Biomolecules Electrochemical Sensing Properties of a PMo11V@N-Doped Few Layer Graphene Nanocomposite
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nanocomposite Preparation and Characterization
Sample | Atomic % | |||||
---|---|---|---|---|---|---|
C 1s | O 1s | N 1s | P 2p | V 2p | Mo 3d | |
N-FLG | 91.9 | 3.8 | 4.2 | |||
PMo1V@N-FLG | 74.6 | 16.9 | 3.1 | 0.45 | 0.41 | 4.4 |
2.2. Electrochemical Behaviour
2.3. Electro-Catalytic Performance of Nanocomposite Modified Electrodes
2.4. Determination of AC in the Presence of TP at a PMo11V@N-FLG/GCE
3. Experimental Section
3.1. Materials and Methods
3.2. Electrochemical Studies
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Beitollahi, H.; Taher, M.A.; Hosseini, A. Fabrication of a nanostructure-based electrochemical sensor for simultaneous determination of epinephrine and tryptophan. Measurement 2014, 51, 156–163. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Moazampour, M.; Ahmar, H.; Beitollahi, H.; Ensafi, A.A. A sensitive nanocomposite-based electrochemical sensor for voltammetric simultaneous determination of isoproterenol, acetaminophen and tryptophan. Measurement 2014, 51, 91–99. [Google Scholar] [CrossRef]
- Tajik, S.; Taher, M.A.; Beitollahi, H. Application of a new ferrocene-derivative modified-graphene paste electrode for simultaneous determination of isoproterenol, acetaminophen and theophylline. Sens. Actuators B Chem. 2014, 197, 228–236. [Google Scholar] [CrossRef]
- Lawal, A.T. Synthesis and utilisation of graphene for fabrication of electrochemical sensors. Talanta 2015, 131, 424–443. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.X.; He, Q.Y.; Tan, C.L.; Wang, Y.D.; Zhang, H. Graphene-Based Electrochemical Sensors. Small 2013, 9, 1160–1172. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.R.; Bong, S.; Kang, Y.J.; Yang, Y.; Mahajan, R.K.; Kim, J.S.; Kim, H. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron. 2010, 25, 2366–2369. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.M.; Tang, L.H.; Lu, J.; Li, J.H. Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun. 2009, 11, 889–892. [Google Scholar] [CrossRef]
- Ping, J.F.; Wu, J.; Wang, Y.X.; Ying, Y.B. Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens. Bioelectron. 2012, 34, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.X.; Hoh, H.Y.; Ang, P.K.; Loh, K.P. Direct Voltammetric Detection of DNA and pH Sensing on Epitaxial Graphene: An Insight into the Role of Oxygenated Defects. Anal. Chem. 2010, 82, 7387–7393. [Google Scholar] [CrossRef] [PubMed]
- Ruiyi, L.; Juanjuan, Z.; Zhouping, W.; Zaijun, L.; Junkang, L.; Zhiguo, G.; Guangli, W. Novel graphene-gold nanohybrid with excellent electrocatalytic performance for the electrochemical detection of glucose. Sens. Actuators B Chem. 2015, 208, 421–428. [Google Scholar] [CrossRef]
- Barsan, M.M.; Prathish, K.P.; Sun, X.; Brett, C.M.A. Nitrogen doped graphene and its derivatives as sensors and efficient direct electron transfer platform for enzyme biosensors. Sens. Actuators B Chem. 2014, 203, 579–587. [Google Scholar] [CrossRef]
- Dong, X.; Jiang, D.; Liu, Q.; Han, E.; Zhang, X.; Guan, X.; Wang, K.; Qiu, B. Enhanced amperometric sensing for direct detection of nitenpyram via synergistic effect of copper nanoparticles and nitrogen-doped graphene. J. Electroanal. Chem. 2014, 734, 25–30. [Google Scholar] [CrossRef]
- Sheng, Z.H.; Zheng, X.Q.; Xu, J.Y.; Bao, W.J.; Wang, F.B.; Xia, X.H. Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron. 2012, 34, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Li, S.M.; Yang, S.Y.; Wang, Y.S.; Lien, C.H.; Tien, H.W.; Hsiao, S.T.; Liao, W.H.; Tsai, H.P.; Chang, C.L.; Ma, C.C.M.; et al. Controllable synthesis of nitrogen-doped graphene and its effect on the simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. Carbon 2013, 59, 418–429. [Google Scholar] [CrossRef]
- Luo, S.P.; Chen, Y.; Xie, A.J.; Kong, Y.; Wang, B.; Yao, C. Nitrogen Doped Graphene Supported Ag Nanoparticles as Electrocatalysts for Oxidation of Glucose. ECS Electrochem. Lett. 2014, 3, B20–B22. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, F.L.; Liu, Y.X.; Pang, F.; Zhang, X. Green synthesis of silver nanoparticles on nitrogen-doped graphene for hydrogen peroxide detection. Electrochim. Acta 2014, 146, 646–653. [Google Scholar] [CrossRef]
- Borowiec, J.; Wang, R.; Zhu, L.H.; Zhang, J.D. Synthesis of nitrogen-doped graphene nanosheets decorated with gold nanoparticles as an improved sensor for electrochemical determination of chloramphenicol. Electrochim. Acta 2013, 99, 138–144. [Google Scholar] [CrossRef]
- Wang, R.Y.; Jia, D.Z.; Cao, Y.L. Facile synthesis and enhanced electrocatalytic activities of organic-inorganic hybrid ionic liquid polyoxometalate nanomaterials by solid-state chemical reaction. Electrochim. Acta 2012, 72, 101–107. [Google Scholar] [CrossRef]
- Zhou, C.L.; Li, S.; Zhu, W.; Pang, H.J.; Ma, H.Y. A sensor of a polyoxometalate and Au-Pd alloy for simultaneously detection of dopamine and ascorbic acid. Electrochim. Acta 2013, 113, 454–463. [Google Scholar] [CrossRef]
- Ji, Y.; Huang, L.; Hu, J.; Streb, C.; Song, Y.F. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems. Energy Environ. Sci. 2015, 8, 776–789. [Google Scholar] [CrossRef]
- Herrmann, S.; Ritchie, C.; Streb, C. Polyoxometalate—conductive polymer composites for energy conversion, energy storage and nanostructured sensors. Dalton Trans. 2015, 44, 7092–7104. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, N.; Wang, H.; Nakanishi, R.; Hamanaka, S.; Kitaura, R.; Shinohara, H.; Yokoyama, T.; Yoshikawa, H.; Awaga, K. Nanohybridization of Polyoxometalate Clusters and Single-Wall Carbon Nanotubes: Applications in Molecular Cluster Batteries. Angew. Chem. Int. Ed. 2011, 50, 3471–3474. [Google Scholar] [CrossRef]
- Cuentas-Gallegos, A.; Martinez-Rosales, R.; Baibarac, M.; Gomez-Romero, P.; Rincon, M.E. Electrochemical supercapacitors based on novel hybrid materials made of carbon nanotubes and polyoxometalates. Electrochem. Commun. 2007, 9, 2088–2092. [Google Scholar] [CrossRef]
- Guo, W.H.; Xu, L.; Xu, B.B.; Yang, Y.Y.; Sun, Z.X.; Liu, S.P. A modified composite film electrode of polyoxometalate/carbon nanotubes and its electrocatalytic reduction. J. Appl. Electrochem. 2009, 39, 647–652. [Google Scholar] [CrossRef]
- Ma, H.Y.; Gu, Y.; Zhang, Z.J.; Pang, H.J.; Li, S.; Kang, L. Enhanced electrocatalytic activity of a polyoxometalates-based film decorated by gold nanoparticles. Electrochim. Acta 2011, 56, 7428–7432. [Google Scholar] [CrossRef]
- Papagianni, G.G.; Stergiou, D.V.; Armatas, G.S.; Kanatzidis, M.G.; Prodromidis, M.I. Synthesis, characterization and performance of polyaniline-polyoxometalates (XM12, X = P, Si and M = Mo, W) composites as electrocatalysts of bromates. Sens. Actuators B Chem. 2012, 173, 346–353. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, W.J.; Li, S.; Ma, H.Y.; Chen, W.; Pang, H.J. Fabrication and electrochemical sensing performance of a composite film containing a phosphovanadomolybdate and cobalt(II) tetrasulfonate phthalocyanine. Sens. Actuators B Chem. 2013, 181, 773–781. [Google Scholar] [CrossRef]
- Fernandes, D.M.; Granadeiro, C.M.; de Sousa, P.M.P.; Grazina, R.; Moura, J.J.G.; Silva, P.; Paz, F.A.A.; Cunha-Silva, L.; Balula, S.S.; Freire, C. SiW11Fe@ MIL-101(Cr) Composite: A Novel and Versatile Electrocatalyst. ChemElectroChem 2014, 1, 1293–1300. [Google Scholar] [CrossRef]
- Fernandes, D.M.; Barbosa, A.D.S.; Pires, J.; Balula, S.S.; Cunha-Silva, L.; Freire, C. Novel Composite Material Polyoxovanadate@MIL-101(Cr): A Highly Efficient Electrocatalyst for Ascorbic Acid Oxidation. ACS Appl. Mater. Interfaces 2013, 5, 13382–13390. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.F.; Xie, F.; Xie, F.; Hu, R.F. Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen. Sens. Actuators B Chem. 2007, 123, 495–500. [Google Scholar] [CrossRef]
- Himeno, S.; Ishio, N. A voltammetric study on the formation of V(V)- and V(IV)-substituted molybdophosphate(V) complexes in aqueous solution. J. Electroanal. Chem. 1998, 451, 203–209. [Google Scholar] [CrossRef]
- Gaunt, A.J.; May, I.; Sarsfield, M.J.; Collison, D.; Helliwell, M.; Denniss, I.S. A rare structural characterisation of the phosphomolybdate lacunary anion, [PMo11O39]7−. Crystal structures of the Ln(III) complexes, (NH4)11 [Ln(PMo11O39)2]∙16H2O (Ln = CeIII, SmIII, DyIII or LuIII). Dalton Trans. 2003. [Google Scholar] [CrossRef]
- Copping, R.; Gaunt, A.J.; May, I.; Sarsfield, M.J.; Collison, D.; Helliwell, M.; Denniss, I.S.; Apperley, D.C. Trivalent lanthanide lacunary phosphomolybdate complexes: a structural and spectroscopic study across the series [Ln(PMo11O39)2]11-. Dalton Trans. 2005. [Google Scholar] [CrossRef]
- Olalde, B.; Aizpurua, J.M.; Garcia, A.; Bustero, I.; Obieta, I.; Jurado, M.J. Single-walled carbon nanotubes and multiwalled carbon nanotubes functionalized with poly(L-lactic acid): a comparative study. J. Phys. Chem. C 2008, 112, 10663–10667. [Google Scholar] [CrossRef]
- Kong, X.K.; Sun, Z.Y.; Chen, M.; Chen, C.L.; Chen, Q.W. Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energy Environ. Sci. 2013, 6, 3260–3266. [Google Scholar] [CrossRef]
- Kumarasinghe, A.R.; Samaranayake, L.; Bondino, F.; Magnano, E.; Kottegoda, N.; Carlino, E.; Ratnayake, U.N.; de Alwis, A.A.P.; Karunaratne, V.; Amaratunga, G.A.J. Self-Assembled Multilayer Graphene Oxide Membrane and Carbon Nanotubes Synthesized Using a Rare Form of Natural Graphite. J. Phys. Chem. C 2013, 117, 9507–9519. [Google Scholar] [CrossRef]
- Lee, D.W.; de los Santos, L.; Seo, J.W.; Felix, L.L.; Bustamante, A.; Cole, J.M.; Barnes, C.H.W. The Structure of Graphite Oxide: Investigation of Its Surface Chemical Groups. J. Phys. Chem. B 2010, 114, 5723–5728. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, D.M.; Freire, C. Carbon Nanomaterial-Phosphomolybdate Composites for Oxidative Electrocatalysis. ChemElectroChem 2015, 2, 269–279. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, Y.Y.; Matson, D.W.; Li, J.H.; Lin, Y.H. Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing. ACS Nano 2010, 4, 1790–1798. [Google Scholar] [CrossRef] [PubMed]
- Lipinska, M.E.; Rebelo, S.L.H.; Pereira, M.F.R.; Gomes, J.; Freire, C.; Figueiredo, J.L. New insights into the functionalization of multi-walled carbon nanotubes with aniline derivatives. Carbon 2012, 50, 3280–3294. [Google Scholar] [CrossRef]
- Xu, H.Y.; Xiao, J.J.; Liu, B.H.; Griveau, S.; Bedioui, F. Enhanced electrochemical sensing of thiols based on cobalt phthalocyanine immobilized on nitrogen-doped graphene. Biosens. Bioelectron. 2015, 66, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.Q.; Zhong, J.; Shi, Y.L.; Guo, J.; Huang, G.L.; Hong, C.H.; Zhao, Y.D. Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid-gas reaction. Mater. Res. Bull. 2015, 61, 252–258. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods, Fundamentals and Applications; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Bacsa, R.R.; Cameán, I.; Ramos, A.; Garcia, A.B.; Tishkova, V.; Bacsa, W.S.; Gallagher, J.R.; Miller, J.T.; Navas, H.; Jourdain, V.; et al. Few layer graphene synthesis on transition metal ferrite catalysts. Carbon 2015, 89, 350–360. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, D.M.; Nunes, M.; Carvalho, R.J.; Bacsa, R.; Mbomekalle, I.-M.; Serp, P.; De Oliveira, P.; Freire, C. Biomolecules Electrochemical Sensing Properties of a PMo11V@N-Doped Few Layer Graphene Nanocomposite. Inorganics 2015, 3, 178-193. https://doi.org/10.3390/inorganics3020178
Fernandes DM, Nunes M, Carvalho RJ, Bacsa R, Mbomekalle I-M, Serp P, De Oliveira P, Freire C. Biomolecules Electrochemical Sensing Properties of a PMo11V@N-Doped Few Layer Graphene Nanocomposite. Inorganics. 2015; 3(2):178-193. https://doi.org/10.3390/inorganics3020178
Chicago/Turabian StyleFernandes, Diana M., Marta Nunes, Ricardo J. Carvalho, Revathi Bacsa, Israel-Martyr Mbomekalle, Philippe Serp, Pedro De Oliveira, and Cristina Freire. 2015. "Biomolecules Electrochemical Sensing Properties of a PMo11V@N-Doped Few Layer Graphene Nanocomposite" Inorganics 3, no. 2: 178-193. https://doi.org/10.3390/inorganics3020178
APA StyleFernandes, D. M., Nunes, M., Carvalho, R. J., Bacsa, R., Mbomekalle, I.-M., Serp, P., De Oliveira, P., & Freire, C. (2015). Biomolecules Electrochemical Sensing Properties of a PMo11V@N-Doped Few Layer Graphene Nanocomposite. Inorganics, 3(2), 178-193. https://doi.org/10.3390/inorganics3020178