Synthesis and Structures of Lead(II) Complexes with Hydroxy-Substituted Closo-Decaborate Anions
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. Materials
3.2. Syntheses
3.2.1. Synthesis of K[B10H9OC5H10]
3.2.2. Synthesis of (Ph4P)2[B10H9OCH2CH2CH2CH2CH2OCH2CH2OH]
3.2.3. Synthesis of Complexes 1–3
3.3. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hosmane, N.S. (Ed.) Boron Science: New Technologies and Applications; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1997. [Google Scholar]
- Murphy, N.; McCarthy, E.; Dwyer, R.; Farràs, P. Boron clusters as breast cancer therapeutics. J. Inorg. Biochem. 2021, 218, 111412. [Google Scholar] [CrossRef] [PubMed]
- Hey-Hawkins, E.; Viñas Teixidor, C. (Eds.) Boron-Based Compounds: Potential and Emerging Applications in Medicine; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Hosmane, N.S.; Eagling, R.D. (Eds.) Handbook of Boron Science: With Applications in Organometallics, Catalysis, Materials and Medicine; World Scientific: Singapore, 2018; Volume 1–4. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Prikaznov, A.V.; Naoufal, D. Fifty years of the closo-decaborate anion chemistry. Collect. Czech. Chem. Commun. 2010, 75, 1149–1199. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Bregadze, V.I.; Sjöberg, S. Chemistry of closo-dodecaborate anion [B12H12]2−: A review. Collect. Czech. Chem. Commun. 2020, 67, 679–727. [Google Scholar] [CrossRef]
- Golub, I.E.; Filippov, O.A.; Belkova, N.V.; Epstein, L.M.; Shubina, E.S. The Mechanism of Halogenation of Decahydro-closo-Decaborate Dianion by Hydrogen Chloride. Russ. J. Inorg. Chem. 2021, 66, 1639–1648. [Google Scholar] [CrossRef]
- Klyukin, I.N.; Kubasov, A.S.; Limarev, I.P.; Zhdanov, A.P.; Matveev, E.Y.; Polyakova, I.N.; Zhizhin, K.Y.; Kuznetsov, N.T. The new approach to formation of exo boron–oxygen bonds from the decahydro-closo-decaborate (2-) anion. Polyhedron 2015, 101, 215–222. [Google Scholar] [CrossRef]
- Diab, M.; Mateo, A.; El Cheikh, J.; El Hajj, Z.; Haouas, M.; Ranjbari, A.; Guérineau, V.; Touboul, D.; Leclerc, N.; Cadot, E.; et al. Grafting of Anionic Decahydro-closo-Decaborate Clusters on Keggin and Dawson-Type Polyoxometalates: Syntheses, Studies in Solution, DFT Calculations and Electrochemical Properties. Molecules 2022, 27, 7663. [Google Scholar] [CrossRef]
- Mahfouz, N.; Ghaida, F.A.; El Hajj, Z.; Diab, M.; Floquet, S.; Mehdi, A.; Naoufal, D. Recent Achievements on Functionalization within closo-Decahydrodecaborate [B10H10]2− Clusters. ChemistrySelect 2022, 7, e202200770. [Google Scholar] [CrossRef]
- Laila, Z.; Yazbeck, O.; Ghaida, F.; Diab, M.; Anwar, S.; Srour, M.; Naoufal, D. Clean-activation of the B–H bond in closo-decahydrodecaborate [B10H10]2− anion via soft-route. J. Organomet. Chem. 2020, 910, 121132. [Google Scholar] [CrossRef]
- Al-Joumhawy, M.; Cendoya, P.; Shmalko, A.; Marei, T.; Gabel, D. Improved synthesis of halo-and oxonium derivatives of dodecahydrido-closo-dodecaborate (2-). J. Organomet. Chem. 2021, 949, 121967. [Google Scholar] [CrossRef]
- Bruce King, R. Three-Dimensional Aromaticity in Polyhedral Boranes and Related Molecules. Chem. Rev. 2001, 101, 1119–1152. [Google Scholar] [CrossRef]
- Poater Teixidor, J.; Solà i Puig, M.; Viñas, C.; Teixidor Bombardó, F. Hückel’s Rule of Aromaticity Categorizes Aromatic Closo Boron Hydride Clusters. Chem. Eur. J. 2016, 22, 7437–7443. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; King, R.B. Spherical Aromaticity: Recent Work on Fullerenes, Polyhedral Boranes, and Related Structures. Chem. Rev. 2005, 105, 3613–3642. [Google Scholar] [CrossRef]
- Poater, J.; Viñas, C.; Bennour, I.; Escayola, S.; Solà, M.; Teixidor, F. Too Persistent to Give Up: Aromaticity in Boron Clusters Survives Radical Structural Changes. J. Am. Chem. Soc. 2020, 142, 9396–9407. [Google Scholar] [CrossRef]
- Semioshkin, A.A.; Sivaev, I.B.; Bregadze, V.I. Cyclic oxonium derivatives of polyhedral boron hydrides and their synthetic applications. J. Chem. Soc. Dalton Trans. 2008, 11, 977–992. [Google Scholar] [CrossRef]
- Matveev, E.Y.; Retivov, V.M.; Razgonyaeva, G.A.; Zhizhin, K.Y.; Kuznetsov, N.T. Cleavage of the cyclic substituent in the [B10H9O2C4H8]−, [B10H9OC4H8]−, and [B10H9OC5H10]− anions upon the interaction with negatively charged N-nucleophiles. Russ. J. Inorg. Chem. 2011, 56, 1549–1554. [Google Scholar] [CrossRef]
- Prikaznov, A.V.; Shmal’ko, A.V.; Sivaev, I.B.; Petrovskii, P.V.; Bragin, V.I.; Kisin, A.V.; Bregadze, V.V. Synthesis of carboxylic acids based on the closo-decaborate anion. Polyhedron 2011, 30, 1494–1501. [Google Scholar] [CrossRef]
- Laskova, J.; Kozlova, A.; Białek-Pietras, M.; Studzińska, M.; Paradowska, E.; Bregadze, V.; Semioshkin, A. Reactions of closo-dodecaborate amines. Towards novel bis-(closo-dodecaborates) and closo-dodecaborate conjugates with lipids and non-natural nucleosides. J. Organomet. Chem. 2016, 807, 29–35. [Google Scholar] [CrossRef]
- Prikaznov, A.V.; Las’kova, Y.N.; Semioshkin, A.A.; Sivaev, I.B.; Kisin, A.V.; Bregadze, V.I. Synthesis of boron-containing tyrosine derivatives based on the closo-decaborate and closo-dodecaborate anions. Russ. Chem. Bull. 2011, 60, 2550–2554. [Google Scholar] [CrossRef]
- Laskova, J.; Kozlova, A.; Ananyev, I.; Bregadze, V.; Semioshkin, A. 2-Hydroxyethoxy-closo-undecahydrododecaborate(12) ([B12H11CH2CH2OH]2−) as a new prospective reagent for the preparation of closo-dodecaborate building blocks and thymidine and 2-deoxyuridine conjugates linked via short spacer. J. Organomet. Chem. 2017, 834, 64–72. [Google Scholar] [CrossRef]
- Imperio, D.; Muz, B.; Azab, A.K.; Fallarini, S.; Lombardi, G.; Panza, L.A. Short and Convenient Synthesis of closo-Dodecaborate Sugar Conjugates. Eur. J. Org. Chem. 2019, 2019, 7228–7232. [Google Scholar] [CrossRef]
- Serdyukov, A.; Kosenko, I.; Druzina, A.; Grin, M.; Mironov, A.F.; Bregadze, V.I.; Laskova, J. Anionic polyhedral boron clusters conjugates with 7-diethylamino-4-hydroxycoumarin. Synthesis and lipophilicity determination. J. Organomet. Chem. 2021, 946, 121905. [Google Scholar] [CrossRef]
- Peymann, T.; Gabel, D. Ring opening of tetrahydropyran attached to undecahydro-closo-dodecaborate (1−) by nucleophiles. Inorg. Chem. 1997, 36, 5138–5139. [Google Scholar] [CrossRef]
- Bregadze, V.I.; Sivaev, I.B.; Dubey, R.D.; Semioshkin, A.; Shmal’ko, A.V.; Kosenko, I.D.; Hosmane, N.S. BoronContaining Lipids and Liposomes: New Conjugates of Cholesterol with Polyhedral Boron Hydrides. Chem.-A Eur. J. 2020, 26, 13832–13841. [Google Scholar] [CrossRef] [PubMed]
- Gabel, D.; Moller, D.; Harfst, S.; Roesler, J.; Ketz, H. Synthesis of S-alkyl and S-acyl derivatives of mercaptoundecahydrododecaborate, a possible boron carrier for neutron capture therapy. Inorg. Chem. 1993, 32, 2276–2278. [Google Scholar] [CrossRef]
- Lee, J.D.; Ueno, M.; Miyajima, Y.; Nakamura, H. Synthesis of boron cluster lipids: Closo-dodecaborate as an alternative hydrophilic function of boronated liposomes for neutron capture therapy. Org. Lett. 2007, 9, 323–326. [Google Scholar] [CrossRef]
- Kusaka, S.; Hattori, Y.; Uehara, K.; Asano, T.; Tanimori, S.; Kirihata, M. Synthesis of optically active dodecaborate-containing L-amino acids for BNCT. Appl. Radiat. Isot. 2011, 69, 1768–1770. [Google Scholar] [CrossRef]
- Paskevicius, M.; Hansen, B.R.; Jørgensen, M.; Richter, B.; Jensen, T.R. Multifunctionality of silver closo-boranes. Nat. Commun. 2017, 8, 15136. [Google Scholar] [CrossRef] [Green Version]
- Zharkov, D.O.; Yudkina, A.V.; Riesebeck, T.; Loshchenova, P.S.; Mostovich, E.A.; Dianov, G.L. Boron-containing nucleosides as tools for boron-neutron capture therapy. Am. J. Cancer Res. 2021, 11, 4668. [Google Scholar]
- Hu, K.; Yang, Z.; Zhang, L.; Xie, L.; Wang, L.; Xu, H.; Josephson, L.; Liang, S.H.; Zhang, M.-R. Boron agents for neutron capture therapy. Coord. Chem. Rev. 2020, 405, 213139. [Google Scholar] [CrossRef]
- Ali, F.; Hosmane, N.; Zhu, Y. Boron chemistry for medical applications. Molecules 2020, 25, 828. [Google Scholar] [CrossRef] [Green Version]
- Sivaev, I.B. Nitrogen heterocyclic salts of polyhedral borane anions: From ionic liquids to energetic materials. Chem. Heterocycl. Compd. 2017, 53, 638–658. [Google Scholar] [CrossRef]
- Barth, R.F.; Mi, P.; Yang, W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun. 2018, 38, 35. [Google Scholar] [CrossRef] [Green Version]
- Moss, R.L. Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT). Appl. Radiat. Isot. 2014, 88, 2–11. [Google Scholar] [CrossRef]
- Hagemann, H. Boron Hydrogen Compounds: Hydrogen Storage and Battery Applications. Molecules 2021, 26, 7425. [Google Scholar] [CrossRef]
- Sun, W.; Hu, J.; Duttwyler, S.; Wang, L.; Krishna, R.; Zhang, Y. Highly selective gas separation by two isostructural boron cluster pillared MOFs. Sep. Purif. Technol. 2022, 283, 120220. [Google Scholar] [CrossRef]
- RodríguezHermida, S.; Tsang, M.Y.; Vignatti, C.; Stylianou, K.C.; Guillerm, V.; PérezCarvajal, J.; Giner Planas, J. Switchable surface hydrophobicity–hydrophilicity of a metal–organic framework. Angew. Chem. Int. Ed. 2016, 55, 16049–16053. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Wang, S.; Dewhurst, R.D.; Ignat’ev, N.V.; Finze, M.; Braunschweig, H. Boron: Its role in energy-related processes and applications. Angew. Chem. Int. Ed. 2020, 59, 8800–8816. [Google Scholar] [CrossRef]
- Avdeeva, V.V.; Polyakova, I.N.; Goeva, L.V.; Malinina, E.A.; Kuznetsov, N.T. Nickel(II) complexes with boron cluster anions [BnHn]2– (n = 10, 12) and azaheterocyclic ligands L (L = Bipy, Phen, BPA, and DAB). Russ. J. Inorg. Chem. 2016, 61, 302–313. [Google Scholar] [CrossRef]
- Avdeeva, V.V.; Polyakova, I.N.; Goeva, L.V.; Malinina, E.A.; Zhdanov, A.P.; Zhizhin, K.Y.; Kuznetsov, N.T. Cobalt(II) and nickel(II) complexes with 1-methyl-2-pyridin-2-yl-1H- and 1-methyl-2-phenyliminomethyl-1H-benzimidazoles and the closo-decaborate anion. Russ. J. Inorg. Chem. 2015, 60, 817–822. [Google Scholar] [CrossRef]
- Sivaev, I.B. Functional Group Directed B–H Activation of Polyhedral Boron Hydrides by Transition Metal Complexes (Review). Russ. J. Inorg. Chem. 2021, 66, 1289–1342. [Google Scholar] [CrossRef]
- Lin, Q.; Gao, L.; Kauffmann, B.; Zhang, J.; Ma, C.; Luo, D.; Gan, Q. Helicity adaptation within a quadruply stranded helicate by encapsulation. Chem. Commun. 2018, 54, 13447–13450. [Google Scholar] [CrossRef] [PubMed]
- Jenne, C.; Wegener, B. Silver Salts of the Weakly Coordinating Anion [Me3NB12Cl11]–. Z. Anorg. Allg. Chem. 2018, 644, 1123–1132. [Google Scholar] [CrossRef]
- Eleazer, B.J.; Peryshkov, D.V. Coordination Chemistry of Carborane Clusters: Metal-Boron Bonds in Carborane, Carboranyl, and Carboryne Complexes. Comments Inorg. Chem. 2008, 38, 79–109. [Google Scholar] [CrossRef]
- Ivanov, S.V.; Ivanova, S.I.; Miller, S.M.; Anderson, O.P.; Solntsev, K.A.; Strauss, S.H. Fluorination of B10H102− with an N-fluoro reagent. A new way to transform B-H bonds into B-F bonds. Inorg. Chem. 1996, 35, 6914–6915. [Google Scholar] [CrossRef] [PubMed]
- Kubasov, A.S.; Matveev, E.Y.; Retivov, V.M.; Akimov, S.S.; Razgonyaeva, G.A.; Polyakova, I.N.; Votinova, N.A.; Zhizhin, K.Y.; Kuznetsov, N.T. Nickel(II) complexes with nitrogen-containing derivatives of the closo-decaborate anion. Russ. Chem. Bull. 2014, 63, 187–193. [Google Scholar] [CrossRef]
- Avdeeva, V.V.; Malinina, E.A.; Kuznetsov, N.T. Boron cluster anions and their derivatives in complexation reactions. Coord. Chem. Rev. 2022, 469, 214636. [Google Scholar] [CrossRef]
- Matveev, E.Y.; Avdeeva, V.V.; Zhizhin, K.Y.; Malinina, E.A.; Kuznetsov, N.T. Effect of Nature of Substituents on Coordination Properties of Mono- and Disubstituted Derivatives of Boron Cluster Anions [BnHn]2– (n = 10, 12) and Carboranes with exo-Polyhedral B–X Bonds (X = N, O, S, Hal). Inorganics 2022, 10, 238. [Google Scholar] [CrossRef]
- Baranowski, B.; Zaginaichenko, S.Y.; Schur, D.V.; Skorokhod, V.V.; Veziroglu, A. (Eds.) Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science for Peace and Security Series C: Environmental Security; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Cheng, F.; Jäkle, F. Boron-containing polymers as versatile building blocks for functional nanostructured materials (Review Article). Polym. Chem. 2011, 2, 2122–2132. [Google Scholar] [CrossRef]
- Kaim, W.; Hosmane, N.S. Multidimensional potential of boron-containing molecules in functional materials. J. Chem. Sci. 2010, 122, 7–18. [Google Scholar] [CrossRef]
- Demirci, U.B.; Miele, P.; Yot, P.G. Boron-Based (Nano-)Materials: Fundamentals and Applications. Crystals 2016, 6, 118. [Google Scholar] [CrossRef] [Green Version]
- Zhizhin, K.Y.; Vovk, O.O.; Malinina, E.A.; Mustyatsa, V.N.; Goeva, L.V.; Polyakova, I.N.; Kuznetsov, N.T. Interaction between a decahydro-closo-decaborate(2–) anion and aliphatic carboxylic acids. Russ. J. Coord. Chem. 2001, 27, 613–619. [Google Scholar] [CrossRef]
- Zhizhin, K.Y.; Mustyatsa, V.N.; Malinina, E.A.; Matveev, E.Y.; Goeva, L.V.; Polyakova, I.N.; Kuznetsov, N.T. Nucleophilic cleavage of cyclic substituents in derivatives of the closo-decaborate anion. Russ. J. Inorg. Chem. 2005, 50, 243–249. [Google Scholar]
- Zhizhin, K.Y.; Malinina, E.A.; Polyakova, I.N.; Lisovskij, M.V.; Kuznetsov, N.T. Acid-catalyzed nucleophilic substitution in the closo-decaborate B10H102− anion. Russ. J. Inorg. Chem. 2002, 47, 1168. [Google Scholar]
- Dobrott, R.D.; Lipscomb, W.N. Structure of Cu2B10H10. J. Chem. Phys. 1962, 37, 1779. [Google Scholar] [CrossRef]
- Paxton, T.E.; Hawthorne, M.F.; Brown, L.D.; Lipscomb, W.N. Observation regarding Cu–HB interactions in Cu2B10H10. Inorg. Chem. 1974, 123, 2772. [Google Scholar] [CrossRef]
- Akimov, S.S.; Matveev, E.Y.; Kubasov, A.S.; Razgonyaeva, G.A.; Zhizhin, K.Y.; Kuznetsov, N.T. Polydentate ligands based on closo-decaborate anion for the synthesis of gadolinium(III) complexes. Russ. Chem. Bull. 2013, 62, 1417–1421. [Google Scholar] [CrossRef]
- Bruker. SAINT; Bruker AXS Inc.: Madison, WI, USA, 2018. [Google Scholar]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of Silver and Molybdenum Microfocus X-ray Sources for Single-Crystal Structure Determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer17.5; University of Western Australia: Perth, Australia, 2017. [Google Scholar]
Bond | Distance, Å |
---|---|
Pb1–O1 | 2.559(5) |
Pb1–N1 | 2.539(6) |
Pb1–N2 | 2.622(6) |
Pb1–N3 | 2.584(6) |
Pb1–N4 | 2.533(6) |
Pb1–B1 | 3.317(9) |
Pb1–B5 | 3.721(9) |
Pb1–B4 1 | 3.424(9) |
Pb1–B5 1 | 3.424(9) |
Pb1–B8 1 | 3.740(7) |
Bond | Distance, Å |
---|---|
Pb1–O1 | 2.658(4) |
Pb1–N1 | 2.534(4) |
Pb1–N2 | 2.558(5) |
Pb1–N3 | 2.725(4) |
Pb1–N4 | 2.669(5) |
Pb1–B6 | 2.921(5) |
Pb1–H6A | 3.381(6) |
Pb1–B9 | |
Pb1–H9 |
Bond | Distance, Å |
---|---|
Pb1–O3 | 2.5109(19) |
Pb1–N1 | 2.581(2) |
Pb1–N2 | 2.521(2) |
Pb1–B1 1 | 3.053(4) |
Pb1–B3 1 | 3.169(4) |
Pb1–B4 1 | 3.003(4) |
Pb1–B6 2 | 2.999(3) |
Pb1–B9 2 | 3.215(3) |
Pb1–B10 2 | 3.056(3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matveev, E.Y.; Avdeeva, V.V.; Kubasov, A.S.; Zhizhin, K.Y.; Malinina, E.A.; Kuznetsov, N.T. Synthesis and Structures of Lead(II) Complexes with Hydroxy-Substituted Closo-Decaborate Anions. Inorganics 2023, 11, 144. https://doi.org/10.3390/inorganics11040144
Matveev EY, Avdeeva VV, Kubasov AS, Zhizhin KY, Malinina EA, Kuznetsov NT. Synthesis and Structures of Lead(II) Complexes with Hydroxy-Substituted Closo-Decaborate Anions. Inorganics. 2023; 11(4):144. https://doi.org/10.3390/inorganics11040144
Chicago/Turabian StyleMatveev, Evgenii Yu., Varvara V. Avdeeva, Alexey S. Kubasov, Konstantin Yu. Zhizhin, Elena A. Malinina, and Nikolay T. Kuznetsov. 2023. "Synthesis and Structures of Lead(II) Complexes with Hydroxy-Substituted Closo-Decaborate Anions" Inorganics 11, no. 4: 144. https://doi.org/10.3390/inorganics11040144
APA StyleMatveev, E. Y., Avdeeva, V. V., Kubasov, A. S., Zhizhin, K. Y., Malinina, E. A., & Kuznetsov, N. T. (2023). Synthesis and Structures of Lead(II) Complexes with Hydroxy-Substituted Closo-Decaborate Anions. Inorganics, 11(4), 144. https://doi.org/10.3390/inorganics11040144