Tetramethylcyclopentadienyl Samarium(II) Metallocene Chemistry: Isolation of a Bimetallic Sm(II)/Sm(II) Complex
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Structure of (C5Me4H)2Sm(DME), 2
2.2. Synthesis and Structure of (C5Me4H)2SmII(μ-η3:η5-C5Me4H)SmII(C5Me4H)(THF)2, 3
2.3. Infrared Spectroscopy and UV-Visible Spectroscopy
3. Discussion
4. Experimental Details
4.1. Synthesis of 1 from SmI2(THF)2 and K(C5Me4H) in THF
4.2. Synthesis of (C5Me4H)2SmII(DME), 2, from 1
4.3. Synthesis of (C5Me4H)2SmII(μ-η3:η5-C5Me4H)SmII(C5Me4H)(THF)2, 3
4.4. Direct Synthesis of (C5Me4H)2Sm(DME), 2
4.5. X-ray Data Collection, Structure Determination, and Refinement for (C5Me4H)2Sm(DME), 2
4.6. X-ray Data Collection, Structure Determination, and Refinement for (C5Me4H)2Sm(μ-η3:η5-C5Me4H)Sm(C5Me4H)(THF)2, 3
4.7. X-ray Crystallographic Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evans, W.J.; Bloom, I.; Hunter, W.E.; Atwood, J.L. Synthesis and X-ray Crystal Structure of a Soluble Divalent Organosamarium Complex. J. Am. Chem. Soc. 1981, 103, 6507–6508. [Google Scholar] [CrossRef]
- Evans, W.J.; Hughes, L.A.; Hanusa, T.P. Synthesis and Crystallographic Characterization of an Unsolvated, Monomeric Bis(pentamethylcyclopentadienyl) Organolanthanide Complex, (C5Me5)2Sm. J. Am. Chem. Soc. 1984, 106, 4270–4272. [Google Scholar] [CrossRef]
- Evans, W.J.; Grate, J.W.; Hughes, L.A.; Zhang, H.; Atwood, J.L. Reductive homologation of carbon monoxide to a ketenecarboxylate by a low-valent organolanthanide complex: Synthesis and x-ray crystal structure of [(C5Me5)4Sm2(O2CCCO)(THF)]2. J. Am. Chem. Soc. 1984, 107, 3728–3730. [Google Scholar] [CrossRef]
- Evans, W.J.; Hughes, L.A.; Drummond, D.K.; Zhang, H.; Atwood, J.L. Facile Stereospecific Synthesis of a Dihydroxyindenoindene Unit from an Alkyne and Carbon Monoxide via Samarium-Mediated Carbon Monoxide and CH Activation. J. Am. Chem. Soc. 1986, 108, 1722–1723. [Google Scholar] [CrossRef]
- Evans, W.J.; Drummond, D.K. Insertion of two carbon monoxide moieties into an alkene double bond to form a RCH:C(O)C(O):CHR2− unit via organosamarium activation. J. Am. Chem. Soc. 1988, 110, 2772–2774. [Google Scholar] [CrossRef]
- Evans, W.J.; Ulibarri, T.A.; Ziller, J.W. Reactivity of (C5Me5)2Sm with Aryl-Substituted Alkenes: Synthesis and Structure of a Bimetallic Styrene Complex That Contains an η2-Arene Lanthanide Interaction. J. Am. Chem. Soc. 1990, 112, 219–223. [Google Scholar] [CrossRef]
- Evans, W.J.; Keyer, R.A.; Rabe, G.W.; Drummond, D.K.; Ziller, J.W. The Reactivity of (C5Me5)2Sm(THF)2 with Bis(2-Pyridyl)Ethene Including the Synthesis of [(C5Me5)2Sm]2(μ-η2:η2-PyCHCHpy)] from [(C5Me5)2Sm]2[μ-η3:η3-1,2,3,4-(Py)4C4H4] by Reductive C-C Bond Cleavage. Organometallics 1993, 12, 4664–4667. [Google Scholar] [CrossRef]
- Evans, W.J.; Ulibarri, T.A.; Ziller, J.W. Isolation and X-Ray Crystal Structure of the First Dinitrogen Complex of an f-Element Metal, [(C5Me5)2Sm]2N2. J. Am. Chem. Soc. 1988, 110, 6877–6879. [Google Scholar] [CrossRef]
- Swamy, S.J.; Loebel, J.; Pickardt, J.; Schumann, H. Organometallic compounds of the lanthanides XLVI. Synthesis and crystallographic characterization of (C5Me5)2Sm(DME). J. Organomet. Chem. 1988, 353, 27–34. [Google Scholar] [CrossRef]
- Gagné, M.R.; Nolan, S.P.; Marks, T.J. Organolanthanide-Centered Hydroamination/Cyclization of Aminoolefins. Expedient Oxidative Access to Catalytic Cycles. Organometallics 1990, 9, 1716–1718. [Google Scholar] [CrossRef]
- Recknagel, A.; Noltemeyer, M.; Edelmann, F.T. Organolanthanid(II)chemie: Reaktionen von Cp*2Sm(THF)2 mit 1,4-Diazadinen und Cyclooctatetraen. J. Organomet. Chem. 1991, 410, 53–61. [Google Scholar] [CrossRef]
- Wang, K.-G.; Stevens, E.D.; Nolan, S.P. Synthesis and structural characterization of a tetranuclear organolanthanide hydrazido complex. Organometallics 1992, 11, 1011–1013. [Google Scholar] [CrossRef]
- Rieckhoff, M.; Noltemeyer, M.; Edelmann, F.T.; Haiduc, I.; Silaghi-Dumitrescu, I. Ein alter Ligand in neuer Umgebung: Dreifach verbrückendes O, Ó-Dimethyldithiophosphat im Organosamarium-Komplex [(C5Me5)Sm{S2P(OMe)2}2]2. J. Organomet. Chem. 1994, 469, C19–C21. [Google Scholar] [CrossRef]
- Makioka, Y.; Koyama, K.; Nishiyama, T.; Takaki, K.; Taniguchi, Y.; Fujiwara, Y. Generation of Allenic Samarium Complexes from Propargylic Ethers and (C5Me5)2Sm(thf)2, and Their Electrophilic Trapping. Tetrahedron Lett. 1995, 36, 6283–6286. [Google Scholar] [CrossRef]
- Takeno, M.; Kikuchi, S.; Morita, K.; Nishiyama, Y.; Ishii, Y. A New Coupling Reaction of Vinyl Esters with Aldehydes Catalyzed by Organosamarium Compounds. J. Org. Chem. 1995, 60, 4974–4975. [Google Scholar] [CrossRef]
- Takaki, K.; Maruo, M.; Kamata, T.; Makioka, Y.; Fujiwara, Y. Selective C-O Bond Cleavage of Vinyl Ethers with Cp*2Sm(thf)n Leading to Vinylsamarium or Enolate Complexes. J. Org. Chem. 1996, 61, 8332–8334. [Google Scholar] [CrossRef]
- Tashiro, D.; Kawasaki, Y.; Sakaguchi, S.; Ishii, Y. An Efficient Acylation of Tertiary Alcohols with Isoproprenyl Acetate Mediated by an Oxime Ester and Cp*2Sm(thf)2. J. Org. Chem. 1997, 62, 8141–8144. [Google Scholar] [CrossRef]
- Nomura, R.; Shibasaki, Y.; Endo, T. Transformation of the cationic growing center of poly(tetrahydrofuran) into an anionic one by bis(pentamethylcyclopentadienyl)samarium. J. Polym. Sci. Part A: Polym. Chem. 1998, 36, 2209–2214. [Google Scholar] [CrossRef]
- Kefalidis, C.E.; Essafi, S.; Perrin, L.; Maron, L. Qualitative Estimation of the Single-Electron Transfer Step Energetics Mediated by Samarium(II) Complexes: A “SOMO–LUMO Gap” Approach. Inorg. Chem. 2009, 53, 3427–3433. [Google Scholar] [CrossRef]
- Konchenko, S.N.; Pushkarevsky, N.A.; Gamer, M.T.; Köppe, R.; Schnöckel, H.; Roesky, P.W. [{(η5-C5Me5)2Sm}4P8]: A Molecular Polyphosphide of the Rare-Earth Elements. J. Am. Chem. Soc. 2009, 131, 5740–5741. [Google Scholar] [CrossRef]
- Li, T.; Gamer, M.T.; Scheer, M.; Konchenko, S.N.; Roesky, P.W. P–P bond formation via reductive dimerization of [Cp*Fe(n5-P5)] by divalent samarocenes. Chem. Commun. 2013, 49, 2183–2185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klementyeva, S.V.; Gritsan, N.P.; Khusniyarov, M.M.; Witt, A.; Dmitriev, A.A.; Suturina, E.A.; Hill, N.D.D.; Roemmele, T.L.; Gamer, M.T.; Boeré, R.T.; et al. The First Lanthanide Complexes with a Redox-Active Sulfur Diimide Ligand: Synthesis and Characterization of [LnCp*2(RN═)2S], Ln = Sm, Eu, Yb; R = SiMe3. Chem. Eur. J. 2017, 23, 1278–1290. [Google Scholar] [CrossRef] [PubMed]
- Pushkarevsky, N.A.; Ilyin, I.Y.; Petroc, P.A.; Samsonenko, D.G.; Ryzhikov, M.R.; Roesky, P.W.; Konchenko, S.N. Different Reductive Reactivities of SmCpx2(THF)n (Cpx= C5Me5 and C5H3tBu2) Samarocenes toward P2Ph4: THF Ring-Opening and Ligand-Exchange Pathways. Organometallics 2017, 36, 1287–1295. [Google Scholar] [CrossRef]
- Schoo, C.; Bestgen, S.; Egeberg, A.; Klementyeva, S.; Feldmann, C.; Konchenko, S.N.; Roesky, P.W. Samarium Polystibides Derived from Highly Activated Nanoscale Antimony. Angew. Chem. Int. Ed. 2018, 57, 5912–5916. [Google Scholar] [CrossRef] [PubMed]
- Schoo, C.; Bestgen, S.; Egeberg, A.; Siebert, J.; Konchenko, S.N.; Feldmann, C.; Roesky, P.W. Samarium Polyarsenides Derived from Nanoscale Arsenic. Angew. Chem. Int. Ed. 2019, 58, 4386–4389. [Google Scholar] [CrossRef] [PubMed]
- Watt, G.W.; Gillow, E.W. Samarium(II) dicyclopentadienide 1-tetrahydrofuranate. J. Am. Chem. Soc. 1969, 91, 775–776. [Google Scholar] [CrossRef]
- Evans, W.J. Organometallic Lanthanide Chemistry. Adv. Organomet. Chem. 1985, 24, 131–177. [Google Scholar] [CrossRef]
- Evans, W.J. The Organometallic Chemistry of the Lanthanide Elements in Low Oxidation States. Polyhedron 1987, 6, 803–835. [Google Scholar] [CrossRef]
- Sitzmann, H.; Dezember, T.; Schmitt, O.; Weber, F.; Wolmershäuser, G. Reactions of Free Cyclopentadienyl Radicals. 3 Metallocenes of Samarium, Europium, and Ytterbium with the Especially Bulky Cyclopentadienyl Ligands C5H(CHMe2)4, C5H2(CMe3)3, and C5(CHMe2)5. Z. Anorg. Allg. Chem. 2000, 626, 2241–2244. [Google Scholar] [CrossRef]
- Kelly, R.P.; Bell, T.D.M.; Cox, R.P.; Daniels, D.P.; Deacon, G.B.; Jaroschik, F.; Junk, P.C.; Le Goff, X.F.; Lemercier, G.; Martinez, A.; et al. Divalent Tetra- and Penta-phenylcyclopentadienyl Europium and Samarium Sandwich and Half-Sandwich Complexes: Synthesis, Characterization, and Remarkable Luminescence Properties. Organometallics 2015, 34, 5624–5636. [Google Scholar] [CrossRef]
- Evans, W.J.; Gummersheimer, T.S.; Boyle, T.J.; Ziller, J.W. Synthesis and Structure of New Soluble Organosamarium(II) Reagents: (indenyl)2Sm(THF) and (fluorenyl)2Sm(THF)2. Organometallics 1994, 13, 1281–1284. [Google Scholar] [CrossRef]
- Evans, W.J.; Forrestal, K.J.; Ziller, J.W. Isopropyltetramethylcyclopentadienyl samarium chemistry: Structural studies of divalent (C5Me4iPr)2Sm(THF) and mixed valent [(C5Me4iPr)2Sm]2(μ-Cl). Polyhedron 1998, 17, 4015–4021. [Google Scholar] [CrossRef]
- Evans, W.J.; Kociok-Köhn, G.; Foster, S.E.; Ziller, J.W.; Doedens, R.J. Synthesis and structure of mono-THF solvates of bis(cyclopentadienyl)samarium(II) complexes: (C5Me5)2Sm(THF) and [C5H2(SiMe3)3][C5H3(SiMe3)2]Sm(THF). J. Organomet. Chem. 1993, 444, 61–66. [Google Scholar] [CrossRef]
- Yatabe, T.; Karasawa, M.; Isobe, K.; Ogo, S.; Nakai, H. A napthyl-substituted pentamethylcyclopentadienyl ligand and its Sm(II) bent-metallocene complexes with solvent-induced structure change. Dalton Trans. 2012, 41, 354–356. [Google Scholar] [CrossRef]
- Ruspic, C.; Moss, J.R.; Schürmann, M.; Harder, S. Remarkable Stability of Metallocenes with Superbulky Ligands: Spontaneous Reduction of SmIII to SmII. Angew. Chem. Int. Ed. 2008, 47, 2121–2126. [Google Scholar] [CrossRef] [PubMed]
- van Velzen, N.J.C.; Harder, S. Deca-Arylsamarocene: An Unusually Inert Sm(II) Sandwich Complex. Organometallics 2018, 37, 2263–2271. [Google Scholar] [CrossRef] [Green Version]
- Evans, W.J.; Perotti, J.M.; Brady, J.C.; Ziller, J.W. Tethered Olefin Studies of Alkene versus Tetraphenylborate Coordination and Lanthanide Olefin Interactions in Metallocenes. J. Am. Chem. Soc. 2003, 125, 5204–5212. [Google Scholar] [CrossRef]
- Visseaux, M.; Barbier-Baudry, D.; Blacque, O.; Hafid, A.; Richard, P.; Weber, F. New base-free metallocenes of samarium and neodymium, an approach to stereoelectronic control in organolanthanide chemistry. New J. Chem. 2000, 24, 939–942. [Google Scholar] [CrossRef]
- Shephard, A.C.G.; Daniels, D.P.; Deacon, G.B.; Guo, Z.; Jaroschik, F. Junk, P.C. Selective carbon-phosphorus bond cleavage: Expanding the toolbox for accessing bulky divalent lanthanoid sandwich complexes. Chem. Commun. 2022, 58, 4344–4347. [Google Scholar] [CrossRef]
- Selikhov, A.N.; Mahrova, T.V.; Cherkasov, A.V.; Fukin, G.K.; Larionova, J.; Long, J.; Trifonov, A.A. Base-Free Lanthanoidocenes(II) Coordinated by Bulky Pentabenzylcyclopentadienyl Ligands. Organometallics 2015, 34, 1991–1999. [Google Scholar] [CrossRef]
- Schumann, H.; Meese-Marktscheffel, J.A.; Esser, L. Synthesis, Structure, and Reactivity of Organometallic π-Complexes of the Rare Earths in the Oxidation State Ln3+ with Aromatic Ligands. Chem. Rev. 1995, 95, 865–986. [Google Scholar] [CrossRef]
- Schumann, H.; Glanz, M.; Hemling, H.; Hahn, F.E. Organometallic Compounds of the Lanthanides. 93. Tetramethylcyclopentadienyl Complexes of Selected 4f-Elements. Z. Anorg. Allg. Chem. 1995, 621, 341–345. [Google Scholar] [CrossRef]
- Schultz, M.; Burns, C.J.; Schwartz, D.J.; Andersen, R.A. Solid-State Structures of Base-Free Ytterbocenes and Inclusion Compounds of Bis(pentamethylcyclopentadienyl)ytterbium with Neutral Carboranes and Toluene: The Role of Intermolecular Contacts. Organometallics 2000, 19, 781–789. [Google Scholar] [CrossRef]
- Goodwin, C.A.P.; Su, J.; Stevens, L.M.; White, F.D.; Anderson, N.H.; Auxier, J.D., II; Albrecht-Schönzart, T.E.; Batista, E.R.; Briscoe, S.F.; Cross, J.N.; et al. Isolation and Characterization of a Californium Metallocene. Nature 2021, 59, 421–424. [Google Scholar] [CrossRef]
- Hitchcock, P.B.; Lappert, M.F.; Maron, L.; Protchenko, A.V. Lanthanum Does Form Stable Molecular Compounds in the +2 Oxidation State. Angew. Chem. Int. Ed. 2008, 120, 1488–1491. [Google Scholar] [CrossRef]
- Goodwin, C.A.P.; Joslin, K.C.; Lockyer, S.J.; Formanuik, A.; Morris, G.A.; Ortu, F.; Vitorica-Yrezabal, I.J.; Mills, D.P. Homoleptic Trigonal Planar Lanthanide Complexes stabilized by Silylamide Ligands. Organometallics 2015, 34, 2314–2325. [Google Scholar] [CrossRef]
- Chilton, N.F.; Goodwin, C.A.P.; Mills, D.P.; Winpenny, R.E.P. The first near-linear bis(amide) f-block complex: A blueprint for a high temperature single molecule magnet. Chem. Commun. 2015, 51, 101–103. [Google Scholar] [CrossRef] [Green Version]
- Gabbaï, F.P.; Chirik, P.J.; Fogg, D.E.; Meyer, K.; Mindiola, D.J.; Schafer, L.L.; You, S.L. An Editorial about Elemental Analysis. Organometallics 2016, 35, 3255–3256. [Google Scholar] [CrossRef]
- Ortu, F.; Packer, D.; Liu, J.; Burton, M.; Formanuik, A.; Mills, D.P. Synthesis and structural characterization of lanthanum and cerium substituted cyclopentadienyl borohydride complexes. J. Organomet. Chem. 2018, 857, 45–51. [Google Scholar] [CrossRef]
- Evans, W.J.; Ulibarri, T.A. Reactivity of (C5Me5)2Sm with cyclopentadiene and cyclopentadienide: Isolation of the mixed-valence complex (C5Me5)2SmIII(μ-C5H5)SmII(C5Me5)2. J. Am. Chem. Soc. 1987, 109, 4292–4297. [Google Scholar] [CrossRef]
- Evans, W.J.; Ulibarri, T.A.; Ziller, J.W. Reactivity of (C5Me5)2Sm and Related Species with Alkenes: Synthesis and Structural Characterization of a Series of Organosamarium Allyl Complexes. J. Am. Chem. Soc. 1990, 112, 2314–2324. [Google Scholar] [CrossRef]
- Evans, W.J.; Kozimor, S.A.; Ziller, J.W. Methyl Displacements from Cyclopentadienyl Ring Planes in Sterically Crowded (C5Me5)3M Complexes. Inorg. Chem. 2005, 44, 7960–7969. [Google Scholar] [CrossRef] [PubMed]
- Cotton, F.A.; Marks, T.J. An Infrared Study of the Structures of Cyclopentadienyl Compounds of Copper(I) and Mercury(II). J. Am. Chem. Soc. 1969, 91, 7281–7285. [Google Scholar] [CrossRef]
- Clark, R.J.H.; Lewis, J.; Machin, D.J.; Nyholm, R.S. 59. Complexes of titanium trichloride. J. Chem. Soc. 1963, 379–387. [Google Scholar] [CrossRef]
- Lewis, J.; Miller, J.R.; Richards, R.L.; Thompson, A. 1098. The infrared spectra of some addition compounds of aluminum and gallium trihalides. J. Chem. Soc. 1965, 5850–5860. [Google Scholar] [CrossRef]
- Clark, D.L.; Frankcom, T.M.; Miller, M.M.; Watkin, J.G. Facile solution routes to hydrocarbon-soluble Lewis base adducts of thorium tetrahalides. Synthesis, characterization, and X-ray structure of ThBr4(THF)4. Inorg. Chem. 1992, 31, 1628–1633. [Google Scholar] [CrossRef]
- Girard, P.; Namy, J.L.; Kagan, H.B. Divalent lanthanide derivatives in organic synthesis, 1. Mild preparation of samarium iodide and ytterbium iodide and their use as reducing or coupling agents. J. Am. Chem. Soc. 1980, 102, 2693–2698. [Google Scholar] [CrossRef]
- APEX2, Version 2014.11-0; Bruker AXS, Inc.: Madison, WI, USA, 2014.
- SAINT, Version 8.34a; Bruker AXS, Inc.: Madison, WI, USA, 2013.
- Sheldrick, G.M. SADABS, Version 2014/5; Bruker AXS, Inc.: Madison, WI, USA, 2014.
- Sheldrick, G.M. SHELXTL, Version 2014/7; Bruker AXS, Inc.: Madison, WI, USA, 2014.
- International Tables for Crystallography 1992, Volume C, Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004.
Sm(1)–O(1) | 2.591(1) | Sm(2)–O(3) | 2.612(1) |
Sm(1)–O(2) | 2.617(1) | Sm(2)–O(4) | 2.601(1) |
Sm(1)–C(1) | 2.813(2) | Sm(2)–C(23) | 2.794(2) |
Sm(1)–C(2) | 2.821(2) | Sm(2)–C(24) | 2.830(2) |
Sm(1)–C(3) | 2.807(2) | Sm(2)–C(25) | 2.824(2) |
Sm(1)–C(4) | 2.796(2) | Sm(2)–C(26) | 2.786(2) |
Sm(1)–C(5) | 2.787(2) | Sm(2)–C(27) | 2.760(2) |
Sm(1)–C(10) | 2.747(2) | Sm(1)–C(32) | 2.810(2) |
Sm(1)–C(11) | 2.821(2) | Sm(1)–C(33) | 2.826(2) |
Sm(1)–C(12) | 2.867(2) | Sm(1)–C(34) | 2.834(2) |
Sm(1)–C(13) | 2.819(2) | Sm(1)–C(35) | 2.819(2) |
Sm(1)–C(14) | 2.741(2) | Sm(1)–C(36) | 2.787(2) |
Sm(1)–Cnt(1) | 2.534 | Sm(2)–Cnt(3) | 2.528 |
Sm(1)–Cnt(2) | 2.527 | Sm(2)–Cnt(4) | 2.544 |
O(1)–Sm(1)–O(2) | 63.92(4) | O(3)–Sm(2)–O(4) | 63.21(4) |
Cnt(1)–Sm(1)–Cnt(2) | 130.3 | Cnt(3)–Sm(2)–Cnt(4) | 130.3 |
Complex | Sm–Cnt (Å) | Sm–O (Å) | Cnt–Sm–Cnt (°) |
---|---|---|---|
(C5Me4H)2Sm(μ-η3:η5-C5Me4H)Sm(C5Me4H)(THF)2, 3 a | 2.584, 2.581, 2.537, 2.586 | 2.577(2), 2.597(2) | 122.8, 130.2 |
(C13H9)2Sm(THF)2 [31] | 2.633, 2.629 | 2.560(6), 2.540(6) | 126.4 |
(C5Me4H)2Sm(DME), 2 a | 2.534, 2.527, 2.528, 2.544 | 2.591(1), 2.617(1), 2.601(1), 2.612(1) | 130.3 |
(C5Me5)2Sm(THF)2 [1] | 2.60 | 2.63(1) | 136.7 |
[C5H2(SiMe3)3][C5H3(SiMe3)2]Sm(THF) [33] | 2.559, 2.553 | 2.547(3) | 137.0 |
[C5Me4(CH2C10H7)]2Sm [34] | 2.533, 2.529 | --- | 138.05(6) |
(C5Me5)2Sm(THF) [33] | 2.542, 2.549 | 2.569(3) | 138.5 |
[C5Me4(CH2C10H7)]2Sm(THF)2 [34] | 2.576, 2.582 | 2.646(2), 2.590(2) | 138.97(3) |
(C5Me5)2Sm(DME) [9] | 2.54, 2.57 | 2.52(1), 2.61(2) | 140 |
(C5Me5)2Sm [2] | 2.53 | --- | 140.1 |
[(C5Me4)SiMe2(CH2CH═CH2)]2Sm [37] | 2.551 | --- | 141.2 |
(C5Me4iPr)2Sm(THF) [32] | 2.531 | 2.540(5) | 141.6 |
[C5(CH2Ph)5]2Sm [40] | 2.555, 2.565 | --- | 141.8 |
(C5iPr4H)2Sm [29,38] | 2.51 | --- | 152.0 |
[(4-Et-C6H4)5C5)]2Sm [36] | 2.504, 2.521 | --- | 166.9(1), 168.0(1) |
Sm(1)–C(1) | 2.819(2) | Sm(2)–C(19) | 2.814(2) |
Sm(1)–C(2) | 2.931(2) | Sm(2)–C(20) | 2.806(2) |
Sm(1)–C(3) | 2.932(2) | Sm(2)–C(21) | 2.804(2) |
Sm(1)–C(4) | 2.810(2) | Sm(2)–C(22) | 2.811(2) |
Sm(1)–C(5) | 2.751(2) | Sm(2)–C(23) | 2.799(2) |
Sm(1)–C(10) | 2.831(2) | Sm(2)–C(28) | 2.835(2) |
Sm(1)–C(11) | 2.940(2) | Sm(2)–C(29) | 2.872(2) |
Sm(1)–C(12) | 2.919(2) | Sm(2)–C(30) | 2.888(2) |
Sm(1)–C(13) | 2.791(2) | Sm(2)–C(31) | 2.864(2) |
Sm(1)–C(14) | 2.748(2) | Sm(2)–C(32) | 2.807(2) |
Sm(1)–C(28) | 2.962(2) | Sm(1)–C(31) | 2.955(2) |
Sm(1)–C(29) | 3.160(2) | Sm(1)–C(32) | 2.842(2) |
Sm(1)–C(30) | 3.153(2) | Sm(2)–Cnt(3) | 2.537 |
Sm(1)–Cnt(1) | 2.584 | Sm(2)–Cnt(4) | 2.586 |
Sm(1)–Cnt(2) | 2.581 | Cnt(3)–Sm(2)–Cnt(4) | 130.2 |
Cnt(1)–Sm(1)–Cnt(2) | 122.8 | Sm(2)–O(1) | 2.577(2) |
Sm(2)–O(2) | 2.597(2) |
Cnt(1)…C(6) | 0.032 Å | 0.67° | Cnt(2)…C(15) | 0.041 Å | 0.86° |
Cnt(1)…C(7) | 0.153 Å | 3.25° | Cnt(2)…C(16) | 0.146 Å | 3.11° |
Cnt(1)…C(8) | 0.195 Å | 4.15° | Cnt(2)…C(17) | 0.144 Å | 3.04° |
Cnt(1)…C(9) | 0.044 Å | 0.93° | Cnt(2)…C(18) | 0.055 Å | 1.16° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, J.Q.; Ziller, J.W.; Evans, W.J. Tetramethylcyclopentadienyl Samarium(II) Metallocene Chemistry: Isolation of a Bimetallic Sm(II)/Sm(II) Complex. Inorganics 2023, 11, 4. https://doi.org/10.3390/inorganics11010004
Nguyen JQ, Ziller JW, Evans WJ. Tetramethylcyclopentadienyl Samarium(II) Metallocene Chemistry: Isolation of a Bimetallic Sm(II)/Sm(II) Complex. Inorganics. 2023; 11(1):4. https://doi.org/10.3390/inorganics11010004
Chicago/Turabian StyleNguyen, Joseph Q., Joseph W. Ziller, and William J. Evans. 2023. "Tetramethylcyclopentadienyl Samarium(II) Metallocene Chemistry: Isolation of a Bimetallic Sm(II)/Sm(II) Complex" Inorganics 11, no. 1: 4. https://doi.org/10.3390/inorganics11010004
APA StyleNguyen, J. Q., Ziller, J. W., & Evans, W. J. (2023). Tetramethylcyclopentadienyl Samarium(II) Metallocene Chemistry: Isolation of a Bimetallic Sm(II)/Sm(II) Complex. Inorganics, 11(1), 4. https://doi.org/10.3390/inorganics11010004