NiCo(OH)2/NiCo2O4 as a Heterogeneous Catalyst for the Electrooxidation of 5-Hydroxymethylfurfural
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of Structure
2.2. Performance of HMFOR
3. Materials and Methods
3.1. Materials
3.2. Preparation of NF@NiCo2O4
3.3. Preparation of NF@NiCo-H/O
3.4. Physicochemical Characterization
3.5. Electrochemical Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, X.; Wang, Y.; Wu, Z.-S. Design principle of electrocatalysts for the electrooxidation of organics. Chem 2022, 8, 2594–2629. [Google Scholar] [CrossRef]
- Chen, C.; Lv, M.; Hu, H.; Huai, L.; Zhu, B.; Fan, S.; Wang, Q.; Zhang, J. 5-Hydroxymethylfurfural and its downstream chemicals: A review of catalytic routes. Adv. Mater. 2024, 36, 2311464. [Google Scholar]
- Simoska, O.; Rhodes, Z.; Weliwatte, S.; Cabrera-Pardo, J.R.; Gaffney, E.M.; Lim, K.; Minteer, S.D. Advances in electrochemical modification strategies of 5-hydroxymethylfurfural. ChemSusChem 2021, 14, 1674–1686. [Google Scholar]
- Pham, M.T.H.; Ang, A.W.Y.; Vo, T.G.; Hayashi, T.; Chiang, C.Y. Unlocking the potential of mixed-valence silver oxide for electrochemical valorization of 5-hydroxymethylfurfural into valuable products. Mater. Today Sustain. 2024, 28, 100992. [Google Scholar] [CrossRef]
- Kubota, S.R.; Choi, K.S. Electrochemical oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid (FDCA) in acidic media enabling spontaneous FDCA separation. ChemSusChem 2018, 11, 2138–2145. [Google Scholar] [CrossRef] [PubMed]
- Zubair, M.; Usov, P.M.; Ohtsu, H.; Yuwono, J.A.; Gerke, C.S.; Foley, G.D.; Hackbarth, H.; Webster, R.F.; Yang, Y.; Lie, W.H.; et al. Vacancy mediated electrooxidation of 5-hydroxymethyl furfuryl using defect engineered layered double hydroxide electrocatalysts. Adv. Energy Mater. 2024, 14, 2400676. [Google Scholar] [CrossRef]
- Woo, J.; Moon, B.C.; Lee, U.; Oh, H.S.; Chae, K.H.; Jun, Y.; Lee, D.K. Collaborative electrochemical oxidation of the alcohol and aldehyde groups of 5-hydroxymethylfurfural by NiOOH and Cu(OH)2 for superior 2, 5-furandicarboxylic acid production. ACS Catal. 2022, 12, 4078–4091. [Google Scholar] [CrossRef]
- Taitt, B.; Nam, D.; Choi, K. A comparative study of nickel, cobalt, and iron oxyhydroxide anodes for the electrochemical oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid. ACS Catal. 2018, 9, 660–670. [Google Scholar] [CrossRef]
- Bender, M.T.; Choi, K.S. Electrochemical oxidation of HMF via hydrogen atom transfer and hydride transfer on NiOOH and the impact of NiOOH composition. ChemSusChem 2022, 15, e202200675. [Google Scholar] [CrossRef]
- Han, W.; Tang, M.; Li, J.; Li, X.; Wang, J.; Zhou, L.; Yang, Y.; Wang, Y.; Ge, H. Selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran catalyzed by ordered mesoporous alumina supported nickel-molybdenum sulfide catalysts. Appl. Catal. B 2020, 268, 118748. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Qi, Y.; Li, W.; Wang, C. Efficient electrooxidation of 5-hydroxymethylfurfural using Co-doped Ni3S2 catalyst: Promising for H2 production under industrial-level current density. Adv. Sci. 2022, 9, 2200957. [Google Scholar]
- Xu, X.; Song, X.; Liu, X.; Wang, H.; Hu, Y.; Xia, J.; Chen, J.; Shakouri, M.; Guo, Y.; Wang, Y. A highly efficient nickel phosphate electrocatalyst for the oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. ACS Sustain. Chem. Eng. 2022, 10, 5538–5547. [Google Scholar] [CrossRef]
- Fu, J.; Yang, G.; Jiao, Y.; Tian, C.; Yan, H.; Fu, H. Ni-Cu-based phosphide heterojunction for 5-hydroxymethylfurfural electrooxidation-assisted hydrogen production at large current density. Nano Energy 2024, 127, 109727. [Google Scholar]
- Huang, R.; Jiang, J.; Liang, J.; Wang, S.; Chen, Y.; Zeng, X.; Wang, K. Selective hydrogenation of 5-hydroxymethylfurfural triggered by a high Lewis acidic Ni-based transition metal carbide catalyst. Green Energy Environ. 2025, 10, 573–584. [Google Scholar] [CrossRef]
- Li, Y.; Alorku, K.; Shen, C.; Yan, L.; Li, Q.; Tian, X.; Li, W.; Xu, Y.; Wang, C.; Li, C.; et al. In-situ redispersion of Ni@C catalyst boosts 5-hydroxymethylfurfural electrooxidation by increasing Ni4+ sites. Appl. Catal. B 2024, 357, 124250. [Google Scholar]
- Huang, N.; Chu, B.; Chen, D.; Shao, B.; Zheng, Y.; Li, L.; Xiao, X.; Xu, Q. Rational design of a quasi-metal–organic framework by ligand engineering for efficient biomass upgrading. J. Am. Chem. Soc. 2025, 147, 8832–8840. [Google Scholar] [CrossRef]
- Yang, S.; Guo, Y.; Zhao, P.; Jiang, H.; Shen, H.; Chen, Z.; Jiang, L.; Xue, X.; Zhang, Q.; Zhang, H. Unraveling the electrooxidation mechanism of 5-(hydroxymethyl)furfural at a molecular level via nickel-based two-dimensional metal–organic frameworks catalysts. ACS Catal. 2024, 14, 449–462. [Google Scholar] [CrossRef]
- Prabhu, P.; Wan, Y.; Lee, J.M. Electrochemical conversion of biomass derived products into high-value chemicals. Matter 2020, 3, 1162–1177. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Mao, C.; Qiu, J.; Wang, R.; Liu, Y.; Chen, Y.; Wang, D. Ligand-hybridization activates lattice-hydroxyl-groups of NiCo(OH)x nanowires for efficient electrosynthesis. Angew. Chem. Int. Ed. 2024, 63, e202408109. [Google Scholar] [CrossRef]
- Li, K.; Lu, H.; Shi, H. Engineering the morphology and electronic structure of NiCo2O4 to boost the electrocatalytic oxidation of 5-hydroxymethylfurfural. ChemSusChem 2025, 18, e202402605. [Google Scholar] [CrossRef]
- Yang, S.; Xiang, X.; He, Z.; Zhong, W.; Jia, C.; Gong, Z.; Zhang, N.; Zhao, S.; Ya, C. Anionic defects engineering of NiCo2O4 for 5-hydroxymethylfurfural electrooxidation. Chem. Eng. J. 2023, 457, 141344. [Google Scholar] [CrossRef]
- Liu, G.; Nie, T.; Song, Z.; Sun, X.; Shen, T.; Bai, S.; Zheng, L.; Song, Y. Pd Loaded NiCo hydroxides for biomass electrooxidation: Understanding the synergistic effect of proton deintercalation and adsorption kinetics. Angew. Chem. Int. Ed. 2023, 135, e202311696. [Google Scholar] [CrossRef]
- Jadhav, H.; Roy, A.; Desalegan, B.; Seo, J. An advanced and highly efficient Ce assisted NiFe-LDH electrocatalyst for overall water splitting. Sustain. Energy Fuels 2020, 4, 312–323. [Google Scholar] [CrossRef]
- Nagappan, S.; Karmakar, A.; Madhu, R.; Sankar, S.; Kumaravel, S.; Bera, K.; Dhandapani, H.; Sarkar, D.; Yusuf, S.M.; Kundu, S. 2D CoFe-LDH nanosheet-incorporated 1D microfibers as a high-performance OER electrocatalyst in neutral and alkaline media. ACS Appl. Energy Mater. 2022, 5, 11483–11497. [Google Scholar] [CrossRef]
- Nyongombe, G.E.; Kabongo, G.L.; Noto, L.L.; Dhlamini, M.S. Up-scalable synthesis of highly crystalline electroactive Ni-Co LDH nanosheets for supercapacitor applications. Int. J. Electrochem. Sci. 2020, 15, 4494–4502. [Google Scholar] [CrossRef]
- Zhao, G.; Hai, G.; Zhou, P.; Liu, Z.; Zhang, Y.; Peng, B.; Xia, W.; Huang, X.; Wang, G. Electrochemical oxidation of 5-hydroxymethylfurfural on CeO2-modified Co3O4 with regulated intermediate adsorption and promoted charge transfer. Adv. Funct. Mater. 2023, 33, 2213170. [Google Scholar] [CrossRef]
- Qi, Y.F.; Wang, K.Y.; Zhou, Y.; Sun, Y.; Wang, C. Effects of different vacancies in nickel hydroxides on the electrooxidation towards 5-hydroxymethylfurfural. Chem. Eng. J. 2023, 477, 146917. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Chu, L.; Huang, Z.; Yang, M.; Wang, G. Electronic structure modulation and morphological engineering of trifunctional NixCoyP electrode for ultrastable overall water splitting at 1 A cm−2 and efficient biomass oxidation valorization. Int. J. Hydrogen Energy 2024, 64, 830–841. [Google Scholar] [CrossRef]
- Wang, W.; Wang, M. Nitrogen modulated NiMoO4 with enhanced activity for the electrochemical oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid. Catal. Sci. Technol. 2021, 11, 7326–7330. [Google Scholar] [CrossRef]
- Xiong, Y.; Hu, S.; Jiang, J.; Liu, Y.; Zhao, W.; Ji, X.; Chen, C.; Fan, M.; Wang, K. Enhancing Ni oxidation reconstruction in Ni3Fe nanoalloy for efficient electro-oxidation of 5-Hydroxymethylfurfural. Chem. Eng. J. 2024, 499, 156320. [Google Scholar] [CrossRef]
- Sun, M.; Yang, J.; Huang, J.; Wang, Y.; Liu, X.; Qi, Y.; Zhang, L. Interfacial engineering of Ni/Ni0.2Mo0.8N heterostructured nanorods realizes efficient 5-hydroxymethylfurfural electrooxidation and hydrogen evolution. Langmuir 2023, 39, 3762–3769. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Xie, Y.; Sun, L.; Wang, Z.; Wang, W.; Jiang, L.; Tao, X.; Li, L.; Li, X.; Zhao, G. Strain-induced in situ formation of NiOOH species on CoCo bond for selective electrooxidation of 5-hydroxymethylfurfural and efficient hydrogen production. Appl. Catal. B 2022, 305, 121072. [Google Scholar] [CrossRef]
- Ghosh, S.; Bagchi, D.; Mondal, I.; Sontheimer, T.; Jagadeesh, R.; Menezes, P. Deciphering the role of nickel in electrochemical organic oxidation reactions. Adv. Energy Mater. 2024, 14, 2400696. [Google Scholar] [CrossRef]
- Iliev, M.N.; Silwal, P.; Loukya, B.; Datta, R.; Kim, D.H.; Todorov, N.D.; Pachauri, N.; Gupta, A. Raman studies of cation distribution and thermal stability of epitaxial spinel NiCo2O4 films. J. Appl. Phy. 2013, 114, 033514. [Google Scholar] [CrossRef]
- Wu, Y.J.; Yang, J.; Tu, T.X.; Li, W.Q.; Zhang, P.F.; Zhou, Y.; Li, J.F.; Li, J.T.; Sun, S.G. Evolution of cationic vacancy defects: A motif for surface restructuration of OER precatalyst. Angew. Chem. Int. Ed. 2021, 60, 26829–26836. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Yin, D.; Liu, W.; Li, Y.; Wu, Y. NiCo(OH)2/NiCo2O4 as a Heterogeneous Catalyst for the Electrooxidation of 5-Hydroxymethylfurfural. Inorganics 2025, 13, 211. https://doi.org/10.3390/inorganics13070211
Li W, Yin D, Liu W, Li Y, Wu Y. NiCo(OH)2/NiCo2O4 as a Heterogeneous Catalyst for the Electrooxidation of 5-Hydroxymethylfurfural. Inorganics. 2025; 13(7):211. https://doi.org/10.3390/inorganics13070211
Chicago/Turabian StyleLi, Wen, Di Yin, Wanxin Liu, Yi Li, and Yijin Wu. 2025. "NiCo(OH)2/NiCo2O4 as a Heterogeneous Catalyst for the Electrooxidation of 5-Hydroxymethylfurfural" Inorganics 13, no. 7: 211. https://doi.org/10.3390/inorganics13070211
APA StyleLi, W., Yin, D., Liu, W., Li, Y., & Wu, Y. (2025). NiCo(OH)2/NiCo2O4 as a Heterogeneous Catalyst for the Electrooxidation of 5-Hydroxymethylfurfural. Inorganics, 13(7), 211. https://doi.org/10.3390/inorganics13070211