Efficient Sequestration of Heavy Metal Cations by [Mo2S12]2− Intercalated Cobalt Aluminum-Layered Double Hydroxide
Abstract
:1. Introduction
2. Results and Discussions
2.1. Synthesis and Characterization
2.2. Sorption of Individual Heavy Metal Cations
2.3. Sorption of Mixed Heavy Metal Cations
2.4. pH-Dependent Sorption Studies
2.5. The Sorption Capacity of CoAl―Mo2S12―LDH
2.6. Application Potential of CoAl―Mo2S12―LDH
2.7. Post-Sorbed Analysis of Solid Sorbent
3. Materials and Methods
3.1. Material Synthesis
3.2. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. In Molecular, Clinical and Environmental Toxicology; Experientia Supplementum; Luch, A., Ed.; Springer: Basel, Switzerland, 2012; Volume 101, pp. 133–164. [Google Scholar] [CrossRef]
- Fu, Z.; Xi, S. The effects of heavy metals on human metabolism. Toxicol. Mech. Methods 2020, 30, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Ma, R.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. Topochemical Synthesis, Anion Exchange, and Exfoliation of Co−Ni Layered Double Hydroxides: A Route to Positively Charged Co−Ni Hydroxide Nanosheets with Tunable Composition. Chem. Mater. 2010, 22, 371–378. [Google Scholar] [CrossRef]
- Yang, L.; Xie, L.; Chu, M.; Wang, H.; Yuan, M.; Yu, Z.; Wang, C.; Yao, H.; Islam, S.M.; Shi, K.; et al. Mo3S132− Intercalated Layered Double Hydroxide: Highly Selective Removal of Heavy Metals and Simultaneous Reduction of Ag + Ions to Metallic Ag 0 Ribbons. Angew Chem Int Ed 2022, 61, e202112511. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Q.; Islam, S.M.; Liu, Y.; Ma, S.; Kanatzidis, M.G. Highly Selective and Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercalated with the MoS42− Ion. J. Am. Chem. Soc. 2016, 138, 2858–2866. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.C.; Asaduzzaman, A.; May, B.; Beals, A.M.; Chen, X.; Zhu, X.; Islam, S.M. Oxidative Immobilization of Gaseous Mercury by [Mo3S(S2)6]2−-Functionalized Layered Double Hydroxide. Chem. Mater. 2024, 36, 5826–5835. [Google Scholar] [CrossRef]
- Wang, Q.; O’Hare, D. Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets. Chem. Rev. 2012, 112, 4124–4155. [Google Scholar] [CrossRef]
- Rohit, R.C.; Roy, S.C.; Alam, R.; Islam, S.M. Metal-sulfide/polysulfide functionalized layered double hydroxides—Recent progress in the removal of heavy metal ions and oxoanionic species from aqueous solutions. Dalton Trans. 2024, 53, 10037–10049. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.C.; Rahman, M.A.; Celik, A.; Wilson, S.; Azmy, A.; Bieber, J.; Spanopoulos, I.; Islam, R.; Zhu, X.; Han, F.X.; et al. Efficient removal of chromium(VI) ions by hexagonal nanosheets of CoAl-MoS4 layered double hydroxide. J. Coord. Chem. 2022, 75, 1581–1595. [Google Scholar] [CrossRef]
- Celik, A.; Li, D.; Quintero, M.A.; Taylor-Pashow, K.M.L.; Zhu, X.; Shakouri, M.; Roy, S.C.; Kanatzidis, M.G.; Arslan, Z.; Blanton, A.; et al. Removal of CrO42−, a Nonradioactive Surrogate of 99TcO4−, Using LDH–Mo3S13 Nanosheets. Environ. Sci. Technol. 2022, 56, 8590–8598. [Google Scholar] [CrossRef]
- Celik, A.; Baker, D.R.; Arslan, Z.; Zhu, X.; Blanton, A.; Nie, J.; Yang, S.; Ma, S.; Han, F.X.; Islam, S.M. Highly efficient, rapid, and concurrent removal of toxic heavy metals by the novel 2D hybrid LDH–[Sn2S6]. Chem. Eng. J. 2021, 426, 131696. [Google Scholar] [CrossRef]
- Müller, G. Die Schwermetallbelastung der sedimente des Neckars und seiner Nebenflusse: Eine Bestandsaufnahme. Chem. Ztg. 1981, 105, 157–164. [Google Scholar]
- Pearson, R.G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. [Google Scholar] [CrossRef]
- Chen, L.; Sun, B.; Wang, X.; Qiao, F.; Ai, S. 2D ultrathin nanosheets of Co–Al layered double hydroxides prepared in l-asparagine solution: Enhanced peroxidase-like activity and colorimetric detection of glucose. J. Mater. Chem. B 2013, 1, 2268. [Google Scholar] [CrossRef] [PubMed]
- Goebbert, D.J.; Garand, E.; Wende, T.; Bergmann, R.; Meijer, G.; Asmis, K.R.; Neumark, D.M. Infrared Spectroscopy of the Microhydrated Nitrate Ions NO3−(H2O)1−6. J. Phys. Chem. A 2009, 113, 7584–7592. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, H.; Zhang, Q.; Wang, W.; Yang, C.; Du, T.; Yue, T.; Zhu, M.; Wang, J. Demand-oriented construction of Mo3S13LDH: A versatile scavenger for highly selective and efficient removal of toxic Ag(I), Hg(II), As(III), and Cr(VI) from water. Sci. Total Environ. 2022, 820, 153334. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Yao, H.; Xie, L.; Liu, X.; Wang, H.; Islam, S.M.; Shi, K.; Yu, Z.; Sun, G.; Li, H.; et al. Polypyrrole–Mo3S13: An Efficient Sorbent for the Capture of Hg2+ and Highly Selective Extraction of Ag+ over Cu2+. J. Am. Chem. Soc. 2020, 142, 1574–1583. [Google Scholar] [CrossRef] [PubMed]
- Biesinger, M. X-ray Photoelectron Spectroscopy (XPS) Reference Pages of Molybdenym. Available online: http://www.xpsfitting.com/search/label/Molybdenum (accessed on 20 December 2024).
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Waltham, MA, USA, 1992. [Google Scholar]
- Biesinger, M. X-ray Photoelectron Spectroscopy (XPS) Reference Pages of Sulphur. [Online]. Available online: http://www.xpsfitting.com/search/label/Sulphur (accessed on 20 December 2024).
- Alam, R.; Roy, S.C.; Islam, T.; Feng, R.; Zhu, X.; Donley, C.L.; Islam, S.M. Molybdenum-Oxysulfide-Functionalized MgAl-Layered Double Hydroxides—A Sorbent for Selenium Oxoanions. Inorg. Chem. 2024, 63, 10997–11005. [Google Scholar] [CrossRef] [PubMed]
- Cherkashinin, G.; Nikolowski, K.; Ehrenberg, H.; Jacke, S.; Dimesso, L.; Jaegermann, W. The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte–cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation. Phys. Chem. Chem. Phys. 2012, 14, 12321. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, L.; Xiong, P.; Ma, W.; Qian, N.; Lu, W. A novel method for synthesis of Co–Al layered double hydroxides and their conversions to mesoporous CoAl2O4 nanostructures for applications in adsorption removal of fluoride ions. Microporous Mesoporous Mater. 2015, 201, 91–98. [Google Scholar] [CrossRef]
- Kabekkodu, S.N.; Dosen, A.; Blanton, T.N. PDF-5+: A comprehensive Powder Diffraction FileTM for materials characterization. Powder Diffr. 2024, 39, 47–59. [Google Scholar] [CrossRef]
- Cosano, D.; Esquivel, D.; Romero-Salguero, F.J.; Jiménez-Sanchidrián, C.; Ruiz, J.R. Use of Raman spectroscopy to assess nitrate uptake by calcined LDH phases. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125066. [Google Scholar] [CrossRef]
- Sarma, D.; Malliakas, C.D.; Subrahmanyam, K.S.; Islam, S.M.; Kanatzidis, M.G. K2xSn4−xS8−x (x = 0.65–1): A new metal sulfide for rapid and selective removal of Cs+, Sr2+ and UO22+ ions. Chem. Sci. 2016, 7, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Freundlich, H. Über die Adsorption in Lösungen. Z. Phys. Chem. 1907, 57U, 385–470. [Google Scholar] [CrossRef]
- Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica, and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Huang, G.; Wang, D.; Ma, S.; Chen, J.; Jiang, L.; Wang, P. A new, low-cost adsorbent: Preparation, characterization, and adsorption behavior of Pb(II) and Cu(II). J. Colloid Interface Sci. 2015, 445, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhou, G.; Chu, L.; Liu, Y.; Liu, C.; Luo, S.; Wei, Y. Efficient Removal of Heavy Metal Ions with An EDTA Functionalized Chitosan/Polyacrylamide Double Network Hydrogel. ACS Sustain. Chem. Eng. 2017, 5, 843–851. [Google Scholar] [CrossRef]
- Ogawa, M.; Saito, F. Easily Oxidizable Polysulfide Anion Occluded in the Interlayer Space of Mg/Al Layered Double Hydroxide. Chem. Lett. 2004, 33, 1030–1031. [Google Scholar] [CrossRef]
- Alatalo, S.-M.; Pileidis, F.; Mäkilä, E.; Sevilla, M.; Repo, E.; Salonen, J.; Sillanpää, M.; Titirici, M.-M. Versatile Cellulose-Based Carbon Aerogel for the Removal of Both Cationic and Anionic Metal Contaminants from Water. ACS Appl. Mater. Interfaces 2015, 7, 25875–25883. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Chandra Roy, S.; Dhami, S.; Islam, T.; Amin, R.; Zhu, X.; Taylor-Pashow, K.; Han, F.X.; Islam, S.M. K–Co–Mo–Sx chalcogel: High-capacity removal of Pb2+ and Ag+ and the underlying mechanisms. J. Mater. Chem. A 2024, 12, 30063–30072. [Google Scholar] [CrossRef]
- Li, J.-R.; Wang, X.; Yuan, B.; Fu, M.-L. Layered chalcogenide for Cu2+ removal by ion-exchange from wastewater. J. Mol. Liq. 2014, 200, 205–212. [Google Scholar] [CrossRef]
- Rathee, G.; Kohli, S.; Awasthi, A.; Singh, N.; Chandra, R. MoS42− intercalated NiFeTi LDH as an efficient and selective adsorbent for elimination of heavy metals. RSC Adv. 2020, 10, 19371–19381. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Wang, H.; Ifthikar, J.; Khan, A.; Wang, T.; Zhan, K.; Shahzad, A.; Chen, Z.; Chen, Z. Efficient, stable and selective adsorption of heavy metals by thio-functionalized layered double hydroxide in diverse types of water. Chem. Eng. J. 2018, 332, 387–397. [Google Scholar] [CrossRef]
- Xie, L.; Yu, Z.; Islam, S.M.; Shi, K.; Cheng, Y.; Yuan, M.; Zhao, J.; Sun, G.; Li, H.; Ma, S.; et al. Remarkable Acid Stability of Polypyrrole-MoS4: A Highly Selective and Efficient Scavenger of Heavy Metals Over a Wide pH Range. Adv Funct Mater. 2018, 28, 1800502. [Google Scholar] [CrossRef]
- Ma, S.; Chen, Q.; Li, H.; Wang, P.; Islam, S.M.; Gu, Q.; Yang, X.; Kanatzidis, M.G. Highly selective and efficient heavy metal capture with polysulfide intercalated layered double hydroxides. J. Mater. Chem. A 2014, 2, 10280–10289. [Google Scholar] [CrossRef]
- Hassanzadeh Fard, Z.; Malliakas, C.D.; Mertz, J.L.; Kanatzidis, M.G. Direct Extraction of Ag+ and Hg2+ from Cyanide Complexes and Mode of Binding by the Layered K2 MgSn2 S6 (KMS-2). Chem. Mater. 2015, 27, 1925–1928. [Google Scholar] [CrossRef]
- Jawad, A.; Liao, Z.; Zhou, Z.; Khan, A.; Wang, T.; Ifthikar, J.; Shahzad, A.; Chen, Z.; Chen, Z. Fe-MoS4: An Effective and Stable LDH-Based Adsorbent for Selective Removal of Heavy Metals. ACS Appl. Mater. Interfaces 2017, 9, 28451–28463. [Google Scholar] [CrossRef]
- Swanson, H.; Cook, M.; Evans, E.H.; deGroot, J.H. Standard X-Ray Diffraction Powder Patterns; National Bureau of Standards Circular 539; US Department of Commerce: Washington, DC, USA, 1960; Volume 10.
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Draganjac, M.; Simhon, E.; Chan, L.T.; Kanatzidis, M.; Baenziger, N.C.; Coucouvanis, D. Synthesis, interconversions, and structural characterization of the molybdenum sulfide anions, [(S4)2MoS]2−x, [(S4)2MoO]2−x, (Mo2S10)2−x and (Mo2S12)2−x. Inorg. Chem. 1982, 21, 3321–3332. [Google Scholar] [CrossRef]
Cation | Adsorbent | qm (mg/g) | Ref. |
---|---|---|---|
CoAl―Mo2S12―LDH | 918 | This work | |
KCMS chalcogel | 1378 | [35] | |
KMS―1 | 156 | [36] | |
LDH―Sn2S6 | 978 | [13] | |
Mo3S13―ppy | 408 | [19] | |
Ag+ | Ni/Fe/Ti―MoS4―LDH | 856 | [37] |
Mn―MoS4 | 564 | [38] | |
MoS4―ppy | 480 | [39] | |
MoS4―LDH | 450 | [7] | |
Sx―LDH | 383 | [40] | |
KMS―2 | 408 | [41] | |
Fe―MoS4 | 565 | [42] | |
MgAl-Mo3S13 | 1073 | [6] |
Mixed-Ions | Ci (ppm) | Cf (ppm) | SD | Removal (%) | Kd (mL/g) | qm (mg/g) | Cf (ppm) | SD | Removal (%) | Kd (mL/g) | qm (mg/g) |
---|---|---|---|---|---|---|---|---|---|---|---|
MRW | Tap Water | ||||||||||
Cu2+ | 10.0 | 5.6637 | 0.052 | 43.36 | 765.6 | 4.336 | 7.498 | 0.019 | 25.02 | 333.6 | 2.501 |
Hg2+ | 10.0 | 0.0420 | 0.004 | 99.78 | 2.37 × 105 | 9.958 | 0.041 | 0.004 | 99.59 | 2.41 × 105 | 9.958 |
Ag+ | 10.0 | 0.0223 | 0.002 | 99.79 | 4.47 × 105 | 9.977 | 0.031 | 0.001 | 99.68 | 3.14 × 105 | 9.968 |
Pb2+ | 10.0 | 9.3199 | 0.063 | 6.80 | 73.0 | 0.680 | 9.456 | 0.101 | 5.43 | 57.5 | 0.543 |
Cd2+ | 10.0 | 10.0 | - | 0.0 | 0.0 | 0.0 | 10.0 | - | 0.0 | 0.0 | 0.0 |
Ni2+ | 10.0 | 10.0 | - | 0.0 | 0.0 | 0.0 | 10.0 | - | 0.0 | 0.0 | 0.0 |
Zn2+ | 10.0 | 10.0 | - | 0.0 | 0.0 | 0.0 | 10.0 | - | 0.0 | 0.0 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, S.C.; Donley, C.L.; Islam, S.M. Efficient Sequestration of Heavy Metal Cations by [Mo2S12]2− Intercalated Cobalt Aluminum-Layered Double Hydroxide. Inorganics 2025, 13, 50. https://doi.org/10.3390/inorganics13020050
Roy SC, Donley CL, Islam SM. Efficient Sequestration of Heavy Metal Cations by [Mo2S12]2− Intercalated Cobalt Aluminum-Layered Double Hydroxide. Inorganics. 2025; 13(2):50. https://doi.org/10.3390/inorganics13020050
Chicago/Turabian StyleRoy, Subrata Chandra, Carrie L. Donley, and Saiful M. Islam. 2025. "Efficient Sequestration of Heavy Metal Cations by [Mo2S12]2− Intercalated Cobalt Aluminum-Layered Double Hydroxide" Inorganics 13, no. 2: 50. https://doi.org/10.3390/inorganics13020050
APA StyleRoy, S. C., Donley, C. L., & Islam, S. M. (2025). Efficient Sequestration of Heavy Metal Cations by [Mo2S12]2− Intercalated Cobalt Aluminum-Layered Double Hydroxide. Inorganics, 13(2), 50. https://doi.org/10.3390/inorganics13020050