502, 1–13. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fischbach, U.; Vogt, M.; Coburger, P.; Trincado, M.; Grützmacher, H. Trigonal Bipyramidal Rhodium(I) Methyl and Phenyl Complexes: Precursors of Oxidative Methyl and Phenyl Radical Generation. Inorganics 2022, 10, 28. https://doi.org/10.3390/inorganics10030028
Fischbach U, Vogt M, Coburger P, Trincado M, Grützmacher H. Trigonal Bipyramidal Rhodium(I) Methyl and Phenyl Complexes: Precursors of Oxidative Methyl and Phenyl Radical Generation. Inorganics. 2022; 10(3):28. https://doi.org/10.3390/inorganics10030028
Chicago/Turabian StyleFischbach, Urs, Matthias Vogt, Peter Coburger, Monica Trincado, and Hansjörg Grützmacher. 2022. "Trigonal Bipyramidal Rhodium(I) Methyl and Phenyl Complexes: Precursors of Oxidative Methyl and Phenyl Radical Generation" Inorganics 10, no. 3: 28. https://doi.org/10.3390/inorganics10030028
APA StyleFischbach, U., Vogt, M., Coburger, P., Trincado, M., & Grützmacher, H. (2022). Trigonal Bipyramidal Rhodium(I) Methyl and Phenyl Complexes: Precursors of Oxidative Methyl and Phenyl Radical Generation. Inorganics, 10(3), 28. https://doi.org/10.3390/inorganics10030028