Effect of Sintering Time and Cl Doping Concentrations on Structural, Optical, and Luminescence Properties of ZnO Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. X-ray Diffraction Analysis
2.2. Optical Properties
2.3. EDX and FE-SEM Analysis
2.4. Luminescence Properties
3. Materials and Methods
3.1. Materials
3.2. Synthesis
3.3. Characterizations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klingshirn, C.F.; Waag, A.; Hoffman, A.; Geurts, J. Zinc Oxide: From Fundamental Properties Towards Novel Applications; Springer: Berlin/Heidelberg, Germany, 2013; Volume 53. [Google Scholar]
- Weerathunga, H.; Tang, C.; Brock, A.J.; Sarina, S.; Wang, T.; Liu, Q.; Zhu, H.Y.; Du, A.; Waclawik, E.R. Nanostructure Shape-Effects in ZnO Heterogeneous Photocatalysis. J. Colloid Interface Sci. 2022, 606, 588–599. [Google Scholar] [CrossRef]
- Le Pivert, M.; Martin, N.; Leprince-Wang, Y. Hydrothermally Grown ZnO Nanostructures for Water Purification via Photocatalysis. Crystals 2022, 12, 308. [Google Scholar] [CrossRef]
- Di Mauro, A.; Fragalà, M.E.; Privitera, V.; Impellizzeri, G. ZnO for Application in Photocatalysis: From Thin Films to Nanostructures. Mater. Sci. Semicond. Process. 2017, 69, 44–51. [Google Scholar] [CrossRef]
- Vattikuti, S.V.P.; Reddy, P.A.K.; Shim, J.; Byon, C. Visible-Light-Driven Photocatalytic Activity of SnO2-ZnO Quantum Dots Anchored on g-C3N4 Nanosheets for Photocatalytic Pollutant Degradation and H2 Production. ACS Omega 2018, 3, 7587–7602. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Prakash, J.; Pathak, D.; Sharma, D.P.; Purohit, L.P.; Swart, H.C. Ion Beam Engineering of Implanted ZnO Thin Films for Solar Cell and Lighting Applications. Chem. Eng. J. Adv. 2023, 15, 100501. [Google Scholar] [CrossRef]
- Zahoor, R.; Jalil, A.; Ilyas, S.Z.; Ahmed, S.; Hassan, A. Optoelectronic and Solar Cell Applications of ZnO Nanostructures. Results Surf. Interfaces 2021, 2, 100003. [Google Scholar] [CrossRef]
- Wibowo, A.; Marsudi, M.A.; Amal, M.I.; Ananda, M.B.; Stephanie, R.; Ardy, H.; Diguna, L.J. ZnO Nanostructured Materials for Emerging Solar Cell Applications. RSC Adv. 2020, 10, 42838–42859. [Google Scholar] [CrossRef]
- Wang, J.X.; Sun, X.W.; Yang, Y.; Huang, H.; Lee, Y.C.; Tan, O.K.; Vayssieres, L. Hydrothermally Grown Oriented ZnO Nanorod Arrays for Gas Sensing Applications. Nanotechnology 2006, 17, 4995. [Google Scholar] [CrossRef]
- Umar, A.; Ibrahim, A.A.; Kumar, R.; Algadi, H.; Albargi, H.; Alsairi, M.A.; Alhmami, M.A.M.; Zeng, W.; Ahmed, F.; Akbar, S. CdO–ZnO Nanorices for Enhanced and Selective Formaldehyde Gas Sensing Applications. Environ. Res. 2021, 200, 111377. [Google Scholar] [CrossRef]
- Islam, M.; Srivastava, A.K.; Basavaraja, B.M.; Sharma, A. “Nano-on-Micro” Approach Enables Synthesis of ZnO Nano-Cactus for Gas Sensing Applications. Sens. Int. 2021, 2, 100084. [Google Scholar] [CrossRef]
- Sahani, R.M.; Dixit, A. A Comprehensive Review on Zinc Oxide Bulk and Nano-Structured Materials for Ionizing Radiation Detection and Measurement Applications. Mater. Sci. Semicond. Process. 2022, 151, 107040. [Google Scholar] [CrossRef]
- Wen, X.; Zhang, Q.; Shao, Z. Magnetron Sputtering for ZnO:Ga Scintillation Film Production and Its Application Research Status in Nuclear Detection. Crystals 2019, 9, 263. [Google Scholar] [CrossRef]
- Saad, M.; AlMohiy, H.; Alshihri, A.A.; Alelyani, M.; Shalaby, R.M. Fabrication, Microstructural Modifications, Elastic Properties and Radiation Attenuation Performance of ZnO Nano-Sized Particles-Reinforced Pb-Based Alloys for Radiation Shielding Applications. Radiat. Eff. Defects Solids 2023, 178, 751–767. [Google Scholar] [CrossRef]
- Eskalen, H.; Kavun, Y.; Kavgacı, M. Preparation and Study of Radiation Shielding Features of ZnO Nanoparticle Reinforced Borate Glasses. Appl. Radiat. Isot. 2023, 198, 110858. [Google Scholar] [CrossRef] [PubMed]
- Xin, M. Effect of Eu Doping on the Structure, Morphology and Luminescence Properties of ZnO Submicron Rod for White LED Applications. J. Theor. Appl. Phys. 2018, 12, 177–182. [Google Scholar] [CrossRef]
- Das, S.; Ghorai, U.K.; Dey, R.; Ghosh, C.K.; Pal, M. White Light Phosphorescence from ZnO Nanoparticles for White LED Applications. New J. Chem. 2022, 46, 17585–17595. [Google Scholar] [CrossRef]
- Young, S.-J.; Yang, C.-C.; Lai, L.-T. Review—Growth of Al-, Ga-, and In-Doped ZnO Nanostructures via a Low-Temperature Process and Their Application to Field Emission Devices and Ultraviolet Photosensors. J. Electrochem. Soc. 2017, 164, B3013. [Google Scholar] [CrossRef]
- Su, Y.K.; Peng, S.M.; Ji, L.W.; Wu, C.Z.; Cheng, W.B.; Liu, C.H. Ultraviolet ZnO Nanorod Photosensors. Langmuir 2010, 26, 603–606. [Google Scholar] [CrossRef] [PubMed]
- Caglar, Y.; Caglar, M.; Ilican, S. XRD, SEM, XPS Studies of Sb Doped ZnO Films and Electrical Properties of Its Based Schottky Diodes. Optik 2018, 164, 424–432. [Google Scholar] [CrossRef]
- Adaikalam, K.; Valanarasu, S.; Ali, A.M.; Sayed, M.A.; Yang, W.; Kim, H.S. Photosensing Effect of Indium-Doped ZnO Thin Films and Its Heterostructure with Silicon. J. Asian Ceram. Soc. 2022, 10, 108–119. [Google Scholar] [CrossRef]
- Gabás, M.; Landa-Cánovas, A.; Luis Costa-Krämer, J.; Agulló-Rueda, F.; González-Elipe, A.R.; Díaz-Carrasco, P.; Hernández-Moro, J.; Lorite, I.; Herrero, P.; Castillero, P.; et al. Differences in N-Type Doping Efficiency between Al- and Ga-ZnO Films. J. Appl. Phys. 2013, 113, 163709. [Google Scholar] [CrossRef]
- Tao, Z.; Yu, X.; Fei, X.; Liu, J.; Zhao, Y.; Wu, H.; Yang, G.; Yang, S.; Yang, L. Synthesis and Optical Properties of Halogen-Doped ZnO Phosphor. Mater. Lett. 2008, 62, 3018–3020. [Google Scholar] [CrossRef]
- Muhammad, A.; Hassan, Z.; Mohammad, S.M.; Rajamanickam, S.; Shitu, I.G. Fabrication of Ultra-Violet Photodetector with Enhanced Optoelectronic Parameters Using Low-Cost F-Doped ZnO Nanostructures. Sens. Actuators A Phys. 2021, 332, 113092. [Google Scholar] [CrossRef]
- Ujan, Z.A.; Tahira, A.; Mahesar, A.A.; Markhand, A.H.; Bhatti, A.L.; Mugheri, A.Q.; Bhatti, M.A.; Shaikh, N.M.; Mari, R.H.; Nafady, A.; et al. The Crystal Disorder into ZnO with Addition of Bromine and It’s Outperform Role in the Photodegradation of Methylene Blue. J. Clust. Sci. 2022, 33, 281–291. [Google Scholar] [CrossRef]
- Bouaziz, L.; Si-Ahmed, K.; Özacar, M.; Trari, M.; Bessekhouad, Y. Sensor Prospect of Iodine-Doped ZnO Materials for Ethyl Paraben Detection. Microchem. J. 2022, 183, 108132. [Google Scholar] [CrossRef]
- Liu, C.; Yu, A.; Peng, M.; Song, M.; Liu, W.; Zhang, Y.; Zhai, J. Improvement in the Piezoelectric Performance of a ZnO Nanogenerator by a Combination of Chemical Doping and Interfacial Modification. J. Phys. Chem. C 2016, 120, 6971–6977. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Liu, J.; Xiong, J.; Liu, J.; Zhang, K.; Liu, Y.; Peng, M.; Yu, A.; Zhang, A.; et al. Lattice Strain Induced Remarkable Enhancement in Piezoelectric Performance of ZnO-Based Flexible Nanogenerators. ACS Appl. Mater. Interfaces 2016, 8, 1381–1387. [Google Scholar] [CrossRef]
- Yousefi, R.; Jamali-Sheini, F. Effect of Chlorine Ion Concentration on Morphology and Optical Properties of Cl-Doped ZnO Nanostructures. Ceram. Int. 2012, 38, 5821–5825. [Google Scholar] [CrossRef]
- Yousefi, R.; Zak, A.K.; Mahmoudian, M.R. Growth and Characterization of Cl-Doped ZnO Hexagonal Nanodisks. J. Solid State Chem. 2011, 184, 2678–2682. [Google Scholar] [CrossRef]
- Tao, Z.; Yu, X.; Fei, X.; Liu, J.; Yang, G.; Zhao, Y.; Yang, S.; Yang, L. Synthesis and Photoluminescence of Cl-Doped ZnO Nanospheres. Opt. Mater. 2008, 31, 1–5. [Google Scholar] [CrossRef]
- Wang, F.; Seo, J.H.; Li, Z.; Kvit, A.V.; Ma, Z.; Wang, X. Cl-Doped ZnO Nanowires with Metallic Conductivity and Their Application for High-Performance Photoelectrochemical Electrodes. ACS Appl. Mater. Interfaces 2014, 6, 1288–1293. [Google Scholar] [CrossRef]
- Jiamprasertboon, A.; Dixon, S.C.; Sathasivam, S.; Powell, M.J.; Lu, Y.; Siritanon, T.; Carmalt, C.J. Low-Cost One-Step Fabrication of Highly Conductive ZnO:Cl Transparent Thin Films with Tunable Photocatalytic Properties via Aerosol-Assisted Chemical Vapor Deposition. ACS Appl. Electron. Mater. 2019, 1, 1408–1417. [Google Scholar] [CrossRef]
- Jiamprasertboon, A.; Powell, M.J.; Dixon, S.C.; Quesada-Cabrera, R.; Alotaibi, A.M.; Lu, Y.; Zhuang, A.; Sathasivam, S.; Siritanon, T.; Parkin, I.P.; et al. Photocatalytic and Electrically Conductive Transparent Cl-Doped ZnO Thin Films: Via Aerosol-Assisted Chemical Vapour Deposition. J. Mater. Chem. A 2018, 6, 12682–12692. [Google Scholar] [CrossRef]
- Kahouli, M.; Barhoumi, A.; Bouzid, A.; Al-Hajry, A.; Guermazi, S. Structural and Optical Properties of ZnO Nanoparticles Prepared by Direct Precipitation Method. Superlattices Microstruct. 2015, 85, 7–23. [Google Scholar] [CrossRef]
- Zhao, W.; Li, H.; Liu, Z.; Wang, D.; Liu, S. Controlled Defects and Enhanced Electronic Extraction in Fluorine-Incorporated Zinc Oxide for High-Performance Planar Perovskite Solar Cells. Sol. Energy Mater. Sol. Cells 2018, 182, 263–271. [Google Scholar] [CrossRef]
- Gautam, K.; Singh, I.; Bhatnagar, P.K.; Peta, K.R. Role of Cl Doping on the Growth and Relaxation Dynamics of ZnO Nanorods Synthesized by Hydrothermal Method. Chem. Phys. Lett. 2016, 662, 196–200. [Google Scholar] [CrossRef]
- Alshgari, R.A.; Ujjan, Z.A.; Shah, A.A.; Bhatti, M.A.; Tahira, A.; Shaikh, N.M.; Kumar, S.; Ibupoto, M.H.; Elhawary, A.; Nafady, A.; et al. ZnO Nanostructures Doped with Various Chloride Ion Concentrations for Efficient Photocatalytic Degradation of Methylene Blue in Alkaline and Acidic Media. Molecules 2022, 27, 8726. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, S.S.; Güner, S.; Koseoglu, Y.; Musa, I.M.; Adamu, B.I.; Abdulhamid, M.I. Simple Method for The Determınatıon of Band Gap of a Nanopowdered Sample Usıng Kubelka Munk Theory. J. Niger. Assoc. Math. Phys. 2016, 35, 241–246. [Google Scholar]
- Abdalla, A.M.; Khan, A.; Almalki, S.; Kawaguchi, N.; Yanagida, T.; Alsareii, S.A.; Algethami, J.S. Evaluation of Structural, Optical, and Scintillation Characteristics of Ag Activated ZnS Nanoparticles. Radiat. Phys. Chem. 2023, 210, 110999. [Google Scholar] [CrossRef]
- Slassi, A. First-Principles and Boltzmann Equation Studies of the Cl-Doped ZnO Transparent Conducting Oxide. Optik 2015, 126, 4751–4756. [Google Scholar] [CrossRef]
- Pamungkas, M.A.; Putra, S.A.; Nurhuda, M. Bandgap Control in ZnO with Na and Cl Adatom: DFT Calculations. J. Phys. Conf. Ser. 2021, 1811, 012126. [Google Scholar] [CrossRef]
- Vanheusden, K.; Warren, W.L.; Seager, C.H.; Tallant, D.R.; Voigt, J.A.; Gnade, B.E. Mechanisms behind Green Photoluminescence in ZnO Phosphor Powders. J. Appl. Phys. 1996, 79, 7983–7990. [Google Scholar] [CrossRef]
- Wu, X.L.; Siu, G.G.; Fu, C.L.; Ong, H.C. Photouminescence and Cathodoluminescence Studies of Stoichiometric and Oxygen-Deficient ZnO Films. Appl. Phys. Lett. 2001, 78, 2285–2287. [Google Scholar] [CrossRef]
Samples | 1 h | 2 h | 3 h | 4 h | 5 h | 6 h |
---|---|---|---|---|---|---|
Elements | At.% | At.% | At.% | At.% | At.% | At.% |
Zn | 52.02 | 52.42 | 47.01 | 43.92 | 50.07 | 39.96 |
S | 47.98 | 43.44 | 40.11 | 18.51 | 0 | 0 |
O | 0 | 4.15 | 12.88 | 37.56 | 49.93 | 60.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.; Mohamed, S.E.; Al-Naggar, T.I.; Albargi, H.B.; Algethami, J.S.; Abdalla, A.M. Effect of Sintering Time and Cl Doping Concentrations on Structural, Optical, and Luminescence Properties of ZnO Nanoparticles. Inorganics 2024, 12, 53. https://doi.org/10.3390/inorganics12020053
Khan A, Mohamed SE, Al-Naggar TI, Albargi HB, Algethami JS, Abdalla AM. Effect of Sintering Time and Cl Doping Concentrations on Structural, Optical, and Luminescence Properties of ZnO Nanoparticles. Inorganics. 2024; 12(2):53. https://doi.org/10.3390/inorganics12020053
Chicago/Turabian StyleKhan, Arshad, Soheir E. Mohamed, Tayseer I. Al-Naggar, Hasan B. Albargi, Jari S. Algethami, and Ayman M. Abdalla. 2024. "Effect of Sintering Time and Cl Doping Concentrations on Structural, Optical, and Luminescence Properties of ZnO Nanoparticles" Inorganics 12, no. 2: 53. https://doi.org/10.3390/inorganics12020053
APA StyleKhan, A., Mohamed, S. E., Al-Naggar, T. I., Albargi, H. B., Algethami, J. S., & Abdalla, A. M. (2024). Effect of Sintering Time and Cl Doping Concentrations on Structural, Optical, and Luminescence Properties of ZnO Nanoparticles. Inorganics, 12(2), 53. https://doi.org/10.3390/inorganics12020053