The Role of Bulk Stiffening in Reducing the Critical Temperature of the Metal-to-Hydride Phase Transition and the Hydride Stability: The Case of Zr(MoxFe1−x)2-H2
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Structural and Elastic Properties of Zr(MoxFe1−x)2, x = 0, 0.5, 1
3.2. Resolving the Peculiarity in the Stability Trends of the Zr(MoxFe1−x)2, x = 0, 0.1, 0.5, 1, Hydrides
3.2.1. The Substitution of Fe by Mo
3.2.2. Trends of the Heats of Formation and the Crystal Volumes in the Zr(MoxFe1−x)2 System
3.2.3. Elastic Properties and H–H Elastic Interaction in Zr(MoxFe1−x)2-H2
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reilly, J.J. Chemistry of intermetallic hydrides, BNL report 46778, presented at the Symposium for Hydrogen Storage Materials, Battery and Electrochemistry. In Proceedings of the 180th Meeting of the Electrochemical Society, Phoenix, AZ, USA, 13–18 October 1991. [Google Scholar]
- van Mal, H.H.; Buschow, K.H.J.; Miedema, A.R. Hydrogen absorption in LaNi5 and related compounds: Experimental observations and their explanation. J. Less-Common Met. 1974, 35, 65–76. [Google Scholar] [CrossRef]
- Lartigue, C. Etude Structurale et Thermodynamique du Systeme LaNi5−XMnX—Hydrogene. Ph.D. Thesis, Universite Paris VI, Paris, France, 1984. [Google Scholar]
- Jacob, I.; Hadari, Z.; Reilly, J.J. Hydrogen absorption in ANiAl (A = Zr, Y, U). J. Less-Common Met. 1984, 103, 123–127. [Google Scholar] [CrossRef]
- Biderman, S.; Jacob, I.; Mintz, M.H.; Hadari, Z. Analysis of the hydrogen absorption in the U(AlxNi1−x)2 system. Trans. Nucl. Soc. Isr. 1982, 10, 129–132. [Google Scholar]
- Fukai, Y. The Metal-Hydrogen System: Basic Bulk Properties, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Alefeld, G. Phase transitions of hydrogen in metals due to elastic interaction. Ber. Bunsenges. Phys. Chem. 1972, 76, 746–755. [Google Scholar]
- Wagner, H. Elastic Interaction and phase transitionin in coherent metal-hydrogen systems. In Hydrogen in Metals I; Alefeld, G., Völkl, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1978; pp. 5–51. [Google Scholar]
- Li, F.; Zhao, J.; Tian, D.; Zhang, H.; Ke, X.; Johansson, B. Hydrogen storage behavior in C15 Laves compound TiCr2 by first principles. J. Appl. Phys. 2009, 105, 043707. [Google Scholar] [CrossRef]
- Babai, D.; Bereznitsky, M.; Shneck, R.Z.; Jacob, I. The effect of Pd on hydride formation in Zr(PdxM1−x)2 intermetallics where M is a 3d element. J. Alloys Compd. 2021, 889, 161503. [Google Scholar] [CrossRef]
- Mitrokhin, S.; Verbetsky, V. Peculiarities of Hydrogen Interaction with Alloys of ZrFe2-ZrMo2 System. Int. J. Hydrogen Energy 2019, 44, 29166–29169. [Google Scholar] [CrossRef]
- Muraoka, Y.; Shiga, M.; Nakamura, Y. Magnetic properties and Mössbauer effect of A(Fe1−xBx)2 (A = Y or Zr, B = Al or Ni) Laves phase intermetallic compounds. Phys. Status Solidi 1977, 42, 369–374. [Google Scholar] [CrossRef]
- Domagala, R.F.; McPherson, D.J.; Hansen, M. Systems Zirconium-Molybdenum and Zirconium-Wolfram. JOM 1953, 5, 73–79. [Google Scholar] [CrossRef]
- Straumanis, M.E.; Shodhan, R.P. Lattice Constants, Thermal Expansion Coefficients and Densities of Molybdenum and the Solubility of Sulphur, Selenium and Tellurium in it at 1100 °C. Z. Metallkd. 1968, 59, 492–495. [Google Scholar] [CrossRef]
- Yartys, V.A.; Burnasheva, V.V.; Fadeeva, N.V.; Solov’ev, S.P.; Semenenko, K.N. The crystal structure of the deuteride ZrMoFeD2.6. Sov. Phys. Crystallogr. (Transl. Krist.) 1982, 27, 540–543. [Google Scholar]
- Semenenko, K.N.; Verbetskii, V.N.; Mitrokhin, S.V.; Burnasheva, V.V. Investigation of the interaction with hydrogen of Zirconium intermetallic compounds crystallised in Laves phase structure types. Russ. J. Inorg. Chem. 1980, 25, 961–964, Translated from Zhurnal Neorgamcheskoi Khimil 1980, 25, 1731–1736. [Google Scholar]
- Mackenzie, J.K. The elastic constants of a solid containing spherical holes. Proc. Phys. Soc. B 1950, 63, 2–11. [Google Scholar] [CrossRef]
- Masi, L.; Borchi, E.; de Gennaro, S. Porosity behavior of ultrasonic velocities in polycrystalline Y-B-C-O. J. Phys. D Appl. Phys. 1996, 29, 2015–2019. [Google Scholar] [CrossRef]
- Willis, F.; Leisure, R.G.; Jacob, I. Elastic moduli of the Laves-phase pseudobinary compounds Zr(AlxFe1−x)2 as determined by ultrasonic measurements. Phys. Rev. B 1994, 50, 13792–13794. [Google Scholar] [CrossRef]
- Turkdal, N.; Deligoz, E.; Ozisik, H.; Ozisik, H.B. First-principles studies of the structural, elastic, and lattice dynamical properties of ZrMo2 and HfMo2. Phase Transit. 2017, 90, 598–609. [Google Scholar] [CrossRef]
- Abramov, S.N.; Antonov, V.E.; Bulychev, B.M.; Fedotov, V.K.; Kulakov, V.I.; Matveev, D.V.; Sholin, I.A.; Tkacz, M. T-P phase diagrams of the Mo-H system revisited. J. Alloys Compd. 2016, 672, 623–629. [Google Scholar] [CrossRef]
- Tkacz, M. Thermodynamic properties of iron hydride. J. Alloys Compd. 2002, 330–332, 25–28. [Google Scholar] [CrossRef]
- Klein, R.; Jacob, I.; O’Hare, P.A.G.; Goldberg, R.N. Solution-calorimetric determination of the standard molar enthalpies of formation of the pseudobinary compounds Zr(AlxFe1-x)2 at the temperature 298.15 K. J. Chem. Thermodyn. 1994, 26, 599–608. [Google Scholar] [CrossRef]
- Zotov, T.; Movlaev, E.; Mitrokhin, S.; Verbetsky, V. Interaction in (Ti,Sc)Fe2-H2 (Zr,Sc)Fe2-H2 systems. J. Alloys Compd. 2008, 459, 220–224. [Google Scholar] [CrossRef]
- Zotov, T.A.; Sivov, R.B.; Movlaev, E.A.; Mitrokhin, S.V.; Verbetsky, V.N. IMC hydrides with high hydrogen dissociation pressure. J. Alloys Compd. 2011, 509, S839–S843. [Google Scholar] [CrossRef]
- The Materials Project. Available online: https://materialsproject.org/materials/mp-1718/ (accessed on 9 April 2023).
- Lushnikov, S.A.; Movlaev, E.A.; Verbetsky, V.N.; Somenlov, V.A.; Agafonov, S.S. Interaction of ZrMo2 with hydrogen at high pressure. Int. J. Hydrogen Energy 2017, 42, 29166–29169. [Google Scholar] [CrossRef]
- The Materials Project. Available online: https://materialsproject.org/materials/mp-2049/ (accessed on 9 April 2023).
- Irodova, A.V.; Glazkov, V.P.; Somenkov, V.A.; Shilstein, S.S. Hydrogen ordering in the cubic Laves phase HfV2. J. Less-Common Met. 1981, 77, 89–98. [Google Scholar] [CrossRef]
- Jacob, I.; Bloch, J.M.; Shaltiel, D.; Davidov, D. On the occupation of interstitial sites by hydrogen atoms in intermetallic hydrides: A quantitative model. Solid State Commun. 1980, 35, 155. [Google Scholar] [CrossRef]
- Semenenko, K.N.; Verbetskii, V.N.; Pilchenko, V.A. Interaction of ZrMo2 with hydrogen at low temperatures. Mosc. Univ. Chem. Bull. (Transl. Vestn. Mosk. Univ. Ser. 2) 1986, 41, 131–133. [Google Scholar]
- Foster, K.; Hightower, J.E.; Leisure, R.G.; Skripov, A.V. Elastic moduli of the C15 Laves-phase materials TaV2, TaV2H(D)x and ZrCr2. Philos. Mag. B 2000, 80, 1667–1679. [Google Scholar] [CrossRef]
- Lynch, J.F. The solution of hydrogen in TaV2. J. Phys. Chem. Solids 1981, 42, 411–419. [Google Scholar] [CrossRef]
- Bereznitsky, M.; Mogilyanski, D.; Jacob, I. Destabilizing effect of Al substitution on hydrogen absorption in Zr(AlxV1−x)2. J. Alloys Compd. 2012, 542, 213–217. [Google Scholar] [CrossRef]
- Jacob, I.; Bereznitsky, M.; Yeheskel, O.; Leisure, R.G. Role of shear stiffening in reducing hydrogenation in intermetallic compounds. Appl. Phys. Lett. 2006, 89, 201909. [Google Scholar] [CrossRef]
- Machida, A. Unpublished Results.
- Bereznitsky, M.; Jacob, I.; Bloch, J.; Mintz, M.H. Thermodynamic and structural aspects of hydrogen absorption in the Zr(AlxCo1−x)2 system. J. Alloys Compd. 2002, 346, 217. [Google Scholar] [CrossRef]
- Bereznitsky, M.; Jacob, I.; Bloch, J.; Mintz, M.H. Thermodynamic and structural aspects of hydrogen absorption in the Zr(AlxFe1−x)2 system. J. Alloys Compd. 2003, 351, 180. [Google Scholar] [CrossRef]
x | a [Å] | c [Å] | Theoretical Density [kg/m3] | Porosity [%] | vL [m/s] | vT [m/s] | G [GPa] | B [GPa] |
---|---|---|---|---|---|---|---|---|
0 * [19] | 75.8 | 148 | ||||||
0 | 7.074 | 7614 | 0.9 | 5674 (9) | 3142 (4) | 75.6 (3) | 148.2 (9) | |
0.5 | 5.173 | 8.461 | 8297 | 0.8 | 5337 (2) | 2608 (1) | 56.3 (2) | 164.2 (4) |
1 | 7.589 | 8605 | 0.7 | 5733 (16) | 2762 (14) | 66.1 (8) | 200.4 (2) | |
1 [20] | 7.594 | 57.3 | 196.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacob, I.; Babai, D.; Bereznitsky, M.; Shneck, R.Z. The Role of Bulk Stiffening in Reducing the Critical Temperature of the Metal-to-Hydride Phase Transition and the Hydride Stability: The Case of Zr(MoxFe1−x)2-H2. Inorganics 2023, 11, 228. https://doi.org/10.3390/inorganics11060228
Jacob I, Babai D, Bereznitsky M, Shneck RZ. The Role of Bulk Stiffening in Reducing the Critical Temperature of the Metal-to-Hydride Phase Transition and the Hydride Stability: The Case of Zr(MoxFe1−x)2-H2. Inorganics. 2023; 11(6):228. https://doi.org/10.3390/inorganics11060228
Chicago/Turabian StyleJacob, Isaac, Dotan Babai, Matvey Bereznitsky, and Roni Z. Shneck. 2023. "The Role of Bulk Stiffening in Reducing the Critical Temperature of the Metal-to-Hydride Phase Transition and the Hydride Stability: The Case of Zr(MoxFe1−x)2-H2" Inorganics 11, no. 6: 228. https://doi.org/10.3390/inorganics11060228
APA StyleJacob, I., Babai, D., Bereznitsky, M., & Shneck, R. Z. (2023). The Role of Bulk Stiffening in Reducing the Critical Temperature of the Metal-to-Hydride Phase Transition and the Hydride Stability: The Case of Zr(MoxFe1−x)2-H2. Inorganics, 11(6), 228. https://doi.org/10.3390/inorganics11060228