Low-Temperature Formation of Aluminum Nitride Powder from Amorphous Aluminum Oxalate via Carbothermal Reduction
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Procedure
2.2. Characterization Methods
3. Results
3.1. The Formation of AlN from Al(OH)3
3.2. The Formation of AlN from AAO
4. Discussion
4.1. Comparation of Phase-Transformation from AAO and Al(OH)3
4.2. The Formation Mechanism of Aluminum Nitride from AAO at Low Temperatures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, C.; Liu, S.; Jiang, B.; Zhou, L.; Cui, H.; Liu, M.; Wen, M.; Wang, C.; Wang, W.; Li, S.; et al. A review on the wettability and residual stress of AMB AlN/metal joints. Mater. Sci. Semicond. Process. 2024, 174, 108181. [Google Scholar]
- Zou, Y.; Fu, R.; Liu, X.; Liu, H.; Wang, H. Enhanced adhesion strength of silver paste on AlN ceramic substrate via sintered nano-CuO. Ceram. Int. 2021, 47, 9471–9476. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, H.; Sun, D.; Tian, C.; Guo, J.; Cui, S.; Tang, W. Studies on the Al2OC mesophase in synthesized AlN powder and its effects on properties of AlN ceramic substrates. Ceram. Int. 2020, 46, 21172–21181. [Google Scholar] [CrossRef]
- Mwema, F.M.; Akinlabi, E.T.; Oladijo, O.P. A systematic review of magnetron sputtering of AlN thin films for extreme condition sensing. Mater. Today Proc. 2020, 26, 1546–1550. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, K.; Wei, S.; Zhang, H.; Yang, S.; Huang, X.; Lin, S.; Plucknett, K.P.; Lin, H. Reaction mechanisms of nano-sized AlN powders synthesized from dicyandiamide and its optical property. Mater. Chem. Phys. 2020, 253, 123376. [Google Scholar]
- Chen, S.; Lu, K.; Zhou, X.; Zhouchen, Z.; Huang, X.; Qi, J.; Lu, T. High sphericity AlN powder carbothermal reduced from spray granulated Al2O3/C precursor. Ceram. Int. 2025, 51, 7336–7342. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; Zhou, G.; Huang, D.; Ling, L.; Qin, X. Synthesis of fine AlN powders by carbothermal reduction and nitridation from nano-alumina/carbon foam. Ceram. Int. 2025, 51, 8291–8298. [Google Scholar]
- Lee, S.M.; Ayman, M.T.; Jang, S.M.; Park, S.; Yoon, D.H. Synthesis of pure fine AlN powder via CRN using nitridation promoter. Mater. Today Commun. 2024, 41, 110935. [Google Scholar] [CrossRef]
- Park, S.; Lee, S.M.; Jang, S.M.; Yoon, D.H. Effect of starting materials’ dispersion on the properties of AlN powder synthesized by carbothermal reduction and nitridation. Ceram. Int. 2024, 50, 16836–16843. [Google Scholar] [CrossRef]
- Sun, X.; Wang, J.; Wang, Z.; Shan, Y.; Han, X.; Xu, J.; Li, J. Preparation of single phase nano-sized AlN powder by carbothermal reduction and nitridation of hydrothermal synthesized carbon coated γ-Al2O3 from glucose via fast heating. Ceram. Int. 2023, 49, 22128–22138. [Google Scholar] [CrossRef]
- Lee, S.H.; Yi, J.H.; Kim, J.H.; Ko, Y.N.; Hong, Y.J.; Kang, Y.C. Preparation of nanometer AlN powders by combining spray pyrolysis with carbothermal reduction and nitridation. Ceram. Int. 2011, 37, 1967–1971. [Google Scholar] [CrossRef]
- Xu, J.; Wang, H.; Zhao, Z. Preparation of spherical AlN powders by combined microemulsion method and carbothermal method. Ceram. Int. 2019, 45, 12708–12715. [Google Scholar] [CrossRef]
- Sakthisabarimoorthi, A.; Ayman, M.T.; Ryu, S.S.; Yoon, D.H. Synthesis of hollow AlN microsphere by hydrothermal and carbothermal reduction–nitridation hybrid technique. Ceram. Int. 2024, 50, 35154–35160. [Google Scholar] [CrossRef]
- Shan, Y.; Xu, J.; Sun, X.; Hong, C.; Shi, L.; Xu, J.; Li, J. Preparation of AlN powder of low oxygen content via carbothermal reduction and nitridation by active gas exchange technique. Ceram. Int. 2020, 46, 21182–21189. [Google Scholar] [CrossRef]
- Wang, Y.; Qiao, L.; Zheng, J.; Ying, Y.; Yu, J.; Li, W.; Che, S. Preparation of AlN with low agglomeration using polyethylene glycol and emulsifier to disperse the ultrafine raw powders. Ceram. Int. 2023, 49, 1390–1400. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Q.; Jia, G.; Lei, R.; Wang, S.; Xu, S. Influence of yttrium dopant on the synthesis of ultrafine AlN powders by CRN route from a sol–gel low temperature combustion precursor. Adv. Powder Technol. 2014, 25, 450–456. [Google Scholar] [CrossRef]
- Kim, U.; Hassan, N.; Raju, K.; Kim, S.G.; Kim, M.; Lee, J.; Moon, S.; Kim, M.; Shin, S.; Kwak, Y.; et al. Flash sintering of AlN ceramics with Y2O3 additive. Ceram. Int. 2024, 50, 55042–55054. [Google Scholar] [CrossRef]
- Qiu, J.Y.; Hotta, Y.; Watari, K.; Mitsuishi, K.; Yamazaki, M. Low-temperature sintering behavior of the nano-sized AlN powder achieved by super-fine grinding mill with Y2O3 and CaO additives. J. Eur. Ceram. Soc. 2006, 26, 385–390. [Google Scholar] [CrossRef]
- Xu, Z.; Gu, S.; Zhang, H.; Zhong, S.; Li, T.; Ma, J.; Guan, J.; Qin, M. Influence of Y2O3 sintering aids on performance of c-BN-reinforced AlN/BN composite ceramics. Ceram. Int. 2024, 50, 24425–24432. [Google Scholar] [CrossRef]
- Kim, M.; Kim, U.; Kim, S.G.; Kwak, Y.; Ryu, S.S.; Cho, J. Ultrafast high-temperature sintering of aluminum nitride. J. Eur. Ceram. Soc. 2025, 45, 117025. [Google Scholar] [CrossRef]
- Zhang, P.G.; Wang, K.Y.; Guo, S.M. Large-scale synthesis of AlN nanofibers by direct nitridation of aluminum. Ceram. Int. 2010, 36, 2209–2213. [Google Scholar] [CrossRef]
- Mashhadi, M.; Mearaji, F.; Tamizifar, M. The effects of NH4Cl addition and particle size of Al powder in AlN whiskers synthesis by direct nitridation. Int. J. Refract. Met. Hard Mater. 2014, 46, 181–187. [Google Scholar] [CrossRef]
- Lee, K.B.; Kim, J.; Shim, C.H.; Kim, Y.; Choi, H.; Ahn, J.P. Low-temperature synthesis of high-purity AlN from Al powder. J. Mater. Res. Technol. 2022, 21, 4526–4536. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, S.; Lou, B.; Shen, H. Formation of aluminum nitride in dross by contact-diffusion reaction during aluminum recycling. J. Alloys Compd. 2025, 1010, 177432. [Google Scholar] [CrossRef]
- Chu, A.; Qin, M.; Rafi-ud-din, R.; Jia, R.; Lu, H.; He, X.; Qu, X. Effect of aluminum source on the synthesis of AlN powders from combustion synthesis precursors. Mater. Res. Bull. 2012, 47, 2475–2479. [Google Scholar] [CrossRef]
- Chu, A.; Qin, M.; Rafi-ud-din, R.; Lu, H.; He, X.; Qu, X. Effect of urea on the size and morphology of AlN nanoparticles synthesized from combustion synthesis precursors. J. Alloys Compd. 2012, 530, 144–151. [Google Scholar] [CrossRef]
- Hu, J.; Huang, Q.; Yang, X.; Peng, H.; Tian, X.; Peng, Y. Effects of different aluminum sources and calcination temperatures on the synthesis of ultrafine AlN powder via carbothermal reduction nitridation. J. Ceram. Process. Res. 2017, 18, 230–237. [Google Scholar]
- Mylinh, M.D.T.; Yoon, D.H.; Kim, C.Y. Aluminum Nitride Formation From Aluminum Oxide/Phenol Resin Solid-Gel Mixture by Carbothermal Reduction Nitridation Method. Arch. Metall. Mater. 2015, 60, 1551–1555. [Google Scholar] [CrossRef]
- Miki, U.; Takahiro, T.; Nobuhiro, K.; Hideyuki, T.; Kazuki, A.; Takashi, T. Low temperature synthesis of aluminum nitride from anhydrous aluminum chloride-organic amine complex. J. Ceram. Soc. Jpn. 2022, 130, 707–714. [Google Scholar] [CrossRef]
- Li, G.; Li, B.; Ren, B.; Chen, H.; Zhu, B.; Chen, J. Synthesis of Aluminum Nitride Using Sodium Aluminate as Aluminum Source. Processes 2023, 11, 1034. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, C.; Zhong, M.; Yang, H.; Wu, Y.; Liang, C.; Song, C.; Xu, W.; Lin, S.; Zhang, Z. Low temperature phase transition mechanism of amorphous Al-oxalate to nano α-alumina. Ceram. Int. 2024, 50, 35457–35464. [Google Scholar] [CrossRef]
- Mao, X.X.; Li, J.; Zhang, H.L.; Xu, Y.G.; Wang, S.W. Synthesis of AlN powder by carbothermal reduction–nitridation of alumina/carbon black foam. J. Inorg. Mater. 2017, 32, 1115–1120. [Google Scholar]
- Xu, K.Z.; Song, S.D.; Zhang, Y.; Zhou, Q.; Chen, J.S.; Tang, Z.X. Investigation on synthesis AlN powder by carbothermal reduction. Bull. Chin. Ceram. Soc. 2014, 33, 289–293. [Google Scholar]
The Samples | The Primary Crystalline Phase and Crystallite Size |
---|---|
Al(OH)3 + N2 + 900 °C | γ-Al2O3 (16.5 Å) |
Al(OH)3 + N2 + C + 900 °C | γ-Al2O3 (19.2 Å) |
AAO + N2 + 900 °C | γ-Al2O3 (15.9 Å) |
AAO + N2 + C + 900 °C | γ-Al2O3 (19.1 Å) |
Al(OH)3 + N2 + 1050 °C | λ-Al2O3 (36.5 Å), δ-Al2O3 (35.4 Å) |
Al(OH)3 + N2 + C + 1050 °C | δ-Al2O3 (46.8 Å) |
AAO + N2 + 1050 °C | α-Al2O3 (66.7 Å), δ-Al2O3 (43.6 Å) |
AAO + N2 + C + 1050 °C | α-Al2O3 (48.2 Å), δ-Al2O3 (64.7 Å) |
Al(OH)3 + N2 + 1200 °C | α-Al2O3 (415.8 Å) |
Al(OH)3 + N2 + C + 1200 °C | α-Al2O3 (108.9 Å) |
AAO + N2 + 1200 °C | α-Al2O3 (448.4 Å) |
AAO + N2 + C + 1200 °C | α-Al2O3 (407.5 Å), AlN (133.3 Å) |
The Samples | AlN | α-Al2O3 | The Others |
---|---|---|---|
Al(OH)3 + N2 + 1350 °C | 0 | 83.17 | 16.83 |
Al(OH)3 + N2 + C + 1350 °C | 0 | 47.38 | 52.62 |
AAO + N2 + 1350 °C | 0 | 90.02 | 9.98 |
AAO + N2 + C + 1350 °C | 43.24 | 44.45 | 12.31 |
Al(OH)3 + N2 + 1500 °C | 0 | 91.46 | 8.54 |
Al(OH)3 + N2 + C + 1500 °C | 51.93 | 36.48 | 11.59 |
AAO + N2 + 1500 °C | 0 | 99.33 | 0.67 |
AAO + N2 + C + 1500 °C | 95.71 | 0 | 4.29 |
The Samples | AlN Yield (wt %) |
---|---|
Al(OH)3 + N2 + 1350 °C | 0 [30] |
Al(OH)3 + N2 + C + 1350 °C | 51.93 * |
Al(OH)3 + N2 + 1500 °C | 49.45 [30] |
Al(OH)3 + N2 + C + 1500 °C | 95.71 * |
AAO + N2 + 1350 °C | 43.24 * |
AAO + N2 + C + 1350 °C | 93.43 [32] |
AAO + N2 + 1500 °C | 98.55 [14] |
AAO + N2 + C + 1500 °C | 100 [8] |
γ-Al2O3+ N2 + C + 1550 °C | 93.43 [32] |
γ-Al2O3+ N2/CO + C + 1550 °C | 98.55 [14] |
α-Al2O3+ N2 + C/Ca(NO3)2 + 1550 °C | 100 [8] |
α-Al2O3+ N2 + C + 1600 °C | 100 [9] |
Al2O3+ N2 + C + 1800 °C | 97.89 [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, W.; Yu, Y.; Huang, Z.; Wang, W.; Lin, S.; Luo, J.; Zhang, C.; Zhang, Z. Low-Temperature Formation of Aluminum Nitride Powder from Amorphous Aluminum Oxalate via Carbothermal Reduction. Inorganics 2025, 13, 317. https://doi.org/10.3390/inorganics13100317
Tang W, Yu Y, Huang Z, Wang W, Lin S, Luo J, Zhang C, Zhang Z. Low-Temperature Formation of Aluminum Nitride Powder from Amorphous Aluminum Oxalate via Carbothermal Reduction. Inorganics. 2025; 13(10):317. https://doi.org/10.3390/inorganics13100317
Chicago/Turabian StyleTang, Wenjing, Yaling Yu, Zixuan Huang, Weijie Wang, Shaomin Lin, Ji Luo, Chenyang Zhang, and Zhijie Zhang. 2025. "Low-Temperature Formation of Aluminum Nitride Powder from Amorphous Aluminum Oxalate via Carbothermal Reduction" Inorganics 13, no. 10: 317. https://doi.org/10.3390/inorganics13100317
APA StyleTang, W., Yu, Y., Huang, Z., Wang, W., Lin, S., Luo, J., Zhang, C., & Zhang, Z. (2025). Low-Temperature Formation of Aluminum Nitride Powder from Amorphous Aluminum Oxalate via Carbothermal Reduction. Inorganics, 13(10), 317. https://doi.org/10.3390/inorganics13100317