Recent Advances in Graphitic Carbon Nitride-Based Materials in the Photocatalytic Degradation of Emerging Contaminants
Abstract
1. Introduction
2. Synthesis of g-C3N4-Based Materials
2.1. Thermal Polymerization (TP)
2.2. Hydrothermal Method (HT Method)
2.3. Sol–Gel Method (Sol–Gel)
2.4. Microwave-Assisted Synthesis (MAWA)
2.5. Chemical Vapor Deposition (CVD)
Preparation Method | Advantages | Disadvantages | Product Morphologies | Application | Ref. |
---|---|---|---|---|---|
Thermal polymerization | Cost-efficient equipment, mature scalable process, high-purity product output | severe aggregation, low specific surface area, crystallinity, poor charge transfer efficiency, inadequate morphology control, high energy | Bulk/granular morphologies | photocatalysts, electrodes, catalyst supports | [32] |
Hydrothermal method | Low-temperature synthesis (<200 °C): well-crystallized products with tunable morphologies | prolonged reaction duration; solvent/impurity residues | Nanosheets, nanorods, hollow spheres | photocatalytic water splitting, CO2 reduction, biosensing apps | [33,34] |
Sol–gel method | Low-temp synthesis (<200 °C), mesoporous/porous architectures, homogeneous doping, precise structural control, compositional homogeneity | Intricate multi-step process, drying-shrinkage cracking, scalability challenges, high precursor costs | Mesoporous, Porous particles | Composite coatings, thin films fabrication, sensors, anticorrosive apps, flexible electronics | [35] |
Microwave-assisted synthesis | Rapid reaction kinetics, low energy consumption, well-dispersed products | Elusive process parameter optimization | Nanoparticles, Porous architectures | pollutant degradation, energy storage, high-throughput lab studies | [36] |
Chemical vapor deposition | High-purity dense films: precise thickness, composition control, large-area fabrication | Costly vacuum equipment, excessive energy use, low yields | Thinfilms, Coatings, Nanoarrays | High-quality thin films fabrication, electronic devices, optical coatings, semiconductor heterojunctions | [37] |
3. Modification Strategies for g-C3N4-Based Materials
3.1. Morphology Control
3.2. Elemental Doping
3.3. Defect Engineering
3.4. Heterostructure Construction
4. Applications of g-C3N4-Based Materials in the Control of ECs
4.1. POPs Degradation
4.2. EDCs Degradation
4.3. Antibiotics Degradation
4.4. MPs Degradation
4.5. Application of Carbon Nitride-Based Materials in Degrading ECs in Actual Water Bodies
5. Conclusions and Perspectives
- (i).
- Presently, the charge transfer mechanisms in g-C3N4-based materials are not fully understood, and further studies are required to explore this process to improve their photocatalytic efficiency. Combining DFT calculations and experimental characterization methods to verify and optimize the charge transfer process in g-C3N4-based materials will provide a theoretical foundation for developing more efficient photocatalysts and precisely controlling photocatalytic reaction pathways.
- (ii).
- A thorough investigation into the thermodynamics and kinetics of surface reactions in g-C3N4-based materials is essential for refining material design, boosting charge separation efficiency, and accelerating photocatalytic reactions. AI-assisted analysis, particularly ML-driven kinetic modeling, has emerged as a powerful tool to unravel microscopic mechanisms. It can also reduce trial-and-error costs by summarizing experimental experience: studies have shown that ML algorithms predict surface reaction barriers and charge separation efficiencies by correlating experimental thermodynamic data with structural descriptors of g-C3N4-based materials, which not only deepens mechanism understanding but also enhances the selectivity of pollutant degradation by optimizing active species generation.
- (iii).
- Recent research indicates that g-C3N4-based photocatalytic materials exhibit low efficiency in the removal of POPs and may generate intermediate products with higher toxicity. Therefore, particular heed must be paid to the mineralization degree of emerging pollutants and the toxicity risks of intermediate products during the photocatalytic degradation by g-C3N4-based materials. Additionally, for g-C3N4 composites modified with metals, the potential leaching of metal ions should be monitored, as it helps further reduce the environmental risk of the final degradation system.
- (iv).
- While g-C3N4-based photocatalysts demonstrate remarkable pollutant degradation performance under laboratory conditions, their applications remain restricted to small-scale experiments. Moreover, the inherent powder morphology of g-C3N4 materials complicates recovery processes, thereby limiting their practical engineering applications. Consequently, future research should prioritize enhancing the stability and reusability of g-C3N4-based materials to facilitate their transition from laboratory research to scaled-up environmental engineering applications.
- (v).
- Currently, g-C3N4-based photocatalytic materials primarily rely on photoexcitation to generate strongly oxidative radicals for organic pollutant degradation, whose activity ceases without illumination. To address this limitation, integrating g-C3N4 with piezoelectric materials enables persistent radical generation via the piezoelectric effect even in dark conditions for emerging contaminant degradation. Simultaneously, the built-in electric field from piezoelectric coupling facilitates photogenerated charge separation and reduces recombination, thereby enhancing photocatalytic efficiency.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Shen, X.; Jiang, W.; Xi, Y.; Li, S. Comprehensive review of emerging contaminants: Detection technologies, environmental impact, and management strategies. Ecotoxicol. Environ. Saf. 2024, 278, 116420. [Google Scholar] [CrossRef]
- Field, J.A.; Johnson, C.A.; Rose, J.B. What is “emerging”? Environ. Sci. Technol. 2006, 40, 7105. [Google Scholar] [CrossRef]
- Javed, H.; Lyu, C.; Sun, R.; Zhang, D.; Alvarez, P.J.J. Discerning the inefficacy of hydroxyl radicals during perfluorooctanoic acid degradation. Chemosphere 2020, 247, 125883. [Google Scholar] [CrossRef]
- Guan, Y.-H.; Ma, J.; Ren, Y.-M.; Liu, Y.-L.; Xiao, J.-Y.; Lin, L.-Q.; Zhang, C. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals. Water Res. 2013, 47, 5431–5438. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Feng, M.; Chen, X.; Cui, Y.; Zhao, D.; Sun, J. Fabrication of potassium ion decorated 1D/2D g-C3N4/g-C3N4 homojunction enabled by dual-ions synergistic strategy for enhanced photocatalytic activity towards degradation of organic pollutants. Appl. Surf. Sci. 2022, 575, 151695. [Google Scholar]
- Joy, J.; George, E.; Poornima Vijayan, P.; Anas, S.; Thomas, S. An overview of synthesis, morphology, and versatile applications of nanostructured graphitic carbon nitride (g-C3N4). J. Ind. Eng. Chem. 2024, 133, 74–89. [Google Scholar]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar]
- Maeda, K.; Wang, X.; Nishihara, Y.; Lu, D.; Antonietti, M.; Domen, K. Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light. J. Phys. Chem. C 2009, 113, 4940–4947. [Google Scholar] [CrossRef]
- Bekyarova, E.B.; Niyogi, S.; Sarkar, S.; Tian, X.; Chen, M.; Moser, M.L.; Ayub, K.; Mitchell, R.H.; Haddon, R.C. Stereochemical effect of covalent chemistry on the electronic structure and properties of the carbon allotropes and graphene surfaces. Synth. Met. 2015, 210, 80–84. [Google Scholar] [CrossRef]
- Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric Photocatalysts Based on Graphitic Carbon Nitride. Adv. Mater. 2015, 27, 2150–2176. [Google Scholar] [CrossRef] [PubMed]
- Mamba, G.; Mishra, A.K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 2016, 198, 347–377. [Google Scholar]
- Yan, S.C.; Li, Z.S.; Zou, Z.G. Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine. Langmuir 2009, 25, 10397–10401. [Google Scholar] [PubMed]
- Wang, X.; Maeda, K.; Chen, X.; Takanabe, K.; Domen, K.; Hou, Y.; Fu, X.; Antonietti, M. Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light. J. Am. Chem. Soc. 2009, 131, 1680–1681. [Google Scholar] [CrossRef]
- Bai, X.; Yan, S.; Wang, J.; Wang, L.; Jiang, W.; Wu, S.; Sun, C. A Simple and Efficient Strategy for Chemically Tailored g-C3N4 Material. J. Mater. Chem. A 2014, 2. [Google Scholar] [CrossRef]
- Ong, W.-J.; Tan, L.L.; Chai, S.-P.; Yong, S.-T. Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich-like graphene-g-C3N4 hybrid nanostructures with enhanced visible-light photoreduction of CO2 to methane. Chem. Commun. 2015, 5. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, J.; Zhang, M.; Wang, X. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem. 2012, 22, 8083–8091. [Google Scholar] [CrossRef]
- Dong, F.; Sun, Y.; Wu, L.; Fu, M.; Wu, Z. Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance. Catal. Sci. Technol. 2012, 2, 1332–1335. [Google Scholar] [CrossRef]
- Kesavan, G.; Sorescu, D.; Zeng, Z.; Askari, F.; He, Y.; Rosi, N.; Star, A. Optimizing Dicyandiamide Pretreatment Conditions for Enhanced Structure and Electronic Properties of Polymeric Graphitic Carbon Nitride. J. Mater. Chem. C 2023, 11, 14865–14875. [Google Scholar] [CrossRef]
- Gu, Q.; Gao, Z.; Zhao, H.-J.; Lou, Z.; Liao, Y.; Xue, C. Temperature-controlled morphology evolution of graphitic carbon nitride nanostructures and their photocatalytic activities under visible light. RSC Adv. 2015, 5, 49317–49325. [Google Scholar] [CrossRef]
- Mo, Z.; Xu, H.; Chen, Z.; She, X.; Song, Y.; Lian, J.; Zhu, X.; Yan, P.; Lei, Y.; Yuan, S.; et al. Construction of MnO2/Monolayer g-C3N4 with Mn vacancies for Z-scheme overall water splitting. Appl. Catal. B Environ. 2019, 241, 452–460. [Google Scholar]
- Kong, Y.; Li, D.; Zhang, C.; Han, W.; Xue, Y.; Zhang, W.; Sun, H.; Wang, S.; Duan, X. Synergistic silver doping and N vacancy promoting photocatalytic performances of carbon nitride for pollutant oxidation and hydrogen production. Chem. Eng. J. 2024, 479, 147676. [Google Scholar]
- Singh, R.; Chauhan, M.; Garg, P.; Sharma, B.; Attri, P.; Sharma, R.K.; Sharma, D.; Chaudhary, G.R. A critical review on visible light active graphitic carbon nitride (g-CN) based photocatalyst for environment remediation application: A sustainable approach. J. Clean. Prod. 2023, 427, 138855. [Google Scholar] [CrossRef]
- Ismael, M. A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis. J. Alloys Compd. 2020, 846, 156446. [Google Scholar]
- Zhang, P.; Li, X.; Shao, C.; Liu, Y. Hydrothermal synthesis of carbon-rich graphitic carbon nitride nanosheets for photoredox catalysis. J. Mater. Chem. A 2015, 3, 3281–3284. [Google Scholar] [CrossRef]
- Catauro, M.; Papale, F.; Bollino, F. Characterization and biological properties of TiO2/PCL hybrid layers prepared via sol–gel dip coating for surface modification of titanium implants. J. Non-Cryst. Solids 2015, 415, 9–15. [Google Scholar]
- Ouyang, H.; Tu, X.; Fu, Z.; Wang, W.; Fu, S.; Zhu, C.; Du, D.; Lin, Y. Colorimetric and Chemiluminescent Dual-Readout Immunochromatographic Assay for Detection of Pesticide Residues Utilizing g-C3N4/BiFeO3 Nanocomposites with Peroxidase-Like Activity. Biosens. Bioelectron. 2018, 106, 43–49. [Google Scholar]
- Kailasam, K.; Epping, J.; Thomas, A.; Losse, S.; Junge, H. Mesoporous carbon nitride–silica composites by a combined sol–gel/thermal condensation approach and their application as photocatalysts. Energy Environ. Sci. 2011, 4, 4668–4674. [Google Scholar]
- Hollmann, D.; Karnahl, M.; Tschierlei, S.; Kailasam, K.; Schneider, M.; Radnik, J.; Grabow, K.; Bentrup, U.; Junge, H.; Beller, M.; et al. Structure-Activity Relationships in Bulk Polymeric and Sol-Gel-Derived Carbon Nitrides during Photocatalytic Hydrogen Production. Chem. Mater. 2014, 26, 1727–1733. [Google Scholar]
- Chen, P.; Chen, L.; Ge, S.; Zhang, W.; Wu, M.; Xing, P.; Rotamond, T.B.; Lin, H.; Wu, Y.; He, Y. Microwave heating preparation of phosphorus doped g-C3N4 and its enhanced performance for photocatalytic H2 evolution in the help of Ag3PO4 nanoparticles. Int. J. Hydrog. Energy 2020, 45, 14354–14367. [Google Scholar]
- Liu, H.; Chen, D.; Wang, Z.; Jing, H.; Zhang, R. Microwave-assisted molten-salt rapid synthesis of isotype triazine-/heptazine based g-C3N4 heterojunctions with highly enhanced photocatalytic hydrogen evolution performance. Appl. Catal. B-Environ. 2017, 203, 300–313. [Google Scholar]
- Wang, W.; Shu, Z.; Zhou, J.; Li, T.; Duan, P.; Zhao, Z.; Tan, Y.; Xie, C.; Cui, S. Halloysite-derived mesoporous g-C3N4 nanotubes for improved visible-light photocatalytic hydrogen evolution. Appl. Clay Sci. 2018, 158, 143–149. [Google Scholar]
- Zheng, Y.; Ren, J.; Zhang, N.; Li, J. Preparation of carbon nitride from different precursors through pyrolysis: Correlating the photocatalytic activity to the crystallinity and disorder. J. Environ. Chem. Eng. 2021, 9, 106410. [Google Scholar] [CrossRef]
- Lin, F.; Zhou, S.; Wang, G.; Wang, J.; Gao, T.; Su, Y.; Wong, C.-P. Electrostatic self-assembly combined with microwave hydrothermal strategy: Construction of 1D/1D carbon nanofibers/crystalline g-C3N4 heterojunction for boosting photocatalytic hydrogen production. Nano Energy 2022, 99, 107432. [Google Scholar]
- Yan, L.; Zhong, S.; Xiao, C.; Chen, Y. Optimization of hydrothermal pretreatment to prepare g-C3N4 with enhanced catalyst yield and photocatalytic activity for aqueous contaminant removal. Mater. Today Sustain. 2023, 22, 100374. [Google Scholar]
- Adler, C.; Krivtsov, I.; Mitoraj, D.; Dos Santos-Gómez, L.; García-Granda, S.; Neumann, C.; Kund, J.; Kranz, C.; Mizaikoff, B.; Turchanin, A.; et al. Sol-Gel Processing of Water-Soluble Carbon Nitride Enables High-Performance Photoanodes*. ChemSusChem 2021, 14, 2170–2179. [Google Scholar] [PubMed]
- Plubphon, N.; Thongtem, S.; Phuruangrat, A.; Randorn, C.; Kaowphong, S.; Narksitipan, S.; Thongtem, T. Direct microwave heating synthesis and characterization of highly efficient g-C3N4 photocatalyst. Inorg. Chem. Commun. 2022, 139, 109386. [Google Scholar]
- Zhou, Y.; Jin, P.; Zhou, Y.; Zhu, Y. High-performance symmetric supercapacitors based on carbon nanotube/graphite nanofiber nanocomposites. Sci. Rep. 2018, 8, 9005. [Google Scholar]
- Wang, J.; Wang, S. A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application. Coord. Chem. Rev. 2022, 453, 214338. [Google Scholar]
- Pan, Z.; Ding, W.; Chen, H.; Ji, H. A review on g-C3N4 decorated with silver for photocatalytic energy conversion. Chin. Chem. Lett. 2024, 35, 108567. [Google Scholar]
- Dong, C.; Ma, Z.; Runtian, Q.; Guo, X.; Li, C.; Wang, R.; Shi, Y.; Dai, B.; Jia, X. Morphology and Defects Regulation of Carbon Nitride by Hydrochloric Acid to Boost Visible Light Absorption and Photocatalytic Activity. Appl. Catal. B Environ. 2017, 217, 629–636. [Google Scholar]
- Gu, Q.; Liao, Y.; Yin, L.; Long, J.; Wang, X.; Xue, C. Template-free synthesis of porous graphitic carbon nitride microspheres for enhanced photocatalytic hydrogen generation with high stability. Appl. Catal. B Environ. 2015, 165, 503–510. [Google Scholar]
- Wang, S.; Zhang, J.; Li, B.; Sun, H.; Wang, S.; Duan, X. Morphology-dependent photocatalysis of graphitic carbon nitride for sustainable remediation of aqueous pollutants: A mini review. J. Environ. Chem. Eng. 2022, 10, 107438. [Google Scholar] [CrossRef]
- Gao, H.; Yan, S.; Wang, J.; Huang, Y.; Wang, P.; Li, Z.; Zou, Z. Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst. Phys. Chem. Chem. Phys. 2013, 15, 18077–18084. [Google Scholar] [CrossRef] [PubMed]
- Xiong, T.; Cen, W.; Zhang, Y.; Dong, F. Bridging the g-C3N4 Interlayers for Enhanced Photocatalysis. ACS Catal. 2016, 6, 2462–2472. [Google Scholar]
- Li, D.; Wen, C.; Huang, J.; Zhong, J.; Chen, P.; Liu, H.; Wang, Z.; Liu, Y.; Lv, W.; Liu, G. High-efficiency ultrathin porous phosphorus-doped graphitic carbon nitride nanosheet photocatalyst for energy production and environmental remediation. Appl. Catal. B Environ. Energy 2022, 307, 121099. [Google Scholar]
- Zhang, B.; Li, X.; Zhao, Y.; Song, H.; Wang, H. Facile synthesis of oxygen doped mesoporous graphitic carbon nitride with high photocatalytic degradation efficiency under simulated solar irradiation. Colloids Surf. A Physicochem. Eng. Asp. 2019, 580, 123736. [Google Scholar]
- Jiang, L.; Yuan, X.; Zeng, G.; Liang, J.; Wu, Z.; Yu, H.; Mo, D.; Wang, H.; Xiao, Z.; Zhou, C. Nitrogen self-doped g-C3N4 nanosheets with tunable band structures for enhanced photocatalytic tetracycline degradation. J. Colloid Interface Sci. 2019, 536, 17–29. [Google Scholar]
- Qureshi, W.A.; Ali, R.N.; Haider, S.N.-U.-Z.; Ahmad, N.; Khan, M.U.; Wang, L.; Cheng, C.; Rao, S.; Ali, A.; Liu, Q.Q.; et al. Construction of B doped g-C3N4/Ni-MOF-74 porous heterojunction with boosted carrier separation for photocatalytic H2 generation. Mater. Today Sustain. 2024, 25, 100679. [Google Scholar]
- Li, Y.; Wang, S.; Chang, W.; Zhang, L.; Wu, Z.; Song, S.; Xing, Y. Preparation and enhanced photocatalytic performance of sulfur doped terminal-methylated g-C 3 N 4 nanosheets with extended visible-light response. J. Mater. Chem. A 2019, 7, 20640–20648. [Google Scholar]
- Ge, F.; Xu, Y.; Zhou, Y.; Tian, D.; Huang, S.; Xie, M.; Xu, H.; Li, H. Surface amorphous carbon doping of carbon nitride for efficient acceleration of electron transfer to boost photocatalytic activities. Appl. Surf. Sci. 2020, 507, 145145. [Google Scholar] [CrossRef]
- Dat, T.D.; Minh, D.T.C.; An, H.; Hai, N.D.; Nam, N.T.H.; Lam, N.H.; Hieu, N.H. Synthesis of selenium and fluorine co-doped graphitic carbon nitride for photodegradation of toxic organic pollutants and hydrogen peroxide photoproduction. Environ. Nanotechnol. Monit. Manag. 2024, 21, 100920. [Google Scholar]
- Liu, Q.; Cui, K.; Cui, M.; Sun, S.; Li, H. Sulfur and chloride co-doped g-C3N4 in photocatalytic peroxymonosulfate activation for enhanced acetaminophen removal: Combination of experiments and DFT calculations. J. Environ. Chem. Eng. 2024, 12, 112857. [Google Scholar]
- Chen, Z.; Bu, Y.; Wang, L.; Wang, X.; Ao, J.-P. Single-sites Rh-phosphide modified carbon nitride photocatalyst for boosting hydrogen evolution under visible light. Appl. Catal. B Environ. 2020, 274, 119117. [Google Scholar] [CrossRef]
- Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. [Google Scholar]
- Hu, C.; Hung, W.-Z.; Wang, M.-S.; Lu, P.-J. Phosphorus and sulfur codoped g-C3N4 as an efficient metal-free photocatalyst. Carbon 2018, 127, 374–383. [Google Scholar]
- Tan, J.; Tian, N.; Li, Z.; Li, J.; Yao, X.; Vakili, M.; Lu, Y.; Zhang, T. Intrinsic defect engineering in graphitic carbon nitride for photocatalytic environmental purification: A review to fill existing knowledge gaps. Chem. Eng. J. 2021, 421, 127729. [Google Scholar] [CrossRef]
- Chen, J.; Gao, W.; Lu, Y.; Ye, F.; Huang, S.; Peng, Y.; Yang, X.; Cai, Y.; Qu, J.; Hu, J. Anti-defect Engineering of Crystalline g-C3 N4 Nanostructures for Efficient Photocatalytic In Situ H2O2 Production. ACS Appl. Nano Mater. 2023, 6, 3927–3935. [Google Scholar]
- Lin, Y.; Yang, Y.; Guo, W.; Wang, L.; Zhang, R.; Liu, Y.; Zhai, Y. Preparation of double-vacancy modified carbon nitride to greatly improve the activity of photocatalytic hydrogen generation. Appl. Surf. Sci. 2021, 560, 150029. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, G.; Wang, J.; Wang, K.; Yan, S.; Su, Y. Nitrogen vacancy induced in situ g-C3N4 p-n homojunction for boosting visible light-driven hydrogen evolution. J. Colloid Interface Sci. 2021, 587, 110–120. [Google Scholar]
- Yang, Z.; Zhang, Y.; Zhang, H.; Zhao, J.; Shi, H.; Zhang, M.; Yang, H.; Zheng, Z.; Yang, P. Nitrogen vacancies in polymeric carbon nitrides promote CO2 photoreduction. J. Catal. 2022, 409, 12–23. [Google Scholar] [CrossRef]
- Chang, L.-L.; Hu, C.; Wang, C.-Y.; Chen, W.-L.; Yamada, K.; Wu, A.-Y.; Yoshida, M.; Chien, S.-C.; Tung, K.-L. Synergistic effects of carbon and nitrogen vacancies in carbon nitride for photocatalytic H2 production and tetracycline oxidation. Sep. Purif. Technol. 2025, 354, 129346. [Google Scholar]
- Li, D.; Liu, Y.; Wen, C.; Huang, J.; Li, R.; Liu, H.; Zhong, J.; Chen, P.; Lv, W.; Liu, G. Construction of dual transfer channels in graphitic carbon nitride photocatalyst for high-efficiency environmental pollution remediation: Enhanced exciton dissociation and carrier migration. J. Hazard. Mater. 2022, 436, 129171. [Google Scholar] [CrossRef]
- Deng, A.; Sun, Y.; Gao, Z.; Yang, S.; Liu, Y.; He, H.; Zhang, J.; Liu, S.; Sun, H.; Wang, S. Internal electric field in carbon nitride-based heterojunctions for photocatalysis. Nano Energy 2023, 108, 108228. [Google Scholar] [CrossRef]
- Wen, X.; Shen, C.; Fei, Z.; Fang, D.; Liu, Z.; Dai, J.; Niu, C. Recent developments on AgI based heterojunction photocatalytic systems in photocatalytic application. Chem. Eng. J. 2020, 383, 123083. [Google Scholar] [CrossRef]
- Muhammad, W.; Ali, W.; Khan, M.A.; Ali, F.; Zada, A.; Ansar, M.Z.; Yap, P.-S. Construction of visible-light-driven 2D/2D NiFe2O4/g-C3N4 Z-scheme heterojunction photocatalyst for effective degradation of organic pollutants and CO2 reduction. J. Environ. Chem. Eng. 2024, 12, 113409. [Google Scholar]
- Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 2020, 11, 4613. [Google Scholar]
- Zhang, C.; Lin, L.; Zhou, M.; Wang, Y.; Xu, S.; Chen, X.; Li, Z. Dual functional S-scheme ZnIn2S4/crystalline polymeric carbon nitride (ZIS/CPCN) heterojunction for efficient photocatalytic hydrogen evolution and degradation of levofloxacin. Chem. Eng. J. 2024, 495, 153563. [Google Scholar] [CrossRef]
- Chahkandi, M.; Zargazi, M.; Ghiasabadi, K.B.; Chung, J.S.; Yazdi, M.K.; Saeb, M.R.; Baghayeri, M. Graphitic carbon nitride nanosheets decorated with HAp@Bi2S3 core–shell nanorods: Dual S-scheme 1D/2D heterojunction for environmental and hydrogen production solutions. Chem. Eng. J. 2024, 499, 155886. [Google Scholar]
- Li, X.; Wang, X.; Antonietti, M. Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: Hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. 2012, 3, 2170–2174. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Huang, D.; Zeng, G.; Huang, J.; Lai, C.; Zhou, C.; Wang, W.; Guo, H.; Xue, W.; et al. Boron nitride quantum dots decorated ultrathin porous g-C3N4: Intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation. Appl. Catal. B Environ. 2019, 245, 87–99. [Google Scholar]
- Fan, F.; Yu, J.; Jiang, J.; Xiu, H.; Wang, Y.; Cui, Y.; Wang, Y. Iron-doped and nitrogen-deficient tubular carbon nitride enables synergistic photocatalysis-self-Fenton degradation of tetracycline. J. Environ. Chem. Eng. 2025, 13, 117562. [Google Scholar] [CrossRef]
- Li, L.; Zeng, H.; Zhong, L.; Wu, H.; Zheng, J.; Zhou, Z.; Liu, J.; Tang, R.; Deng, Y.; Huang, Y. Tailoring a donor-acceptor structure in oxygen and cyano group co-modified carbon nitride for enhanced photocatalytic imidacloprid degradation. Chem. Eng. J. 2025, 518, 164671. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhan, X.; Hong, B.; Xia, Y.; Ding, Y.; Cai, T.; Yin, K.; Wang, X.; Yang, L.; Luo, S. Surface atom rearrangement on carbon nitride for enhanced photocatalysis degradation of antibiotics under visible light. Chem. Eng. J. 2023, 452, 139434. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, P.; Che, H.; Ao, Y. Co-doping and N defect synergistically boosting 2e− oxygen reduction reaction on carbon nitride for full-day degradation of nitenpyram. J. Colloid Interface Sci. 2025, 690, 137319. [Google Scholar] [CrossRef]
- Bierbaumer, S.; Nattermann, M.; Schulz, L.; Zschoche, R.; Erb, T.J.; Winkler, C.K.; Tinzl, M.; Glueck, S.M. Enzymatic Conversion of CO2: From Natural to Artificial Utilization. Chem. Rev. 2023, 123, 5702–5754. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Song, Y.; Cao, L.; Dou, Y.; Yu, J.; Zhang, Y.; He, J.; Dai, W.; Yao, C.; et al. Enhanced and accelerated degradation of PFOA using visible light—Applying semiconductor carbon nitride as an accelerator. J. Environ. Chem. Eng. 2024, 12, 111653. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Zhang, X.; Wang, S.; Xia, Z.; Zeng, G.; Ding, J.; Ren, N. Construction of Fe3O4@β-CD/g-C3N4 nanocomposite catalyst for degradation of PCBs in wastewater through photodegradation and heterogeneous Fenton oxidation. Chem. Eng. J. 2022, 429, 132445. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Kong, L.; Wang, Y.; Zhang, S.; Zhang, X.; Ding, J.; Ren, N. Solar light photocatalytic transformation of heptachlorobiphenyl (PCB 180) using g-C3N4 based magnetic porous photocatalyst. J. Hazard. Mater. 2022, 427, 128105. [Google Scholar] [CrossRef]
- Sathish Kumar, P.; Shobana, B.; Prakash, P. Light harvesting enhancement through band structure engineering in graphite carbon nitride/polydopamine nanocomposite photocatalyst: Addressing persistent organophosphorus pesticide pollution in water systems. Chemosphere 2024, 354, 141708. [Google Scholar] [CrossRef]
- Su, B.; Ma, X.; Ran, L.; Wu, S.; Hou, B. Improving the photodegradation efficiency of POPs in oily sewage: Design and synthesis of G-C3N4-based photocatalysts incorporating a pickering emulsion catalytic strategy. J. Environ. Chem. Eng. 2023, 11, 111297. [Google Scholar] [CrossRef]
- Bharathi, D.; Lee, J.; Albeshr, M.F.; Fahad Alrefaei, A.; Le, T.T.; Mathimani, T. Enhanced photocatalytic degradation of polycyclic aromatic hydrocarbon by graphitic carbonitride-nickel (g–C3N4–Ni) nanocomposite. Chemosphere 2023, 345, 140464. [Google Scholar]
- Karuppusamy, I.; Surendiran, M.; Al-Humaid, L.A.; Aldawsari, M. Understanding the effective breakdown of PAH s in water through the use of g–C3N4–Ag–Cu–Ni nanocomposites. Chemosphere 2023, 344, 140125. [Google Scholar]
- Hu, J.; Zhang, P.; An, W.; Liu, L.; Liang, Y.; Cui, W. In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater. Appl. Catal. B Environ. 2019, 245, 130–142. [Google Scholar] [CrossRef]
- Gu, X.; Mei, J.; Lai, J.; Lv, S.; Yang, J.; Cui, S.; Chen, S. Synthesis of Z-Scheme heterojunction ZnNb2O6/g-C3N4 nanocomposite as a high efficient photo-catalyst for the degradation of 2,4-DCP under simulated sunlight. Mater. Res. Bull. 2020, 130, 110939. [Google Scholar] [CrossRef]
- Sim, L.C.; Tai, J.Y.; Leong, K.H.; Saravanan, P.; Tan, S.T.; Chong, W.C.; Aziz, A.A. Metal free and sunlight driven g-C3N4 based photocatalyst using carbon quantum dots from Arabian dates: Green strategy for photodegradation of 2,4-dichlorophenol and selective detection of Fe3+. Diam. Relat. Mater. 2021, 120, 108679. [Google Scholar] [CrossRef]
- Gak, J.C.D.; Mokhtar Mohamed, M.; Ibrahim, I.; Matsushita, Y.; Mawgood, A.A. Efficient sonocatalytic degradation of pyrene using a novel and magnetically recoverable graphitic carbon nitride—Cobalt ferrite—Graphene oxide (g-C3N4/CoFe2O4@GO) nanocomposite with an enhanced Z-scheme electron transfer pathway. Ceram. Int. 2024, 50, 34431–34441. [Google Scholar] [CrossRef]
- Wang, S.; He, F.; Zhao, X.; Zhang, J.; Ao, Z.; Wu, H.; Yin, Y.; Shi, L.; Xu, X.; Zhao, C.; et al. Phosphorous doped carbon nitride nanobelts for photodegradation of emerging contaminants and hydrogen evolution. Appl. Catal. B Environ. 2019, 257, 117931. [Google Scholar] [CrossRef]
- Sun, Z.; Fan, Y.; Yao, J.; Kong, D.; Chu, M.; Zhang, G.; Wang, Y. Enhancing dechlorination and inhibiting H2 evolution: Surface N-hydroxymethylation of Pd-loaded carbon nitride for photocatalytic elimination of polychlorinated aromatics. J. Catal. 2024, 438, 115732. [Google Scholar]
- Liu, X.; Zong, H.; Tan, X.; Wang, X.; Qiu, J.; Kong, F.; Zhang, J.; Fang, S. Facile synthesis of modified carbon nitride with enhanced activity for photocatalytic degradation of atrazine. J. Environ. Chem. Eng. 2021, 9, 105807. [Google Scholar] [CrossRef]
- Mohamed, R.M. Synthesis and characterization of AgCl@graphitic carbon nitride hybrid materials for the photocatalytic degradation of atrazine. Ceram. Int. 2015, 41, 1197–1204. [Google Scholar]
- Padhiari, S.; Tripathy, M.; Hota, G. Nitrogen-Doped Reduced Graphene Oxide Covalently Coupled with Graphitic Carbon Nitride/Sulfur-Doped Graphitic Carbon Nitride Heterojunction Nanocatalysts for Photoreduction and Degradation of 4-Nitrophenol. ACS Appl. Nano Mater. 2021, 4, 7145–7161. [Google Scholar] [CrossRef]
- Vandenberg, L.N. Endocrine disrupting chemicals: Strategies to protect present and future generations. Expert Rev Endocrinol Metab 2021, 16, 135–146. [Google Scholar] [CrossRef]
- Hercog, K.; Maisanaba, S.; Filipič, M.; Sollner-Dolenc, M.; Kač, L.; Žegura, B. Genotoxic activity of bisphenol A and its analogues bisphenol S, bisphenol F and bisphenol AF and their mixtures in human hepatocellular carcinoma (HepG2) cells. Sci. Total Environ. 2019, 687, 267–276. [Google Scholar] [CrossRef]
- Mu, F.; Dai, B.; Wu, Y.; Yang, G.; Li, S.; Zhang, L.; Xu, J.; Liu, Y.; Zhao, W. 2D/3D S-scheme heterojunction of carbon nitride/iodine-deficient bismuth oxyiodide for photocatalytic hydrogen production and bisphenol A degradation. J. Colloid Interface Sci. 2022, 612, 722–736. [Google Scholar] [CrossRef]
- Guo, D.; Wang, Y.; Chen, C.; He, J.; Zhu, M.; Chen, J.; Zhang, C. A multi-structural carbon nitride co-modified by Co, S to dramatically enhance mineralization of Bisphenol f in the photocatalysis-PMS oxidation coupling system. Chem. Eng. J. 2021, 422, 130035. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, S.; Gu, J.; Liu, R.; Wang, Z.; Chen, H.; Jiang, F. Visible-light photocatalytic degradation of bisphenol A using cobalt-to-oxygen doped graphitic carbon nitride with nitrogen vacancies via metal-to-ligand charge transfer. J. Hazard. Mater. 2020, 384, 121247. [Google Scholar] [CrossRef]
- Ming, H.; Wei, D.; Yang, Y.; Chen, B.; Yang, C.; Zhang, J.; Hou, Y. Photocatalytic activation of peroxymonosulfate by carbon quantum dots functionalized carbon nitride for efficient degradation of bisphenol A under visible-light irradiation. Chem. Eng. J. 2021, 424, 130296. [Google Scholar] [CrossRef]
- Luo, L.; Cha, C.; Meng, D.; Zou, W.; Xia, L.; Jiang, F.; Ma, X.; Dai, J. Photocatalytic activation of persulfate for rapid degradation of 17α-ethinylestradiol over quasi-full-visible-responsive Pg-C3N4/RGO/BiOI. J. Environ. Chem. Eng. 2024, 12, 113489. [Google Scholar] [CrossRef]
- Xu, K.; Jiao, L.; Wang, C.; Bu, Y.; Tang, Y.; Qiu, L.; Zhang, Q.; Wang, L. Nonylphenol photodegradation by novel ternary MIL-100(Fe)/ZnFe2O4/PCN composite under visible light irradiation via double charge transfer process. J. Environ. Sci. 2022, 111, 93–103. [Google Scholar] [CrossRef]
- Bi, L.; Fu, G.; Cai, D.; Shen, J.; Zhang, J.; Kang, J.; Cheng, Y.; Yan, P.; Zhou, Y.; Chen, Z. Electron rich P doped g-C3N4 for photodegradation of 2,4-dichlorophenoxyacetic acid under visible light by improving oxygen adsorption: Performance and catalytic mechanism. Sep. Purif. Technol. 2023, 306, 122562. [Google Scholar]
- Liu, X.; Yan, L.; Hu, X.; Feng, H.; Guo, B.; Ha, X.; Xu, H. Facile synthesis of B and P doped g-C3N4 for enhanced synergetic activity between photocatalytic water splitting and BPA degradation. Int. J. Hydrogn Energy 2023, 48, 13181–13188. [Google Scholar] [CrossRef]
- Lu, D.; Loh, J.W.J.; Lau, H.X.Y.; Lin, X.H.; Li, S.F.Y. Hydroxyl-rich carbon nitride microspheres with carbon doping for visible-light driven photocatalytic degradation of endocrine disrupting chemicals. Mater. Today Sustain. 2023, 22, 100347. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Gu, P.; Ma, R.; Wen, T.; Zhao, G.; Li, L.; Ai, Y.; Hu, C.; Wang, X. Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: Mechanism exploration from both experimental and DFT studies. Appl. Catal. B Environ. 2019, 248, 1–10. [Google Scholar] [CrossRef]
- Liu, H.; Liang, J.; Shao, L.; Du, J.; Gao, Q.; Fu, S.; Li, L.; Hu, M.; Zhao, F.; Zhou, J. Promoting charge separation in dual defect mediated Z-scheme MoS2/g-C3N4 photocatalysts for enhanced photocatalytic degradation activity: Synergistic effect insight. Colloids Surf. A Physicochem. Eng. Asp. 2020, 594, 124668. [Google Scholar] [CrossRef]
- Katsumata, H.; Higashi, F.; Kobayashi, Y.; Tateishi, I.; Furukawa, M.; Kaneco, S. Dual-defect-modified graphitic carbon nitride with boosted photocatalytic activity under visible light. Sci. Rep. 2019, 9, 14873. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cai, L.; Wang, X.; Shi, H. Fabrication of AgCl/Ag3PO4/graphitic carbon nitride heterojunctions for enhanced visible light photocatalytic decomposition of methylene blue, methylparaben and E. coli. RSC Adv. 2021, 11, 6383–6394. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.A.; Sampaio, M.J.; Dražić, G.; Faria, J.L.; Silva, C.G. Efficient removal of parabens from real water matrices by a metal-free carbon nitride photocatalyst. Sci. Total Environ. 2020, 716, 135346. [Google Scholar] [CrossRef]
- Fernandes, E.; Drosopoulou, S.; Mazierski, P.; Miodyńska, M.; Gołaszewska, D.; Zaleska-Medynska, A.; Martins, R.C.; Gomes, J. Carbon nitride photoactivation evaluation and degradation of a mixture of parabens by ozone assistance. J. Water Process Eng. 2022, 49, 103018. [Google Scholar] [CrossRef]
- Shittu, F.B.; Iqbal, A.; Ahmad, M.N.; Yusop, M.R.; Ibrahim, M.N.M.; Sabar, S.; Wilson, L.D.; Yanto, D.H.Y. Insight into the photodegradation mechanism of bisphenol-A by oxygen doped mesoporous carbon nitride under visible light irradiation and DFT calculations††Electronic supplementary information (ESI) available: Effect of reaction parameters and kinetics on the photodegradation of BPA. RSC Adv. 2022, 12, 10409–10423. [Google Scholar]
- Sun, Y.; Luo, H.; Iboleon, R.; Wang, Z. Fate of antibiotic resistance genes and class 1 integrons during sludge treatment using pilot-scale anaerobic digestion with thermal hydrolysis pretreatment. Bioresour. Technol. 2022, 364, 128043. [Google Scholar] [CrossRef]
- Dou, M.; Wang, J.; Gao, B.; Xu, C.; Yang, F. Photocatalytic difference of amoxicillin and cefotaxime under visible light by mesoporous g-C3N4: Mechanism, degradation pathway and DFT calculation. Chem. Eng. J. 2020, 383, 123134. [Google Scholar] [CrossRef]
- Phoon, B.L.; Lai, C.W.; Chen, C.-Y.; Boonyuen, S.; Tang, W.K.; Juan, J.C. Mesoporous I-doped-g-C3N4 with C vacancies as superior visible-light-driven photocatalyst for removal of tetracycline antibiotic. J. Alloys Compd. 2024, 1009, 176772. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, F.; Jin, X.; Zheng, X.; Wang, Y.; Wei, D.; Zhang, Q.; Feng, Y.; Xie, Z.; Chen, P.; et al. Highly active metal-free carbon dots/g-C3N4 hollow porous nanospheres for solar-light-driven PPCPs remediation: Mechanism insights, kinetics and effects of natural water matrices. Water Res. 2020, 172, 115492. [Google Scholar]
- Wu, Z.; Liang, Y.; Yuan, X.; Zou, D.; Fang, J.; Jiang, L.; Zhang, J.; Yang, H.; Xiao, Z. MXene Ti3C2 derived Z–scheme photocatalyst of graphene layers anchored TiO2/g–C3N4 for visible light photocatalytic degradation of refractory organic pollutants. Chem. Eng. J. 2020, 394, 124921. [Google Scholar]
- Liu, M.; Zhang, D.; Han, J.; Liu, C.; Ding, Y.; Wang, Z.; Wang, A. Adsorption enhanced photocatalytic degradation sulfadiazine antibiotic using porous carbon nitride nanosheets with carbon vacancies. Chem. Eng. J. 2020, 382, 123017. [Google Scholar] [CrossRef]
- Hassanzadeh-Tabrizi, S.A. Synthesis of NiFe2O4/Ag nanoparticles immobilized on mesoporous g-C3N4 sheets and application for degradation of antibiotics. J. Photochem. Photobiol. A Chem. 2021, 418, 113398. [Google Scholar]
- Zhou, Y.; Jiang, D.; Wang, Z.; Yi, L.; Sun, J.; Liu, D.; Yu, X.; Chen, Y. Bandgap engineering of carbon nitride by formic acid assisted thermal treatment for photocatalytic degradation of tetracycline hydrochloride. Chem. Eng. J. 2024, 485, 149830. [Google Scholar] [CrossRef]
- Razavi-Esfali, M.; Mahvelati-Shamsabadi, T.; Fattahimoghaddam, H.; Lee, B.-K. Highly efficient photocatalytic degradation of organic pollutants by mesoporous graphitic carbon nitride bonded with cyano groups. Chem. Eng. J. 2021, 419, 129503. [Google Scholar] [CrossRef]
- Sun, Y.; Qi, X.; Li, R.; Xie, Y.; Tang, Q.; Ren, B. Hydrothermal synthesis of 2D/2D BiOCl/g-C3N4 Z-scheme: For TC degradation and antimicrobial activity evaluation. Opt. Mater. 2020, 108, 110170. [Google Scholar]
- Saravanakumar, K.; Park, C.M. Rational design of a novel LaFeO3/g-C3N4/BiFeO3 double Z-scheme structure: Photocatalytic performance for antibiotic degradation and mechanistic insight. Chem. Eng. J. 2021, 423, 130076. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, G.; Huang, D.; Zhang, C.; He, R.; Zhou, C.; Wang, W.; Xiong, W.; Song, B.; Huan, Y.; et al. In Situ Grown Single-Atom Cobalt on Polymeric Carbon Nitride with Bidentate Ligand for Efficient Photocatalytic Degradation of Refractory Antibiotics. Small 2020, 16, 2001634. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Ma, C.; Guan, Q.; Lu, Z.; Huo, P.; Yan, Y. Melamine modified P25 with heating method and enhanced the photocatalytic activity on degradation of ciprofloxacin. Appl. Surf. Sci. 2015, 329, 17–22. [Google Scholar] [CrossRef]
- Samsudin, M.F.R.; Sufian, S. Hybrid 2D/3D g-C3N4/BiVO4 photocatalyst decorated with RGO for boosted photoelectrocatalytic hydrogen production from natural lake water and photocatalytic degradation of antibiotics. J. Mol. Liq. 2020, 314, 113530. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Kim, D.G.; Ko, S.O. Changes in the catalytic activity of oxygen-doped graphitic carbon nitride for the repeated degradation of oxytetracycline. Chemosphere 2022, 307, 135870. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; He, H.; Lu, M.; Pei, Y.; Peng, H.; Zhou, W.; Guo, C.; Wang, J. Serine mesoporous organosilicon modified carbon nitride (g-C3N4@Ser-PMO) for degradation of ofloxacin. Microporous Mesoporous Mater. 2024, 373, 113133. [Google Scholar] [CrossRef]
- Feng, T.; Zhang, J.; Yu, F.; Su, Q.; Wang, H.; Wang, L.; Guo, Y.; Xie, H. Broad-bandgap porous graphitic carbon nitride with nitrogen vacancies and oxygen doping for efficient visible-light photocatalytic degradation of antibiotics. Environ. Pollut. 2023, 335, 122268. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Shan, R.; Gu, J.; Wang, S.; Cheng, L.; Yuan, H.; Chen, Y. Unraveling the impact of three coordinate nitrogen (N3c) vacancies in porous carbon nitride nanobelt for boosted photocatalytic degradation of microplastics and antibiotics. Appl. Catal. B Environ. Energy 2024, 358, 124402. [Google Scholar] [CrossRef]
- Haward, M. Plastic pollution of the world’s seas and oceans as a contemporary challenge in ocean governance. Nat. Commun. 2018, 9, 667. [Google Scholar] [CrossRef]
- Kaur, R.; Marwaha, A.; Chhabra, V.; Kaushal, K.; Kim, K.-H.; Tripathi, S.K. Facile synthesis of a Cu-based metal-organic framework from plastic waste and its application as a sensor for acetone. J. Clean. Prod. 2020, 263, 121492. [Google Scholar] [CrossRef]
- Nguyen, M.B.; Doan, H.V.; Le Hoang Tan, D.; Lam, T.D. Advanced g-C3N4 and bimetallic FeNi-BTC integration with carbon quantum dots for removal of microplastics and antibiotics in aqueous environments. J. Environ. Chem. Eng. 2024, 12, 112965. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Z.; Jiang, J.; Li, R.; Xiong, J. Preparation of heterojunction C3N4/WO3 photocatalyst for degradation of microplastics in water. Chemosphere 2023, 337, 139206. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y.; Wan, S.; Li, S.; Ou, M.; Song, F.; Fan, X.; Zhong, Q. Tuning the surface hydrophilicity of a C3N4 nanosheet for efficient photocatalytic H2 evolution coupled with microplastic degradation. Int. J. Hydrog. Energy 2023, 48, 27599–27610. [Google Scholar] [CrossRef]
- Jia, R.; Li, D.; Wang, P.; Li, T.; Chen, J.; Zhang, L.; Zhao, Q.; Cheng, X. Constructing Z-scheme MoO3-x/g-C3N4 heterojunction for highly efficient photocatalytic degradation of microplastic polyaniline. Appl. Surf. Sci. 2025, 715, 164506. [Google Scholar] [CrossRef]
- Luo, Y.; Zheng, H.; Li, X.; Li, F.; Tang, H.; She, X. Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Phys. -Chim. Sin. 2025, 41, 100052. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, C.; Hu, J.; Zou, X.; Qi, Y.; Ge, Z.; Zhang, S.; Wang, H.; Wang, Y. Amphiphilic CoP/CN heterojunction for photocatalytic microplastics degradation synergistic hydrogen generation. Chem. Eng. Sci. 2025, 307, 121336. [Google Scholar] [CrossRef]
- Yi, X.-H.; Ma, S.-Q.; Du, X.-D.; Zhao, C.; Fu, H.; Wang, P.; Wang, C.-C. The facile fabrication of 2D/3D Z-scheme g-C3N4/UiO-66 heterojunction with enhanced photocatalytic Cr(VI) reduction performance under white light. Chem. Eng. J. 2019, 375, 121944. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Xue, Z.; Bian, Z.; Lin, X.; Hong, Y. Tubular carbon nitride decorated with Ag2V4O11 quantum dots: A binary heterostructure photocatalyst for tetracycline degradation. J. Phys. Chem. Solids 2025, 208, 113120. [Google Scholar] [CrossRef]
ROS Type | Specific Species | Quencher | Testing Method | Degradation Pathway (Radical Attack Sites) | Ref. |
---|---|---|---|---|---|
Radical species | •O2− | Benzoquinone (BQ) | Electron Paramagnetic Resonance (EPR): DMPO trapping | Electron-rich groups (e.g., phenolic hydroxyl, amino groups); reduce nitro (-NO2) and azo (-N = N-) unsaturated bonds, disrupting conjugated systems. | [70] |
•OH | Tertiary butanol (TBA) | EPR: DMPO or PBN trapping | Non-selective attack, preferentially abstracting hydrogen atoms from C-H bonds; oxidizing aromatic rings, alkenes, amines and most organic pollutants, initiating chain degradation. | [71] | |
1O2 | Sodium azide (NaN3), L-histidine, β-carotene | EPR: TEMP trapping | Selectively attacking unsaturated bonds (e.g., C=C, C=O) and aromatic conjugated structures. | [72] | |
Non-radical species | h+ | Disodium edetate (EDTA-2Na), Methanol | Quenching experiment: Transient photocurrent response | Directly oxidizing electron-dense sites of adsorbed pollutants (e.g., phenolic hydroxyl, amino groups); or indirectly generating •OH by oxidizing surface OH−/H2O. | [73] |
Surface charge transfer | / | Electrochemical Impedance Spectroscopy (EIS) | Electron transfer attacking the lowest unoccupied molecular orbital (LUMO) of pollutants; selectively degrading pollutants that form coordination bonds with catalyst surfaces (e.g., carboxyl/hydroxyl-containing organics). | [74] |
Catalysts | Light Source | Category of Pollutant | Pollutant Concentration | Catalyst Dosage | Degradation Efficiency (%) | Ref. |
---|---|---|---|---|---|---|
g-C3N4-Ni nanocomposite | UV/Sunlight | PAHs | 6 mg/L | 4 mg/L | UV:77% in 5 h Sunlight: 55% in 5 h | [81] |
g-C3N4-Ag-Cu-Ni nanocomposite | UV/Sunlight | PAHs | 2 mg/L | 2 mg/L | UV: 67% in 5 h Sunlight: 57% in 5 h | [82] |
Fe/g-C3N4 | 350 W Xe lamp (λ > 420 nm) | Phenol | 20 mg/L | 1 g/L (H2O2 = 8.0 mM) | 100% in 50 min | [83] |
ZnNbO/g-CN | 500 W Xe lamp | 2,4-DCP | 10 mg/L | 0.4 g/L | 95.7% in 180 min | [84] |
AD-CQDs/g-C3N4 | sunlight | 2,4-DCP | 10 mg/L | 0.05 g/L | 100% in 90 min | [85] |
g-CN/CoFeO@GO | Sonocatalytic (50 W) | Pyrene | 5 mg/L, 10 mg/L | 0.04 g/L | 92.3% and 86.7% in 120 min | [86] |
P-CN-NB | 300 W Xe lamp (420 nm cut-off filter) | HBA | 1 mg/L | 0.5 g/L | 77.3% in 120 min | [87] |
Pd/FA-PCN | 300 W Xe lamp (400 nm cut-off filter) | PCBs | 1 mg/L | 0.5 g/L | 100% in 140 min | [88] |
TEA-CN-30 | 300 W Xe lamp (400 nm cut-off filter) | Atrazine | 1 mg/L | 0.3 g/L | 90% in 60 min | [89] |
AgCl@pg-C3N4 | 300 W Xe lamp (λ > 420 nm) | Atrazine | 100 mg/L | 0.8 g/L | 99% in 60 min | [90] |
4NrGO/g−g PSCN | Visible light | 4-NP | 15 mg/L | 1 g/L | 70.55% in 60 min | [91] |
Catalysts | Light Source | Category of Pollutant | Pollutant Concentration | Catalyst Dosage | Degradation Efficiency (%) | Ref. |
---|---|---|---|---|---|---|
CN-BP | 300 W Xe lamp (420 nm cut-off filter) | BPA | 0.3 g/L | 1 g/L | 100% in 35 min | [101] |
CN-S | 300 W Xe lamp (400 and 800 nm filters) | BPA/DBP | 5 mg/L | 1 g/L | 96%/58% in 120 min | [102] |
OPCN | 300 W Xe lamp (420 nm ≤ λ ≤ 780 nm). | BPA | 20 mg/L | 1 g/L | 99% in 55 min | [103] |
MoS2/g-C3N4 | 500 W Xe lamp (λ ≥ 420 nm) | BPA | 10 mg/L | 0.5 g/L | 96% in 150 min | [104] |
Bt-OA-CN | 300 W Xe lamp (UV cut-off filter) | BPA | 10 mg/L | 0.6 g/L | 100% in 150 min | [105] |
AgCl/Ag3PO4/ g-C3N4 | 300 W metal-halide lamp (UV cut-off filter, λ < 400 nm) | Methylparaben | 20 mg/L | 0.5/L | 100% in 30 min | [106] |
GCN-500 | LED (λex max = 417 nm) | Paraben | 4.68 mg/L | 1 g/L | 100% in 20 min | [107] |
O3+/g-C3N4 | UV(365 nm, TL 6 W BLB) | Paraben | 1 mg/L | 0.5 g/L | 95% in 15 min | [108] |
O-MCN | 500 W Xe lamp (λ > 400 nm cut-off filter) | BPA | 10 mg/L | 40 mg/L | 97% in 180 min | [109] |
Catalysts | Light Source | Category of Pollutant | Pollutant Concentration | Catalyst Dosage | Degradation Efficiency (%) | Ref. |
---|---|---|---|---|---|---|
NC MCN | 300 W Xe lamp (400 < λ < 800 nm) | TC | 15 mg/L | 1 g/L | 100% in 30 min | [118] |
BiOCl/g-C3N4 | 300 W Xe lamp | TC | 20 mg/L | 0.1 g/L | 97.1% in 60 min | [119] |
LaFeO3/g-C3N4/BiFeO3 | 300 W-Xe arc lamp with filter | CIP | 10 mg/L | 0.4 g/L | 98.6% in 60 min | [120] |
Co-pCN | Visible light | OTC | 20 mg/L | 0.3 g/L | 75.7% in 40 min | [121] |
g-C3N4/TiO2 | 150 W tungsten lamp | CIP | 10 mg/L | 1 mg/L | 95% in 60 min | [122] |
RGO@ g-C3N4/BiVO4 | 500 W halogen lamp | CIP/AMX | 10 mg/L | 1 g/L | 84.3% and 91.9% in 3 h | [123] |
O-gCN | PMS | OTC | 5 mg/L | 0.5 g/L | 63.7% in 60 min | [124] |
(Nv, Os)-CN | Visible light | SZO | 20 mg/L | 0.2 g/L | 75% in 90 min | [73] |
g-C3N4@Ser-PMO | 100 W white lamp | OFL | 20 mg/L | 1 g/L | 99% in 90 min | [125] |
RCN | 300 W X lamp (λ ≥ 420 nm) | OFX | 10 mg/L | 1 g/L | 100% in 35 min | [126] |
NCN | 300 W Xe lamp | ENR | 20 mg/L | 1 g/L | 97.1% in 4 h | [127] |
Catalysts | Light Source | Category of Pollutant | Pollutant Concentration | Catalyst Dosage | Degradation Efficiency (%) | Ref. |
---|---|---|---|---|---|---|
MC-70 | Two 50 W UV lamps | Polyaniline | 100 mg/L | 1 g/L | 97% in 7 d | [133] |
OSCN | xenon lamp (68.0 mW∙cm2) | PE/PLA | 300 μm | 0.04 g/L | 44.1% ± 3.59 and 53.3% ± 3.93% in 8 d | [134] |
NCN0.48 | UV (365 nm, TL 6 W BLB) | Paraben | 750 mg/L | 1 g/L | 43.1% in 150 h | [127] |
30%WO3/g-C3N4 | 300 W xenon lamp (cutoff filter at 420 nm) | PET | 500 mg/L | 2 g/L | H2 evolution (14.21 mM) | [131] |
2 wt%CoP/CN | 300 W xenon lamp (cutoff filter at 420 nm) | PET | 5000 mg/L | 0.48 g/L | H2 evolution (1.3 mmol/g) | [135] |
Catalysts | Category of Pollutant | Number of Cycles | Degradation Efficiency (Before) | Degradation Efficiency (After) | Metal Leaching Risk | Ref. |
---|---|---|---|---|---|---|
Fe/g-C3N4 | Phenol | 5 | 98% | 88% | Fe | [83] |
ZnNbO/g-CN | 2,4-DCP | 4 | 95.7% | 83.3% | Zn and Nb | [84] |
g-CN/CoFeO@GO | Pyrene | 4 | 86.7% | 78% | Co and Fe | [86] |
P-CN-NB | HBA | 4 | 77.3% | Stable | / | [87] |
OPCN | BPA | 4 | 99% | Stable | / | [103] |
MoS2/g-C3N4 | BPA | 4 | 96% | Stable | Mo | [104] |
BiOCl/g-C3N4 | TC | 4 | 97.1% | 87.6% | Bi | [119] |
g-C3N4@Ser-PMO | OFL | 4 | 99% | 80% | / | [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Cai, H.; Li, D.; Chen, F.; Han, S.; Chen, X.; Li, Z.; He, Z.; Chen, Z.; He, J.; et al. Recent Advances in Graphitic Carbon Nitride-Based Materials in the Photocatalytic Degradation of Emerging Contaminants. Inorganics 2025, 13, 319. https://doi.org/10.3390/inorganics13100319
Xu D, Cai H, Li D, Chen F, Han S, Chen X, Li Z, He Z, Chen Z, He J, et al. Recent Advances in Graphitic Carbon Nitride-Based Materials in the Photocatalytic Degradation of Emerging Contaminants. Inorganics. 2025; 13(10):319. https://doi.org/10.3390/inorganics13100319
Chicago/Turabian StyleXu, Dan, Heshan Cai, Daguang Li, Feng Chen, Shuwen Han, Xiaojuan Chen, Zhenyi Li, Zebang He, Zhuhong Chen, Jiabao He, and et al. 2025. "Recent Advances in Graphitic Carbon Nitride-Based Materials in the Photocatalytic Degradation of Emerging Contaminants" Inorganics 13, no. 10: 319. https://doi.org/10.3390/inorganics13100319
APA StyleXu, D., Cai, H., Li, D., Chen, F., Han, S., Chen, X., Li, Z., He, Z., Chen, Z., He, J., Huang, W., Tang, X., Wen, Y., & Feng, Y. (2025). Recent Advances in Graphitic Carbon Nitride-Based Materials in the Photocatalytic Degradation of Emerging Contaminants. Inorganics, 13(10), 319. https://doi.org/10.3390/inorganics13100319