Exploring the Nature of Ag–Ag Interactions in Different Tellurides by Means of the Crystal Orbital Bond Index (COBI)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Experimental Section
4.1. Synthesis
4.2. X-ray Diffraction Experiments
4.3. Computational Details
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruedenberg, K. The Physical Nature of the Chemical Bond. Rev. Mod. Phys. 1962, 34, 326–376. [Google Scholar] [CrossRef]
- Frenking, G.; Shaik, S. The Chemical Bond—Fundamental Aspects of Chemical Bonding; Wiley-VCH: Weinheim, Germany, 2014. [Google Scholar]
- Miller, G.J. The “Coloring Problem” in Solids: How It Affects Structure, Composition and Properties. Eur. J. Inorg. Chem. 1998, 1998, 523–536. [Google Scholar] [CrossRef]
- Lin, Q.; Miller, G.J. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization. Acc. Chem. Res. 2018, 51, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.J.; Zhang, Y.; Wagner, F.R. Chemical Bonding in Solids. In Handbook of Solid State Chemistry; Dronskowski, R., Kikkawa, S., Stein, A., Eds.; Wiley-VCH: Weinheim, Germany, 2017. [Google Scholar]
- Dronskowski, R. Chemical Bonding—From Plane Waves via Atomic Orbitals; Walter de Gruyter: Berlin, Germany; Boston, MA, USA, 2023. [Google Scholar]
- Wagner, F.R.; Grin, Y. Chemcial bonding analysis in position space. In Comprehensive Inorganic Chemistry III; Reedijk, J., Poeppelmeier, K.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 3, pp. 222–237. [Google Scholar]
- Jones, R.O.; Elliott, S.R.; Dronskowski, R. The Myth of “Metavalency” in Phase-Change Materials. Adv. Mater. 2023, 35, 2300836. [Google Scholar] [CrossRef] [PubMed]
- Wuttig, M.; Schön, C.-F.; Kim, D.; Golub, P.; Raty, J.-Y.; Kooi, B.J.; Pendás, A.M.; Arora, R.; Waghmare, U.V. Metavalent or Hypervalent Bonding: Is There a Chance for Reconciliation? Adv. Sci. 2024, 11, 2308578. [Google Scholar] [CrossRef]
- Müller, P.C.; Elliott, S.R.; Dronskowski, R.; Jones, R.O. Chemical bonding in phase-change chalcogenides. J. Phys. Condens. Matter, 2024; accepted. [Google Scholar] [CrossRef] [PubMed]
- Pyykkö, P. Strong Closed-Shell Interactions in Inorganic Chemistry. Chem. Rev. 1997, 97, 597–636. [Google Scholar] [CrossRef]
- Jansen, M. Über Die Silberteilstruktren in Silberreichen Oxiden. J. Less-Comm. Met. 1980, 76, 285–292. [Google Scholar] [CrossRef]
- Jansen, M. Homoatomic d10-d10 Interactions: Their Effects on Structure and Chemical and Physical Properties. Angew. Chem. Int. Ed. Engl. 1987, 26, 1098–1110. [Google Scholar] [CrossRef]
- Schmidbauer, H.; Schier, A. Argentophilic Interactions. Angew. Chem. Int Ed. 2015, 54, 746–784. [Google Scholar] [CrossRef]
- Sculfort, S.; Braunstein, P. Intramolecular d10–d10 interactions in heterometallic clusters of the transition metals. Chem. Soc. Rev. 2011, 40, 2741–2760. [Google Scholar] [CrossRef] [PubMed]
- Schier, A.; Schmidbauer, H. Aurophilic interactions as a subject of current research: An up-date. Chem. Soc. Rev. 2012, 41, 370–412. [Google Scholar]
- Göbgen, K.C.; Fries, K.S.; Gladisch, F.C.; Dronskowski, R.; Steinberg, S. Revealing the Nature of Chemical Bonding in an ALn2Ag3Te5-Type Alkaline-Metal (A) Lanthanide (Ln) Silver Telluride. Inorganics 2019, 7, 70. [Google Scholar] [CrossRef]
- Eickmeier, K.; Fries, K.S.; Gladisch, F.C.; Dronskowski, R.; Steinberg, S. Revisiting the Zintl-Klemm Concept for ALn2Ag3Te5-Type Alkaline-Metal (A) Lanthanide (Ln) Silver Tellurides. Crystals 2020, 10, 184. [Google Scholar] [CrossRef]
- Smid, S.; Steinberg, S. Probing the Validity of the Zintl Klemm Concept for Alkaline-Metal Copper Tellurides by Means of Quantum-Chemical Techniques. Materials 2020, 13, 2178. [Google Scholar] [CrossRef]
- Gladisch, F.C.; van Leusen, J.; Passia, M.T.; Kögerler, P.; Steinberg, S. Rb3Er4Cu5Te10: Exploring the Frontier between Polar Intermetallics and Zintl-Phases via Experimental and Quantumchemical Approaches. Eur. J. Inorg. Chem. 2021, 2021, 4946–4953. [Google Scholar] [CrossRef]
- Gladisch, F.C.; Pippinger, T.; Meyer, J.; Pries, J.; Richter, J.; Steinberg, S. Examination of a Structural Preference in Quaternary Alkali-Metal (A) Rare-Earth (R) Copper Tellurides by Combining Experimental and Quantum-chemical Means. Inorg. Chem. 2022, 61, 9269–9282. [Google Scholar] [CrossRef]
- Koch, P.; Steinberg, S. Exploring the subtle factors that control the structural preferences in Cu7Te4. J. Phys. Condens. Matter 2023, 35, 064003. [Google Scholar] [CrossRef] [PubMed]
- Göbgen, K.C.; Gladisch, F.C.; Steinberg, S. The Mineral Stützite: A Zintl-Phase or Polar Intermetallic? A Case Study Using Experimental and Quantum-Chemical Techniques. Inorg. Chem. 2018, 57, 412–421. [Google Scholar] [CrossRef]
- Zintl, E. Intermetallische Verbindungen. Angew. Chem. 1939, 52, 1–6. [Google Scholar] [CrossRef]
- Klemm, W. Metalloids and their Compounds with the Alkali Metals. Proc. Chem. Soc. 1958, 329–364. [Google Scholar] [CrossRef]
- Klemm, W.; Busmann, E. Volumeninkremente und Radien einiger einfach negativ geladener lonen. Z. Anorg. Allg. Chem. 1963, 319, 297–311. [Google Scholar] [CrossRef]
- Schäfer, H.; Eisenmann, B.; Müller, W. Zintl Phases: Transitions between Metallic and Ionic Bonding. Angew. Chem. Int. Ed. 1973, 12, 694–712. [Google Scholar] [CrossRef]
- Nesper, R. The Zintl-Klemm Concept—A Historical Survey. Z. Anorg. Allg. Chem. 2014, 640, 2639–2648. [Google Scholar] [CrossRef]
- Janka, O.; Kauzlarich, S. Zintl Compounds. In Encyclopedia of Inorganic and Bioinorganic Chemistry; Scott, R.A., Ed.; Wiley-VCH: Weinheim, Germany, 2021. [Google Scholar]
- Pan, F.; Weinert, B.; Dehnen, S. Binary Zintl Anions Involving Group 13–15 (Semi-)Metal Atoms, and the Relationship of Their Structures to Electron Count. Struct. Bond. 2021, 188, 103–148. [Google Scholar]
- Pöttgen, R.; Johrendt, D. Intermetallics; Walter de Gruyter: Berlin, Germany; Boston, MA, USA, 2019. [Google Scholar]
- Böttcher, P. Tellurium-Rich Tellurides. Angew. Chem. Int. Ed. Engl. 1988, 27, 759–772. [Google Scholar] [CrossRef]
- Sheldrick, W.S. Polychalcogenide Anions: Structural Diversity and Ligand Versatility. Z. Anorg. Allg. Chem. 2012, 638, 2401–2424. [Google Scholar] [CrossRef]
- Müller, P.C.; Ertural, C.; Hempelmann, J.; Dronskowski, R. Crystal Orbital Bond Index: Covalent Bond Orders in Solids. J. Phys. Chem. C 2021, 125, 7959–7970. [Google Scholar] [CrossRef]
- Li, J.; Guo, H.-Y.; Zhang, X.; Kanatzides, M.G. CsAg5Te3: A new metal-rich telluride with a unique tunnel structure. J. Alloys Compds. 1995, 218, 1–4. [Google Scholar] [CrossRef]
- Eanes, M.E.; Schimek, G.L.; Kolis, J.W. Synthesis and structural characterization of CsAg5Se3 and RbAg3Te2. J. Chem. Crystallogr. 2000, 30, 223–226. [Google Scholar] [CrossRef]
- Assoud, A.; Cui, Y.; Thomas, S.; Sutherland, B.; Kleinke, H. Structure and physical properties of the new telluride BaAg2Te2 and its quaternary variants BaCudAg2–dTe2. J. Solid State Chem. 2008, 181, 2024–2030. [Google Scholar] [CrossRef]
- Mayasree, O.; Sankar, C.R.; Kleinke, K.M.; Kleinke, H. Cu clusters and chalcogen-chalcogen bonds in various copper polychalcogenides. Coord. Chem. Rev. 2012, 256, 1377–1383. [Google Scholar] [CrossRef]
- Meng, C.-Y.; Chen, H.; Wang, P. Syntheses, Structures, and Physical Properties of CsRE2Ag3Te5 (RE = Pr, Nd, Sm, Gd-Er) and RbRE2Ag3Te5 (RE = Sm, Gd-Dy). Inorg. Chem. 2014, 53, 6893–6903. [Google Scholar] [CrossRef] [PubMed]
- Cordero, B.; Gómez, V.; Platero-Prats, A.E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent radii revisited. Dalton Trans. 2008, 2008, 2832–2838. [Google Scholar] [CrossRef]
- Cotton, S. Lanthanide and Actinide Chemistry; John Wiley & Sons Ltd.: Chichester, UK, 2006. [Google Scholar]
- Miller, G.J.; Schmidt, M.W.; Wang, F.; You, T.-S. Quantitative Advances in the Zintl-Klemm Formalism. Struct. Bond. 2011, 139, 1–55. [Google Scholar]
- Steinberg, S. Revisiting the frontier of the Zintl–Klemm approach for the examples of three Mo2FeB2-type intermetallics by means of quantumchemical techniques. Z. Anorg. Allg. Chem. 2023, 649, e202300113. [Google Scholar] [CrossRef]
- Simons, J.; Hempelmann, J.; Fries, K.S.; Müller, P.C.; Dronskowski, R.; Steinberg, S. Bonding diversity in rock salt-type tellurides: Examining the interdependence between chemical bonding and materials properties. RSC Adv. 2021, 11, 20679–20686. [Google Scholar] [CrossRef] [PubMed]
- Gladisch, F.C.; Steinberg, S. Revealing Tendencies in the Electronic Structures of Polar Intermetallic Compounds. Crystals 2018, 8, 80. [Google Scholar] [CrossRef]
- Steinberg, S.; Dronskowski, R. The Crystal Orbital Hamilton Population (COHP) Method as a Tool to Visualize and Analyze Chemical Bonding in Intermetallic Compounds. Crystals 2018, 8, 225. [Google Scholar] [CrossRef]
- Wu, Z.; Hoffmann, R.-D.; Johrendt, D.; Mosel, B.D.; Eckert, H.; Pöttgen, R. Electronic structure, physical properties and ionic mobility of LiAg2Sn. J. Mater. Chem. 2003, 13, 2561–2565. [Google Scholar] [CrossRef]
- Sebastian, C.P.; Eckert, H.; Fehse, C.; Wright, J.P.; Attfield, J.P.; Johrendt, D.; Rayaprol, S.; Hoffmann, R.-D.; Pöttgen, R. Structural, magnetic, and spectroscopic studies of YAgSn, TmAgSn, and LuAgSn. J. Solid State Chem. 2006, 179, 2376–2385. [Google Scholar] [CrossRef]
- Assoud, A.; Xu, J.; Kleinke, H. Structures and Physical Properties of New Semiconducting Polyselenides Ba2CuδAg4-δSe5 with Unprecedented Linear Se34− Units. Inorg. Chem. 2007, 46, 9906–9911. [Google Scholar] [CrossRef]
- Davaasuren, B.; Dashjav, E.; Rothenberger, A. Synthesis and Characterization of the Ternary Telluroargentate K4[Ag18Te11]. Z. Anorg. Allg. Chem. 2014, 640, 2939–2944. [Google Scholar] [CrossRef]
- Buxi, K.; Kuila, S.K.; Roy, A.; Jana, P.P. Atomic distributions of Ag and In in the γ-brass type Ag9In4. J. Solid State Chem. 2023, 327, 124247. [Google Scholar] [CrossRef]
- Assoud, A.; Guo, Q.; Sankar, C.R.; Kleinke, H. Crystal structure, electronic structure and physical properties of the new quaternary chalcogenides Tl2NdAg3Se4 and Tl2NdAg3Te4. Inorg. Chem. Front. 2017, 4, 315–323. [Google Scholar] [CrossRef]
- Buxi, K.; Mondal, A.; Wang, F.; Jana, P.P. Structural and theoretical investigations on the “coloring” scheme of γ-brass type phase Ag5Cd8. J. Solid State Chem. 2023, 323, 124019. [Google Scholar] [CrossRef]
- Stoyko, S.S.; Blanchard, P.E.R.; Mar, A. Crystal structure, electrical resistivity, and X-ray photoelectron spectroscopy of BaAg2As2. J. Solid State Chem. 2012, 194, 113–118. [Google Scholar] [CrossRef]
- Wang, F.; Pearson, K.N.; Miller, G.J. EuAgxAl11-x with the BaCd11-Type Structure: Phase Width, Coloring, and Electronic Structure. Chem. Mater. 2009, 21, 230–236. [Google Scholar] [CrossRef]
- Stoyko, S.S.; Khatun, M.; Mullen, C.S.; Mar, A. Ternary CaCu4P2-type pnictides AAg4Pn2 (A = Sr, Eu; Pn = As, Sb). J. Solid State Chem. 2012, 192, 325–330. [Google Scholar] [CrossRef]
- Assoud, A.; Soheilnia, N.; Kleinke, H. New Quaternary Barium Copper/Silver Selenostannates: Different Coordination Spheres, Metal-Metal Interactions, and Physical Properties. Chem. Mater. 2005, 17, 2255–2261. [Google Scholar] [CrossRef]
- Steinberg, S.; Brgoch, J.; Miller, G.J.; Meyer, G. Identifying a Structural Preference in Reduced Rare-Earth Metal Halides by Combining Experimental and Computational Techniques. Inorg. Chem. 2012, 51, 11356–11364. [Google Scholar] [CrossRef]
- Hempelmann, J.; Müller, P.C.; Ertural, C.; Dronskowski, R. The Orbital Origins of Chemical Bonding in Ge−Sb−Te Phase-Change Materials. Angew. Chem. Int. Ed. 2022, 61, e202115778. [Google Scholar] [CrossRef] [PubMed]
- Reitz, L.S.; Hempelmann, J.; Müller, P.C.; Dronskowski, R.; Steinberg, S. Bonding Analyses in the Broad Realm of Intermetallics: Understanding the Role of Chemical Bonding in the Design of Novel Materials. Chem. Mater. 2024, accepted. [Google Scholar] [CrossRef]
- McKinney, R.; Gorai, P.; Toberer, E.S.; Stevanovic, V. Rapid Prediction of Anisotropic Lattice Thermal Conductivity: Application to Layered Materials. Chem. Mater. 2019, 31, 2048–2057. [Google Scholar] [CrossRef]
- Shi, Y.; Sturm, C.; Kleinke, H. Chalcogenides as thermoelectric materials. J. Solid State Chem. 2019, 270, 273–279. [Google Scholar] [CrossRef]
- Yu, H.; Li, W.; Pei, Y.; Chen, Y. Pressure and doping effects on the structural stability of thermoelectric BaAg2Te2. J. Phys. Condens. Matter 2022, 34, 065401. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Guo, K.; Yang, X.; Xing, J.; Wang, K.; Luo, J.; Zhao, J.-T. Realizing High Thermoelectric Performance in BaCu2–xAgxTe2 through Enhanced Carrier Effective Mass and Point-Defect Scattering. ACS Appl. Energy Mater. 2019, 2, 889–895. [Google Scholar] [CrossRef]
- Tang, J.; Qin, C.; Yu, H.; Zeng, Z.; Cheng, L.; Ge, B.; Chen, Y.; Li, W.; Pei, Y. Ultralow lattice thermal conductivity enables high thermoelectric performance in BaAg2Te2 alloys. Mater. Today Phys. 2022, 22, 100591. [Google Scholar] [CrossRef]
- Seddik, T.; Rezini, B.; Djelid, K.; Haq, B.U.; Kim, S.-H.; Batouche, M.; Fahad, S.; Djelloul, A.; Yumnam, G. Electronic, optical, and thermoelectric properties of multifunctional zintl compound BaAg2Te2 for energy conversion. Phys. B Condens. Matter 2023, 668, 415209. [Google Scholar] [CrossRef]
- Yu, Y.; Cagnoni, M.; Cojocaru-Mirédin, O.; Wuttig, M. Chalcogenide Thermoelectrics Empowered by an Unconventional Bonding Mechanism. Adv. Funct. Mater. 2020, 30, 1904862. [Google Scholar] [CrossRef]
- Maier, S.; Steinberg, S.; Cheng, Y.; Schön, C.-F.; Schumacher, M.; Mazzarello, R.; Golub, P.; Nelson, R.; Cojocaru-Mirédin, O.; Raty, J.-Y.; et al. Discovering Electron-Transfer-Driven Changes in Chemical Bonding in Lead Chalcogenides (PbX, where X = Te, Se, S, O). Adv. Mater. 2020, 32, 2005533. [Google Scholar] [CrossRef]
- Zeier, W.G.; Zevalkink, A.; Gibbs, Z.M.; Hautier, G.; Kanatzides, M.G.; Snyder, G.J. Thinking Like a Chemist: Intuition in Thermoelectric Materials. Angew. Chem. Int. Ed. 2016, 55, 6826–6841. [Google Scholar] [CrossRef]
- Hempelmann, J.; Müller, P.C.; Konze, P.M.; Stoffel, R.P.; Steinberg, S.; Dronskowski, R. Long-Range Forces in Rock-Salt-Type Tellurides and How they Mirror the Underlying Chemical Bonding. Adv. Mater. 2021, 33, 2100163. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Gorai, P.; Ortiz, B.; Miller, S.; Barnett, S.A.; Mason, T.; Stevanovic, V.; Toberer, E.S. Material descriptors for predicting thermoelectric performance. Energy Environ. Sci. 2015, 8, 983–994. [Google Scholar] [CrossRef]
- Byström, A.; Evers, L. The Crystal Structures of Ag2PbO2 and Ag5Pb2O6. Acta Chem. Scand. 1950, 4, 613–627. [Google Scholar] [CrossRef]
- Jansen, M. Darstellung und Kristallstruktur von LiAg3O2/Preparation and Crystal Structure of LiAg3O2. Z. Naturforsch. B 1975, 30, 854–858. [Google Scholar] [CrossRef]
- Nuss, J.; Wedig, U.; Jansen, M. Synergistic Interaction between Attractive d10 Bonding and Localized Excess Electrons, the Cases of Subvalent Ag5SiO4 and Ag5GeO4. Z. Anorg. Allg. Chem. 2022, 648, e202200269. [Google Scholar] [CrossRef]
- Lofti, S.; Brgoch, J. Discovering Intermetallics Through Synthesis, Computation, and Data-Driven Analysis. Chem. Eur. J. 2020, 26, 8689–8697. [Google Scholar]
- Gautier, R.; Zhang, X.; Hu, L.; Yu, L.; Lin, Y.; Sunde, T.O.L.; Chon, D.; Poeppelmeier, K.R.; Zunger, A. Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. Nat. Chem. 2015, 7, 308–316. [Google Scholar] [CrossRef]
- Pell, M.A.; Ibers, J.A. Layered Ternary and Quaternary Metal Chalcogenides. Chem. Ber. 1997, 130, 1–8. [Google Scholar] [CrossRef]
- Mitchell, K.; Ibers, J.A. Rare-earth transition-metal chalcogenides. Chem. Rev. 2002, 102, 1929–1952. [Google Scholar] [CrossRef] [PubMed]
- SAINT+, version 7.68; Bruker AXS Inc.: Madison, WI, USA, 2009.
- SADABS, version 2004/1; Bruker AXS Inc.: Madison, WI, USA, 2004.
- XPREP, Version 6.03; Bruker AXS Inc.: Madison, WI, USA, 2014.
- APEX2, v2014.11-0; Bruker Nonius. Bruker AXS Inc.: Madison, WI, USA, 2014.
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- WinXPow, 2.23 ed.; STOE & Cie GmbH: Darmstadt, Germany, 2005.
- Putz, H. Match! version 3.6.1.115; Crystal Impact GbR: Bonn, Germany, 2018.
- Domange, L.; Flahaut, J.; Pardo, M.-P.; Chirazi, A.N.; Guittard, M. Sur les tellurures de cérium, CeTe2 et Ce3Te4. C. R. Hebd. Séances Acad. Sci. 1960, 250, 857–858. [Google Scholar]
- Stoffel, R.P.; Wessel, C.; Lumey, M. Ab Initio Thermochemistry of Solid-State Materials. Angew. Chem. Int. Ed. 2010, 49, 5242–5266. [Google Scholar] [CrossRef] [PubMed]
- Stoffel, R.P.; Dronskowski, R. Lattice Dynamics and Thermochemistry of Solid-State Materials from First-Principles Quantum-Chemical Calculations. In Handbook of Solid State Chemistry; Dronskowski, R., Kikkawa, S., Stein, A., Eds.; Wiley-VCH: Weinheim, Germany, 2017. [Google Scholar]
- Provino, A.; Steinberg, S.; Smetana, V.; Kulkarni, R.; Dhar, S.K.; Manfrinetti, P.; Mudring, A.-V. Gold-rich R3Au7Sn3: Establishing the interdependence between electronic features and physical properties. J. Mater. Chem. C 2015, 3, 8311–8321. [Google Scholar] [CrossRef]
- Smetana, V.; Steinberg, S.; Mudryk, Y.; Pecharsky, V.; Miller, G.J.; Mudring, A.-V. Cation-Poor Complex Metallic Alloys in Ba(Eu)−Au−Al(Ga) Systems: Identifying the Keys that Control Structural Arrangements and Atom Distributions at the Atomic Level. Inorg. Chem. 2015, 54, 10296–10308. [Google Scholar] [CrossRef] [PubMed]
- Bigun, I.; Steinberg, S.; Smetana, V.; Mudryk, Y.; Kalychak, Y.; Havela, L.; Pecharsky, V.; Mudring, A.-V. Magnetocaloric Behavior in Ternary Europium Indides EuT5In: Probing the Design Capability of First-Principles-Based Methods on the Multifaceted Magnetic Materials. Chem. Mater. 2017, 29, 2599–2614. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented wave-method. Phys. Rev. B Condens. Matter Mater. Phys. 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B Condens. Matter Mater. Phys. 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter Mater. Phys. 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B Condens. Matter Mater. Phys. 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Kresse, G.; Marsman, M.; Furthmüller, J. Vienna Ab-Initio Simulation Package VASP: The Guide; Computational Materials Physics, Faculty of Physics, Universität Wien: Vienna, Austria, 2014. [Google Scholar]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Ertural, C.; Steinberg, S.; Dronskowski, R. Development of a robust tool to extract Mulliken and Löwdin charges from plane waves and its applications to solid-state materials. RSC Adv. 2019, 9, 29821–29830. [Google Scholar] [CrossRef] [PubMed]
- Dronskowski, R.; Blöchl, P.E. Crystal Orbital Hamilton Populations (COHP). Energy-Resolved Visualization of Chemical Bonding in Solids Based on Density-Functional Calculations. J. Phys. Chem. 1993, 97, 8617–8624. [Google Scholar] [CrossRef]
- Deringer, V.L.; Tchougréeff, A.L.; Dronskowski, R. Crystal Orbital Hamilton Population (COHP) Analysis As Projected from Plane-Wave Basis Sets. J. Phys. Chem. A 2011, 115, 5461–5466. [Google Scholar] [CrossRef]
- Maintz, S.; Deringer, V.L.; Tchougréeff, A.L.; Dronskowski, R. Analytic Projection From Plane-Wave and PAW Wavefunctions and Application to Chemical-Bonding Analysis in Solids. J. Comput. Chem. 2013, 34, 2557–2567. [Google Scholar] [CrossRef]
- Maintz, S.; Deringer, V.L.; Tchougréff, A.L.; Dronskowski, R. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 2016, 37, 1030–1035. [Google Scholar] [CrossRef]
- Eck, B. wxDragon 2.2.3; RWTH Aachen University: Aachen, Germany, 2020. [Google Scholar]
Compound | RbCe2Ag3Te5 |
---|---|
fw | 1327.32 |
space group | Cmcm |
a (Å) | 4.665(2) |
b (Å) | 16.142(6) |
c (Å) | 18.874(7) |
volume (Å3) | 1421.4(9) |
Z | 4 |
density (calc., g/cm3) | 6.203 |
μ (mm−1) | 23.746 |
F (000) | 2216 |
θ ranges | 2.158–28.822 |
index ranges | −5 ≤ h ≤ 6 −21 ≤ k ≤ 21 −24 ≤ l ≤ 25 |
reflections collected | 5332 |
independent reflections | 1072 |
refinement method | full-matrix least squares on F2 |
data/restraints/parameter | 1072/0/37 |
goodness-of-fit on F2 | 0.995 |
final R indices [I > 2σ(I)] | R1 = 0.0386; wR2 = 0.0762 |
R indices (all data) | R1 = 0.0584; wR2 = 0.0832 |
Rint | 0.0816 |
largest diff. peak and hole (e−/Å3) | −2.008 and 2.387 |
Atom | Wyckoff Position | x | y | z | Ueq, Å2 |
---|---|---|---|---|---|
Ce1 | 8f | 0 | 0.1904 (1) | 0.4055 (1) | 0.0141 (2) |
Te2 | 8f | 0 | 0.5573 (1) | 0.1223 (1) | 0.0155 (2) |
Te3 | 8f | 0 | 0.1700 (1) | 0.5740 (1) | 0.0140 (2) |
Te4 | 4c | 0 | 0.2612 (1) | ¼ | 0.0157 (3) |
Ag5 | 8f | 0 | 0.4134 (1) | 0.4732 (1) | 0.0233 (3) |
Ag6 | 4c | ½ | 0.1647 (1) | ¼ | 0.0262 (4) |
Rb7 | 4c | 0 | 0.0587 (1) | ¾ | 0.0270 (5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weinelt, L.; Steinberg, S. Exploring the Nature of Ag–Ag Interactions in Different Tellurides by Means of the Crystal Orbital Bond Index (COBI). Inorganics 2024, 12, 192. https://doi.org/10.3390/inorganics12070192
Weinelt L, Steinberg S. Exploring the Nature of Ag–Ag Interactions in Different Tellurides by Means of the Crystal Orbital Bond Index (COBI). Inorganics. 2024; 12(7):192. https://doi.org/10.3390/inorganics12070192
Chicago/Turabian StyleWeinelt, Leander, and Simon Steinberg. 2024. "Exploring the Nature of Ag–Ag Interactions in Different Tellurides by Means of the Crystal Orbital Bond Index (COBI)" Inorganics 12, no. 7: 192. https://doi.org/10.3390/inorganics12070192
APA StyleWeinelt, L., & Steinberg, S. (2024). Exploring the Nature of Ag–Ag Interactions in Different Tellurides by Means of the Crystal Orbital Bond Index (COBI). Inorganics, 12(7), 192. https://doi.org/10.3390/inorganics12070192