Synthesis of Zn3V2O8/rGO Nanocomposite for Photocatalytic Hydrogen Production
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Chemicals
2.2. Apparatus
2.3. Synthesis of Zn3V2O8 and Zn3V2O8/rGO
2.4. Photo-Catalytic Hydrogen Generation
3. Results and Discussion
3.1. Characterization
3.2. Hydrogen Generation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tao, X.; Zhao, Y.; Wang, S.; Li, C.; Li, R. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chem. Soc. Rev. 2022, 51, 3561–3608. [Google Scholar] [CrossRef]
- Ahmad, K.; Mobin, S. Organic-Inorganic Copper (II) Based Perovskites: A Benign Approach towards LowToxic and Water Stable Light Absorbers for Photovoltaic Applications. Energy Technol. 2020, 8, 1901185. [Google Scholar] [CrossRef]
- Ahmad, K.; Ansari, S.N.; Natarajan, K.; Mobin, S.M. A Two-Step Modified Deposition Method Based (CH3NH3)3Bi2I9 Perovskite: Lead Free, Highly Stable and Enhanced Photovoltaic Performance. ChemElectroChem 2019, 6, 1–6. [Google Scholar] [CrossRef]
- Ahmad, K.; Mobin, S. Recent Progress and Challenges in A3Sb2X9-Based Perovskite Solar Cells. ACS Omega 2020, 5, 28404–28412. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Shi, J.W.; Zou, Y.; Fan, Z.; Ji, X.; Niu, C. Highly Efficient Photocatalyst Based on a CdS Quantum Dots/ZnO Nanosheets 0D/2D Heterojunction for Hydrogen Evolution from Water Splitting. ACS Appl. Mater. Interfaces 2017, 9, 25377–25386. [Google Scholar] [CrossRef]
- Chouhan, N.; Ameta, R.; Meena, R.K.; Mandawat, N.; Ghildiyal, R. Visible light harvesting Pt/CdS/Co-doped ZnO nanorods molecular device for hydrogen generation. Int. J. Hydrogen Energy 2016, 41, 2298–2306. [Google Scholar] [CrossRef]
- Ma, D.; Shi, J.W.; Zou, Y.; Fan, Z.; Ji, X.; Niu, C.; Wang, L. Rational design of CdS@ZnO core-shell structure via atomic layer deposition for drastically enhanced photocatalytic H2 evolution with excellent photostability. Nano Energy 2017, 39, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.X.; Zhang, Z.M.; Wang, J.; Lu, X.L.; Zhang, W.; Lu, T.B. In Situ Synthesis of CdS/Graphdiyne Heterojunction for Enhanced Photocatalytic Activity of Hydrogen Production. ACS Appl. Mater. Interfaces 2019, 11, 2655–2661. [Google Scholar] [CrossRef]
- Vaishnav, J.K.; Arbuj, S.S.; Rane, S.B.; Amalnerkar, D.P. One dimensional CdS/ZnO nanocomposites: An efficient photocatalyst for hydrogen generation. RSC Adv. 2014, 4, 47637–47642. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Lingampalli, S.R.; Gautam, U.K.; Rao, C.N.R. Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd1−xZnxS and ZnO/Pt/CdS1−xSex hybrid nanostructures. Energy Environ. Sci. 2013, 6, 3589–3594. [Google Scholar] [CrossRef]
- Yang, G.R.; Yan, W.; Zhang, Q.; Shen, S.H.; Ding, S.J. One-dimensional CdS/ZnO core/shell nanofibers via single-spinneret electrospinning: Tunable morphology and efficient photocatalytic hydrogen production. Nanoscale 2013, 5, 12432–12439. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Yu, J.G.; Jaroniec, M. All-Solid-State Z-Scheme Photocatalytic Systems. Adv. Mater. 2014, 26, 4920–4935. [Google Scholar] [CrossRef] [PubMed]
- Lia, G.; Lian, Z.; Wang, W.; Zhang, D.; Li, H. Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis. Nano Energy 2016, 19, 446–454. [Google Scholar] [CrossRef]
- Jin, J.; Wang, C.; Ren, X.N.; Huang, S.Z.; Wu, M.; Chen, L.H.; Hasan, T.; Wang, B.J.; Li, Y.; Su, B.L. Anchoring ultrafine metallic and oxidized Pt nanoclusters on yolk-shell TiO2 for unprecedentedly high photocatalytic hydrogen production. Nano Energy 2017, 38, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Moa, H.; Song, C.; Zhou, Y.; Zhang, B.; Wang, D. Design and synthesis of porous Ag/ZnO nanosheets assemblies as super photocatalysts for enhanced visible-light degradation of 4-nitrophenol and hydrogen evolution. Appl. Catal. B 2018, 221, 565–573. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.; Shi, P.; Fan, J.; Min, Y.; Xu, Q. Nickel Nitride Particles Supported on 2D Activated Graphene–Black Phosphorus Heterostructure: An Efficient Electrocatalyst for the Oxygen Evolution Reaction. Small 2019, 15, 1901530. [Google Scholar] [CrossRef]
- Liu, W.; Wang, X.; Yu, H.; Yu, J. Direct Photoinduced Synthesis of Amorphous CoMoSx Cocatalyst and Its Improved Photocatalytic H2-Evolution Activity of CdS. ACS Sustain. Chem. Eng. 2018, 6, 12436–12445. [Google Scholar] [CrossRef]
- Gong, S.; Jiang, Z.; Shi, P.; Fan, J.; Xu, Q.; Min, Y. Noble-metal-free heterostructure for efficient hydrogen evolution in visible region: Molybdenum nitride/ultrathin graphitic carbon nitride. Appl. Catal. B 2018, 238, 318–327. [Google Scholar] [CrossRef]
- Wu, T.; Ma, Y.; Qu, Z.; Fan, J.; Li, Q.; Shi, P.; Xu, Q.; Min, Y. Black Phosphorus–Graphene Heterostructure-Supported Pd Nanoparticles with Superior Activity and Stability for Ethanol Electro-oxidation. ACS Appl. Mater. Interfaces 2019, 11, 5136–5145. [Google Scholar] [CrossRef]
- Liao, K.; Chen, S.; Wei, H.; Fan, J.; Xu, Q.; Min, Y. Micropores of pure nanographite spheres for long cycle life and high-rate lithium–sulfur batteries. J. Mater. Chem. A 2018, 6, 23062–23070. [Google Scholar] [CrossRef]
- Xing, M.; Kong, L.-B.; Liu, M.-C.; Liu, L.-Y.; Kang, L.; Luo, Y.-C. Cobalt vanadate as highly active, stable, noble metal-free oxygen evolution electrocatalyst. J. Mater. Chem. A 2014, 2, 18435–18443. [Google Scholar] [CrossRef]
- Xiao, L.; Zhao, Y.; Yin, J.; Zhang, L. Clewlike ZnV2O4 hollow spheres: Nonaqueous sol–gel synthesis, formation mechanism, and lithium storage properties. Chem. Eur. J. 2009, 15, 9442–9450. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Chen, J.; Guo, Q.; Wang, T.; Pang, H. Cobalt vanadium oxide thin nanoplates: Primary electrochemical capacitor application. Sci. Rep. 2014, 4, 5687. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Zhang, S.; Ji, W.; Tao, Z.; Chen, J. A-CuV2O6 nanowires: Hydrothermal synthesis and primary lithium battery application. J. Am. Chem. Soc. 2008, 130, 5361–5367. [Google Scholar] [CrossRef]
- Butt, F.; Cao, C.; Ahmed, R.; Khan, W.; Cao, T.; Bidin, N.; Li, P.; Wan, Q.; Qu, X.; Tahir, M.; et al. Synthesis of novel ZnV2O4 spinel oxide nanosheets and their hydrogen storage properties. CrystEngComm 2014, 16, 894–899. [Google Scholar] [CrossRef]
- Shi, R.; Wang, Y.; Zhou, F.; Zhu, Y. Zn3V2O7(OH)2(H2O)2 and Zn3V2O8 nanostructures: Controlled fabrication and photocatalytic performance. J. Mater. Chem. 2011, 21, 6313–6320. [Google Scholar] [CrossRef]
- Mondal, C.; Ganguly, M.; Sinha, A.; Pal, J.; Sahoo, R.; Pal, T. Robust cubooctahedron Zn3V2O8 in gram quantity: A material for photocatalytic dye degradation in water. CrystEngComm 2013, 15, 6745–6751. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Lee, S.; Ryu, K. Synthesis of Zn3V2O8 nanoplatelets for lithium-ion battery and supercapacitor applications. RSC Adv. 2015, 5, 91822–91828. [Google Scholar] [CrossRef]
- Sambandam, B.; Soundharrajan, V.; Song, J.; Kim, S.; Jo, J.; Pham, D.T.; Kim, S.; Mathew, V.; Kim, J. Zn3V2O8 porous morphology derived through a facile and green approach as an excellent anode for high-energy lithium ion batteries. Chem. Eng. J. 2017, 328, 454–463. [Google Scholar] [CrossRef]
- Xin, S.; Guo, Y.-G.; Wan, L.-J. Nanocarbon networks for advanced rechargeable lithium batteries. Acc. Chem. Res. 2012, 45, 1759–1769. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Kong, J.; Zhou, D.; Zhao, C.; Zhou, R.; Lu, X. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Carbon 2014, 79, 493–499. [Google Scholar] [CrossRef]
- Ye, J.; Zou, Z.; Arakaw, H.; Oshikiri, M.; Shimoda, M.; Matsushita, A.; Shishido, T. Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M = V5+, Nb5+, Ta5+). J. Photochem. Photobiol. A 2002, 148, 79–83. [Google Scholar] [CrossRef]
- Kudo, A.; Omori, K.; Kato, H. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties. J. Am. Chem. Soc. 1999, 121, 11459–11467. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, B.; Dai, Y.; Zhang, X.; Qin, X.; Jiang, M.; Whangbo, M.-H. Selective Ethanol Formation from Photocatalytic Reduction of Carbon-dioxide in Water with BiVO4 Photocatalyst. Catal. Commun. 2009, 11, 210–213. [Google Scholar] [CrossRef]
- Li, P.; Zhou, Y.; Tu, W.; Liu, Q.; Yan, S.; Zou, Z. Direct Growth of Fe2V4O13 Nanoribbons on a Stainless-Steel Mesh for Visible-Light Photoreduction of CO2 into Renewable Hydrocarbon Fuel and Degradation of Gaseous Isopropyl Alcohol. ChemPlusChem 2013, 78, 274–278. [Google Scholar] [CrossRef]
- Konta, R.; Kato, H.; Kobayashi, H.; Kudo, A. Photophysical properties and photocatalytic activities under visible light irradiation of silver vanadates. Phys. Chem. Chem. Phys. 2003, 5, 3061–3065. [Google Scholar] [CrossRef]
- Sekar, K.; Kassam, A.; Bai, Y.; Coulson, B.; Li, W.; Douthwaite, R.E.; Sasaki, K.; Lee, A.F. Hierarchical bismuth vanadate/reduced graphene oxide composite photocatalyst for hydrogen evolution and bisphenol A degradation. Appl. Mater. Today 2021, 22, 100963. [Google Scholar] [CrossRef]
- Dhabarde, N.; Carrillo-Ceja, O.; Tian, S.; Xiong, G.; Raja, K.; Subramanian, V. Bismuth Vanadate Encapsulated with Reduced Graphene Oxide: A Nanocomposite for Optimized Photocatalytic Hydrogen Peroxide Generation. J. Phys. Chem. C 2021, 125, 23669–23679. [Google Scholar] [CrossRef]
- Ahmad, K.; Mohammad, A.; Mathur, P.; Mobin, S.M. Preparation of SrTiO3 perovskite decorated rGO and electrochemical detection of nitroaromatics. Electrochim. Acta 2016, 215, 435–446. [Google Scholar] [CrossRef]
- Chen, X.; Shen, S.; Guo, L.; Mao, S.S. Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Yu, Y.; Cheng, B. Enhanced visible-light photocatalytic H2-production performance of multi-armed CdS nanorods. RSC Adv. 2012, 2, 11829–11835. [Google Scholar] [CrossRef]
- Ng, Y.; Iwase, A.; Kudo, A.; Amal, R. Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting. J. Phys. Chem. Lett. 2010, 17, 2607–2612. [Google Scholar] [CrossRef]
- Nagabhushana, G.P.; Nagaraju, G.; Chandrappa, G.T. Synthesis of bismuth vanadate: Its application in H2 evolution and sunlight-driven photodegradation. J. Mater. Chem. A 2013, 1, 388–394. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, J.; Guo, S.; Wang, L.; Shi, W.; Huang, H.; Liu, Y.; Kang, Z. Carbon dot and BiVO4 quantum dot composites for overall water splitting via a two-electron pathway. Nanoscale 2016, 8, 17314–17321. [Google Scholar] [CrossRef]
- Sun, S.; Wang, W.; Li, D.; Zhang, L.; Jiang, D. Solar Light Driven Pure Water Splitting on Quantum Sized BiVO4 without any Cocatalyst. ACS Catal. 2014, 4, 3498–3503. [Google Scholar] [CrossRef]
- Kondarides, D.I.; Daskalaki, V.M.; Patsoura, A.; Verykios, X.E. Hydrogen Production by Photo-Induced Reforming of Biomass Components and Derivatives at Ambient Conditions. Catal Lett. 2008, 122, 26–32. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, T.; Tian, W.; Zhang, Y.; Shan, P.; Chen, Y.; Wei, W.; Yuan, H.; Cui, H. Mechanism for Hydrogen Evolution from Water Splitting Based on a MoS2/WSe2 Heterojunction Photocatalyst: A First-Principle Study. RSC Adv. 2020, 10, 41127–41136. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharthi, F.A.; Ababtain, A.S.; Alanazi, H.S.; Al-Nafaei, W.S.; Hasan, I. Synthesis of Zn3V2O8/rGO Nanocomposite for Photocatalytic Hydrogen Production. Inorganics 2023, 11, 93. https://doi.org/10.3390/inorganics11030093
Alharthi FA, Ababtain AS, Alanazi HS, Al-Nafaei WS, Hasan I. Synthesis of Zn3V2O8/rGO Nanocomposite for Photocatalytic Hydrogen Production. Inorganics. 2023; 11(3):93. https://doi.org/10.3390/inorganics11030093
Chicago/Turabian StyleAlharthi, Fahad A., Alanood Sulaiman Ababtain, Hamdah S. Alanazi, Wedyan Saud Al-Nafaei, and Imran Hasan. 2023. "Synthesis of Zn3V2O8/rGO Nanocomposite for Photocatalytic Hydrogen Production" Inorganics 11, no. 3: 93. https://doi.org/10.3390/inorganics11030093
APA StyleAlharthi, F. A., Ababtain, A. S., Alanazi, H. S., Al-Nafaei, W. S., & Hasan, I. (2023). Synthesis of Zn3V2O8/rGO Nanocomposite for Photocatalytic Hydrogen Production. Inorganics, 11(3), 93. https://doi.org/10.3390/inorganics11030093