Elucidating the Structural Features of Bis(arylimino)acenaphthene (Aryl-BIAN) Bismuth Complexes: A Combined Single-Crystal X-ray Diffraction and Hirshfeld Analysis Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. X-ray Studies
2.3. Hirshfeld Surface Analysis
3. Materials and Methods
3.1. General Considerations
3.2. Synthetic Procedures
3.3. X-ray Diffraction
3.4. Hirschfield Surface Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Marcillac, P.; Coron, N.; Dambier, G.; Leblanc, J.; Moalic, J.-P. Experimental Detection of α-Particles from the Radioactive Decay of Natural Bismuth. Nature 2003, 422, 876–878. [Google Scholar] [CrossRef] [PubMed]
- Mato, M.; Cornella, J. Bismuth in Radical Chemistry and Catalysis. Angew. Chem. Int. Ed. 2024, 63, e202315046. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ouyang, R.; Xu, L.; Guo, N.; Li, W.; Feng, K.; Ouyang, L.; Yang, Z.; Zhou, S.; Miao, Y. Review: Bismuth Complexes: Synthesis and Applications in Biomedicine. J. Coord. Chem. 2015, 68, 379–397. [Google Scholar] [CrossRef]
- Berger, R.J.F.; Rettenwander, D.; Spirk, S.; Wolf, C.; Patzschke, M.; Ertl, M.; Monkowius, U.; Mitzel, N.W. Relativistic Effects in Triphenylbismuth and Their Influence on Molecular Structure and Spectroscopic Properties. Phys. Chem. Chem. Phys. 2012, 14, 15520–15524. [Google Scholar] [CrossRef] [PubMed]
- Lichtenberg, C. Bismuth-Based Lewis Acidity. In Advances in Inorganic Chemistry; Meyer, K., van Eldik, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 82, pp. 237–260. ISBN 9780443159442. [Google Scholar]
- Yukhin, Y.M.; Daminov, A.S.; Logutenko, O.A.; Koledova, E.S.; Mishchenko, K.V. Processing of Metallic Bismuth for the Production of Bismuth Compounds. Sep. Sci. Technol. 2021, 56, 1168–1176. [Google Scholar] [CrossRef]
- Sadler, P.J.; Li, H.; Sun, H. Coordination Chemistry of Metals in Medicine: Target Sites for Bismuth. Coord. Chem. Rev. 1999, 185–186, 689–709. [Google Scholar] [CrossRef]
- Zhang, N.; Ciriminna, R.; Pagliaro, M.; Xu, Y.-J. Nanochemistry-Derived Bi2WO6 Nanostructures: Towards Production of Sustainable Chemicals and Fuels Induced by Visible Light. Chem. Soc. Rev. 2014, 43, 5276–5287. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.; Shang, S.; Zheng, L.; Li, P.; Li, H.; Luo, H.; Kong, J. Efficient Visible-Light Photocatalytic Properties in Low-Temperature Bi-Nb-O System Photocatalysts. Nanoscale Res. Lett. 2016, 11, 383. [Google Scholar] [CrossRef] [PubMed]
- Ollevier, T. New Trends in Bismuth-Catalyzed Synthetic Transformations. Org. Biomol. Chem. 2013, 11, 2740–2755. [Google Scholar] [CrossRef]
- Kindervater, M.B.; Marczenko, K.M.; Werner-Zwanziger, U.; Chitnis, S.S. A Redox-Confused Bismuth(I/III) Triamide with a T-Shaped Planar Ground State. Angew. Chem. Int. Ed. 2019, 58, 7850–7855. [Google Scholar] [CrossRef]
- Tidwell, J.R.; Martin, C.D. Investigating the Reactions of BiCl3, a Diiminopyridine Ligand, and Trimethylsilyl Trifluoromethanesulfonate. Organometallics 2022, 41, 1197–1203. [Google Scholar] [CrossRef]
- Šimon, P.; del Proft, F.; Jambor, R.; Růžička, A.; Dostál, L. Monomeric Organoantimony(I) and Organobismuth(I) Compounds Stabilized by an NCN Chelating Ligand: Syntheses and Structures. Angew. Chem. Int. Ed. 2010, 49, 5468–5471. [Google Scholar] [CrossRef] [PubMed]
- Kindra, D.R.; Casely, I.J.; Fieser, M.E.; Ziller, J.W.; Furche, F.; Evans, W.J. Insertion of CO2 and COS into Bi–C Bonds: Reactivity of a Bismuth NCN Pincer Complex of an Oxyaryl Dianionic Ligand, [2,6-(Me2NCH2)2C6H3]Bi(C6H2tBu2O). J. Am. Chem. Soc. 2013, 135, 7777–7787. [Google Scholar] [CrossRef] [PubMed]
- Casely, I.J.; Ziller, J.W.; Fang, M.; Furche, F.; Evans, W.J. Facile Bismuth−Oxygen Bond Cleavage, C−H Activation, and Formation of a Monodentate Carbon-Bound Oxyaryl Dianion, (C6H2tBu2-3,5-O-4)2−. J. Am. Chem. Soc. 2011, 133, 5244–5247. [Google Scholar] [CrossRef] [PubMed]
- Kindra, D.R.; Evans, W.J. Bismuth-Based Cyclic Synthesis of 3,5-Di-Tert-Butyl-4-Hydroxybenzoic Acid via the Oxyarylcarboxy Dianion, (O2CC6H2tBu2O)2−. Dalton Trans. 2014, 43, 3052–3054. [Google Scholar] [CrossRef] [PubMed]
- Hill, N.J.; Reeske, G.; Moore, J.A.; Cowley, A.H. Complexes of 1,2-Bis(Aryl-Imino)Acenaphthene (Ar-BIAN) Ligands with Some Heavy p-Block Elements. Dalton Trans. 2006, 40, 4838–4844. [Google Scholar] [CrossRef] [PubMed]
- Kluwer, A.M.; Koblenz, T.S.; Jonischkeit, T.; Woelk, K.; Elsevier, C.J. Kinetic and Spectroscopic Studies of the [Palladium(Ar-Bian)]-Catalyzed Semi-Hydrogenation of 4-Octyne. J. Am. Chem. Soc. 2005, 127, 15470–15480. [Google Scholar] [CrossRef]
- Camacho, D.H.; Salo, E.V.; Ziller, J.W.; Guan, Z. Cyclophane-Based Highly Active Late-Transition-Metal Catalysts for Ethylene Polymerization. Angew. Chem. 2004, 116, 1857–1861. [Google Scholar] [CrossRef]
- Gomes, C.S.B.; Ribeiro, A.F.G.; Fernandes, A.C.; Bento, A.; Rosário Ribeiro, M.; Kociok-Köhn, G.; Pascu, S.I.; Duarte, M.T.; Gomes, P.T. Reactivity of Cationic α-Diimine Cyclopentadienyl Nickel Complexes towards AlEt2Cl: Synthesis, Characterisation and Ethylene Polymerisation. Catal. Sci. Technol. 2017, 7, 3128–3142. [Google Scholar] [CrossRef]
- Fliedel, C.; Rosa, V.; Santos, C.I.M.; Gonzalez, P.J.; Almeida, R.M.; Gomes, C.S.B.; Gomes, P.T.; Lemos, M.A.N.D.A.; Aullón, G.; Welter, R.; et al. Copper(II) Complexes of Bis(Aryl-Imino)Acenaphthene Ligands: Synthesis, Structure, DFT Studies and Evaluation in Reverse ATRP of Styrene. Dalton Trans. 2014, 43, 13041. [Google Scholar] [CrossRef]
- Viana, M.S.; Gomes, C.S.B.; Rosa, V. Heteroleptic Copper Complexes as Catalysts for the CuAAC Reaction: Counter-Ion Influence in Catalyst Efficiency. Catalysts 2023, 13, 386. [Google Scholar] [CrossRef]
- Rosa, V.; Laronha, H.; Gomes, C.S.B.; Cordas, C.M.; Brinco, J.; Freitas, F.; Gomes da Silva, M.D.R.; Avilés, T. Aerobic Oxidation of Benzylic Alcohols Catalysed by New (Aryl-BIAN)Copper(I) Complexes: Their Synthesis and Structural Characterization. Appl. Organomet. Chem. 2023, 37, e7193. [Google Scholar] [CrossRef]
- Zakrzewska, M.E.; André, P.J.L.; Gomes, C.S.B.; Nunes, A.V.M.; Rosa, V. Zinc Complexes Bearing BIAN Ligands as Efficient Catalysts for the Formation of Cyclic Carbonates from CO2 and Epoxides. New J. Chem. 2023, 47, 6551–6562. [Google Scholar] [CrossRef]
- Wang, J.; Ganguly, R.; Yongxin, L.; Díaz, J.; Soo, H.S.; García, F. Synthesis and the Optical and Electrochemical Properties of Indium(III) Bis(Arylimino)Acenaphthene Complexes. Inorg. Chem. 2017, 56, 7811–7820. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Soo, H.S.; Garcia, F. Synthesis, Properties, and Catalysis of p-Block Complexes Supported by Bis(Arylimino)Acenaphthene Ligands. Commun. Chem. 2020, 3, 113. [Google Scholar] [CrossRef] [PubMed]
- Reeske, G.; Hoberg, C.R.; Hill, N.J.; Cowley, A.H. Capture of Phosphorus(I) and Arsenic(I) Moieties by a 1,2-Bis(Arylimino)Acenaphthene (Aryl-BIAN) Ligand. A Case of Intramolecular Charge Transfer [J. Am. Chem. Soc. 2006, 128, 2800−2801]. J. Am. Chem. Soc. 2006, 128, 5300. [Google Scholar] [CrossRef]
- van Asselt, R.; Elsevier, C.J.; Smeets, W.J.J.; Spek, A.L.; Benedix, R. Synthesis and Characterization of Rigid Bidentate Nitrogen Ligands and Some Examples of Coordination to Divalent Palladium. X-ray Crystal Structures of Bis (p-tolylimino) Acenaphthene and Methylchloro [Bis(o,o′-diisopropylphenyl-imino) Acenaphthene] Palladium (II). Recl. Trav. Chim. Pays-Bas 1994, 113, 88–98. [Google Scholar] [CrossRef]
- Brazeau, A.L.; Jones, N.D.; Ragogna, P.J. Chemistry of the Heavy Group 15 Elements with the Pyridyl Tethered 1,2-Bis(Imino)Acenaphthene “Clamshell” Ligand. Dalton Trans. 2012, 41, 7890–7896. [Google Scholar] [CrossRef] [PubMed]
- Bowmaker, G.A.; Hannaway, F.M.M.; Junk, P.C.; Lee, A.M.; Skelton, B.W.; White, A.H. Synthetic, Structural and Vibrational Spectroscopic Studies in Bismuth(III) Halide/N,N′-Aromatic Bidentate Base Systems. V Bismuth(III) Halide/N,N′-Bidentate Ligand (1:2) Systems. Aust. J. Chem. 1998, 51, 331–336. [Google Scholar] [CrossRef]
- Bowmaker, G.A.; Hannaway, F.M.M.; Junk, P.C.; Lee, A.M.; Skelton, B.W.; White, A.H. Synthetic, Structural and Vibrational Spectroscopic Studies in Bismuth(III) Halide/N,N′-Aromatic Bidentate Base Systems. IV Bismuth(III) Halide/N,N′-Bidentate Ligand (1:1) Systems. Aust. J. Chem. 1998, 51, 325–330. [Google Scholar] [CrossRef]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of Silver and Molybdenum Microfocus X-ray Sources for Single-Crystal Structure Determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, L.J. WinGX and ORTEP for Windows: An Update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- MacRae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From Visualization to Analysis, Design and Prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld Surface Analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Milin, E.; Benaicha, B.; El Hajj, F.; Patinec, V.; Triki, S.; Marchivie, M.; Gómez-García, C.J.; Pillet, S. Magnetic Bistability in Macrocycle-Based FeII Spin-Crossover Complexes: Counter Ion and Solvent Effects. Eur. J. Inorg. Chem. 2016, 2016, 5305–5314. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards Quantitative Analysis of Intermolecular Interactions with Hirshfeld Surfaces. Chem. Commun. 2007, 7, 3814–3816. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A Program for Hirshfeld Surface Analysis, Visualization and Quantitative Analysis of Molecular Crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting Intermolecular Interactions in Molecular Crystals. CrystEngComm 2002, 4, 378–392. [Google Scholar] [CrossRef]
2 | 3 | 4 | |
---|---|---|---|
Distances | |||
C1–N1 | 1.269 (12) | 1.29 (3) | 1.271 (7) |
C11–N2 | 1.269 (11) | 1.25 (3) | 1.261 (7) |
Bi1–N1 | 2.654 (8) | 2.485 (19) | 2.453 (5) |
Bi1–N2 | 2.882 (7) | 2.705 (16) | 2.623 (5) |
Bi1–Cl1 | 2.465 (3) | 2.551 (5) | 2.760 (2) |
Bi1–Cl2 | 2.493 (4) | 2.837 (5) | 2.4968 (17) |
Bi1–Cl3 | 2.663 (3) | 2.475 (5) | 2.5844 (19) |
Bi1–Cl# a | 3.143 (3) | 2.829 (5) | 2.9642 (19) |
Angles | |||
N1–Bi1–N2 | 61.3 (2) | 64.7 (5) | 66.03 (14) |
Cl1–Bi1–Cl3 | 87.21 (10) | 95.49 (18) | 164.63 (6) |
Cl2–Bi1–Cl1 | 93.92 (13) | 95.54 (17) | 94.45 (8) |
Cl2–Bi1–Cl3 | 91.46 (11) | 90.40 (16) | 92.10 (8) |
N1–Bi1–Cl3 | 168.8 (2) | 148.0 (4) | 165.00 (12) |
N2–Bi1–Cl2 | 143.19 (16) | 176.2 (4) | 150.98 (11) |
ω b | 9.3 (5) | 10.5 (3) | 19.9 (3) |
φ1 c | 93.7 (3) | 71.1 (5) | 89.99 (15) |
φ2 c | 88.2 (3) | 77.8 (5) | 70.7 (3) |
Complex | D–H…A | H…A | D…A | D–H…A | Symmetry Operation |
---|---|---|---|---|---|
2 | C33–H33A… π | 2.93 | 3.560 (13) | 145 | ½-x, y, 1-z |
C28–H28…Cl1 | 2.83 | 3.644 (13) | 144 | x, 1 + y, z | |
3 | C7–H7…Cl1 | 2.89 | 3.748 (3) | 117 | 2-x, 1-y, 2-z |
C26–H26…Cl1 | 2.85 | 3.730 (3) | 152 | 2-x, -y, 2-z | |
C17–H17…π | 2.88 | 3.724 (3) | 108 | 1-x, 1-y, 1-z | |
π …π | 3.40 (3) | 101.9 (15) | 2-x, 1-y, 2-z | ||
4 | C8–H8…Cl2 | 2.80 | 3.576 (8) | 142 | −1 + x, y, -z |
C31–H31A…Cl3 | 2.74 | 3.635 (13) | 154 | 2-x, 1-y, 1-z | |
C5–H5…Cl5 | 2.95 | 3.684 (3) | 137 | 1-x, 1-y, 2-z |
2 | 3 | 3-decomposition | 4 | |
---|---|---|---|---|
Formula | C36H40BiCl3N2 | C60H56Bi2Cl6N4 | C18H28Bi2Cl8N2 | C62H60Bi2Cl10N4 |
M | 816.05 | 1463.74 | 973.98 | 1633.60 |
λ (Å) | 0.71073 | 0.71073 | 0.71073 | 0.71073 |
T (K) | 293 (2) | 293 (2) | 293 (2) | 293 (2) |
Crystal system | Monoclinic | Triclinic | Monoclinic | Triclinic |
Space group | I 2/a | P −1 | P 21/c | P −1 |
a (Å) | 23.176 (12) | 10.539 (5) | 16.076 (5) | 11.9071 (19) |
b (Å) | 12.210 (5) | 11.459 (5) | 7.1593 (18) | 12.515 (2) |
c (Å) | 28.154 (12) | 12.812 (6) | 12.799 (3) | 12.836 (2) |
α (°) | 90 | 95.385 (19) | 90 | 62.832 (6) |
β (°) | 98.17 (4) | 113.799 (16) | 105.698 (11) | 75.498 (6) |
γ (°) | 90 | 98.125 (18) | 90 | 89.515 (7) |
V (Å3) | 7886 (6) | 1382.0 (12) | 1418.1 (6) | 1635.0 (5) |
Z | 8 | 1 | 2 | 1 |
ρcalc (g.cm−3) | 1.375 | 1.759 | 2.281 | 1.659 |
µ (mm−1) | 4.698 | 6.691 | 13.157 | 5.823 |
Crystal size | 0.30 × 0.20 × 0.16 | 0.20 × 0.20 × 0.16 | 0.30 × 0.26 × 0.20 | 0.30 × 0.16 × 0.12 |
Crystal color | Orange | Red | Colorless | Orange |
Crystal description | Prism | Prism | Prism | Prism |
θmax (°) | 25.347 | 25.970 | 27.614 | 28.968 |
Total data | 56725 | 36055 | 19467 | 91864 |
Unique data | 7180 | 5348 | 3244 | 8389 |
Rint | 0.2648 | 0.2080 | 0.1552 | 0.1158 |
R [I > 2σ(I)] | 0.0788 | 0.1083 | 0.0581 | 0.0519 |
Rw | 0.1860 | 0.2627 | 0.1340 | 0.1065 |
Goodness of fit | 1.019 | 1.065 | 1.037 | 1.101 |
ρmin ρmax | −1.639 2.509 | −3.817 9.817 | −3.987 3.855 | −1.226 2.019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, B.P.; Celador-Garcia, M.; Rosa, V.; Gomes, C.S.B. Elucidating the Structural Features of Bis(arylimino)acenaphthene (Aryl-BIAN) Bismuth Complexes: A Combined Single-Crystal X-ray Diffraction and Hirshfeld Analysis Approach. Inorganics 2024, 12, 135. https://doi.org/10.3390/inorganics12050135
Machado BP, Celador-Garcia M, Rosa V, Gomes CSB. Elucidating the Structural Features of Bis(arylimino)acenaphthene (Aryl-BIAN) Bismuth Complexes: A Combined Single-Crystal X-ray Diffraction and Hirshfeld Analysis Approach. Inorganics. 2024; 12(5):135. https://doi.org/10.3390/inorganics12050135
Chicago/Turabian StyleMachado, Beatriz P., Maria Celador-Garcia, Vitor Rosa, and Clara S. B. Gomes. 2024. "Elucidating the Structural Features of Bis(arylimino)acenaphthene (Aryl-BIAN) Bismuth Complexes: A Combined Single-Crystal X-ray Diffraction and Hirshfeld Analysis Approach" Inorganics 12, no. 5: 135. https://doi.org/10.3390/inorganics12050135
APA StyleMachado, B. P., Celador-Garcia, M., Rosa, V., & Gomes, C. S. B. (2024). Elucidating the Structural Features of Bis(arylimino)acenaphthene (Aryl-BIAN) Bismuth Complexes: A Combined Single-Crystal X-ray Diffraction and Hirshfeld Analysis Approach. Inorganics, 12(5), 135. https://doi.org/10.3390/inorganics12050135