Predicted Siliconoids by Bridging Si9 Clusters through sp3-Si Linkers
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Neutral Polymers with SiCl2 or SiH2 Linkers between the Clusters
3.2. Charged Molecules—The Stepwise Ligand Exchange in SiCl4 to [Si17]12−
4. Conclusion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cullis, A.G.; Canham, L.T. Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 1991, 353, 335–338. [Google Scholar] [CrossRef]
- Canham, L.T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 1990, 57, 1046–1048. [Google Scholar] [CrossRef]
- Bisi, O.; Ossicini, S.; Pavesi, L. Porous silicon: A quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 2000, 38, 1–126. [Google Scholar] [CrossRef]
- Geppert, T.; Schiling, J.; Wehrspohn, R.; Gösele, U. Silicon-based photonic crystals. In Silicon Photonics; Pavesi, L., Lockwood, D.J., Eds.; Springer: Berlin, Germany, 2004; Volume 94, pp. 295–322. ISBN 978-3-540-21022-1. [Google Scholar]
- Abersfelder, K.; Russell, A.; Rzepa, H.S.; White, A.J.; Haycock, P.R.; Scheschkewitz, D. Contraction and expansion of the silicon scaffold of stable Si6R6 isomers. J. Am. Chem. Soc. 2012, 134, 16008–16016. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, T.; Akasaka, N.; Ishida, S. A heavy analogue of the smallest bridgehead alkene stabilized by a base. Nat. Commun. 2014, 5, 5353. [Google Scholar] [CrossRef] [PubMed]
- Abersfelder, K.; White, A.J.; Rzepa, H.S.; Scheschkewitz, D. A tricyclic aromatic isomer of hexasilabenzene. Science 2010, 327, 564–566. [Google Scholar] [CrossRef] [PubMed]
- Scheschkewitz, D. A molecular silicon cluster with a “naked” vertex atom. Angew. Chem. Int. Ed. 2005, 44, 2954–2956. [Google Scholar] [CrossRef] [PubMed]
- Jantke, L.A.; Stegmaier, S.; Karttunen, A.J.; Fässler, T.F. Slicing Diamond—A Guide to Deriving sp3-Si Allotropes. Chem. Eur J. 2017, 23, 2734–2747. [Google Scholar] [CrossRef] [PubMed]
- Jantke, L.A.; Karttunen, A.J.; Fassler, T.F. Slicing Diamond for More sp3-Group 14 Allotropes Ranging from Direct Bandgaps to Poor Metals. ChemPhysChem 2017, 18, 1992–2006. [Google Scholar] [CrossRef] [PubMed]
- Beekman, M.; Wei, K.; Nolas, G.S. Clathrates and beyond: Low-density allotropy in crystalline silicon. Appl. Phys. Rev. 2016, 3, 040804. [Google Scholar] [CrossRef]
- O’Keeffe, M.; Adams, G.B.; Sankey, O.F. Duals of Frank-Kasper structures as C, Si and Ge clathrates: Energetics and structure. Philosoph. Mag. Lett. 1998, 78, 21–28. [Google Scholar] [CrossRef]
- Krishna, L.; Martinez, A.D.; Baranowski, L.L.; Brawand, N.P.; Koh, C.A.; Stevanovic, V.; Lusk, M.T.; Toberer, E.S.; Tamboli, A.C. Group IV clathrates: Synthesis, optoelectronic properties, and photovoltaic applications. Proceedings 2014, 8981, 898108. [Google Scholar]
- Norouzzadeh, P.; Myles, C.W.; Vashaee, D. Prediction of Giant Thermoelectric Power Factor in Type-VIII Clathrate Si46. Sci. Rep. 2014, 4, 7028. [Google Scholar] [CrossRef] [PubMed]
- Härkönen, V.J.; Karttunen, A.J. Ab initio studies on the lattice thermal conductivity of silicon clathrate frameworks II and VIII. Phys. Rev. B 2016, 93, 024307. [Google Scholar] [CrossRef]
- Ammar, A.; Cros, C.; Pouchard, M.; Jaussaud, N.; Bassat, J.-M.; Villeneuve, G.; Duttine, M.; Ménétrier, M.; Reny, E. On the clathrate form of elemental silicon, Si136: Preparation and characterisation of NaxSi136 (x→0). Solid State Sci. 2004, 6, 393–400. [Google Scholar] [CrossRef]
- Ohashi, F.; Hattori, M.; Ogura, T.; Koketsu, Y.; Himeno, R.; Kume, T.; Ban, T.; Iida, T.; Habuchi, H.; Natsuhara, H.; et al. High-yield synthesis of semiconductive type-II Si clathrates with low Na content. J. Non-Cryst. Solids 2012, 358, 2134–2137. [Google Scholar] [CrossRef]
- Baranowski, L.L.; Krishna, L.; Martinez, A.D.; Raharjo, T.; Stevanovic, V.; Tamboli, A.C.; Toberer, E.S. Synthesis and optical band gaps of alloyed Si–Ge type II clathrates. J. Mater. Chem. C 2014, 2, 3231–3237. [Google Scholar] [CrossRef]
- Krishna, L.; Baranowski, L.L.; Martinez, A.D.; Koh, C.A.; Taylor, P.C.; Tamboli, A.C.; Toberer, E.S. Efficient route to phase selective synthesis of type II silicon clathrates with low sodium occupancy. Cryst. Eng. Comm 2014, 16, 3940–3949. [Google Scholar] [CrossRef]
- Buriak, J.M. Organometallic Chemistry on Silicon and Germanium Surfaces. Chem. Rev. 2002, 102, 1271–1308. [Google Scholar] [CrossRef] [PubMed]
- Wippermann, S.; He, Y.P.; Voros, M.; Galli, G. Novel silicon phases and nanostructures for solar energy conversion. Appl. Phys. Rev. 2016, 3, 040807. [Google Scholar] [CrossRef]
- Rapp, L.; Haberl, B.; Pickard, C.J.; Bradby, J.E.; Gamaly, E.G.; Williams, J.S.; Rode, A.V. Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion. Nat. Commun. 2015, 6, 7555. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Verri, G.G.; Lew Yan Voon, L.C. Electronic structure of silicon-based nanostructures. Phys. Rev. B 2007, 76, 075131. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Cahangirov, S.; Topsakal, M.; Akturk, E.; Sahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-L.; Arafune, R.; Kawahara, K.; Tsukahara, N.; Minamitani, E.; Kim, Y.; Takagi, N.; Kawai, M. Structure of Silicene Grown on Ag(111). Appl. Phys. Express 2012, 5, 045802. [Google Scholar] [CrossRef]
- Fleurence, A.; Friedlein, R.; Ozaki, T.; Kawai, H.; Wang, Y.; Yamada-Takamura, Y. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 2012, 108, 245501. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Wang, Y.; Zhang, L.; Du, S.; Wu, R.; Li, L.; Zhang, Y.; Li, G.; Zhou, H.; Hofer, W.A.; et al. Buckled Silicene Formation on Ir(111). Nano Lett. 2013, 13, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Xu, X.; Feng, H.; Li, Z.; Wang, X.; Du, Y. Honeycomb silicon: A review of silicene. Sci. Bull. 2015, 60, 1551–1562. [Google Scholar] [CrossRef]
- Kaloni, T.P.; Schreckenbach, G.; Freund, M.S.; Schwingenschlögl, U. Current developments in silicene and germanene. Phys. Status Solidi RRL 2016, 10, 133–142. [Google Scholar] [CrossRef]
- Voon, L.C.L.Y.; Zhu, J.; Schwingenschlögl, U. Silicene: Recent theoretical advances. Appl. Phys. Rev. 2016, 3, 040802. [Google Scholar] [CrossRef]
- Gimbert, F.; Lee, C.-C.; Friedlein, R.; Fleurence, A.; Yamada-Takamura, Y.; Ozaki, T. Diverse forms of bonding in two-dimensional Si allotropes: Nematic orbitals in the MoS2 structure. Phys. Rev. B 2014, 90, 165423. [Google Scholar] [CrossRef]
- Jantke, L.-A.; Karttunen, A.J.; Fässler, T.F. Chemi-inspired silicon allotropes—Experimentally accessible Si9 cages as building block for 1D polymers, 2D sheets, single-walled nanotubes, and nanoparticles. submitted.
- Fässler, T.F. Zintl phases: Principles and recent developments. In Structure and Bonding; Mingos, D.M.P., Ed.; Springer: Heidelberg, Germany, 2011; Volume 139, ISBN 978-3-642-21150-8. [Google Scholar]
- Scharfe, S.; Kraus, F.; Stegmaier, S.; Schier, A.; Fässler, T.F. Zintl Ions, Cage Compounds, and Intermetalloid Clusters of Group 14 and Group 15 Elements. Angew. Chem. Int. Ed. 2011, 50, 3630–3670. [Google Scholar] [CrossRef] [PubMed]
- Fässler, T.F. Zintl ions: Principles and recent developments. In Structure and Bonding; Mingos, D.M.P., Ed.; Springer: Heidelberg, Germany, 2011; Volume 140, ISBN 978-3-642-21181-2. [Google Scholar]
- Queneau, V.; Todorov, E.; Sevov, S.C. Synthesis and structure of isolated silicon clusters of nine atoms. J. Am. Chem. Soc. 1998, 120, 3263–3264. [Google Scholar] [CrossRef]
- Goicoechea, J.M.; Sevov, S.C. Ligand-free deltahedral clusters of silicon in solution: Synthesis, structure, and electrochemistry of [Si9]2−. Inorganic Chemistry 2005, 44, 2654–2658. [Google Scholar] [CrossRef] [PubMed]
- Goicoechea, J.M.; Sevov, S.C. Organozinc derivatives of deltahedral zintl ions: Synthesis and characterization of closo-[E9Zn(C6H5)]3− (E = Si, Ge, Sn, Pb). Organometallics 2006, 25, 4530–4536. [Google Scholar] [CrossRef]
- Joseph, S.; Hamberger, M.; Mutzbauer, F.; Härtl, O.; Meier, M.; Korber, N. Chemistry with Bare Silicon Clusters in Solution: A Transition-Metal Complex of a Polysilicide. Anion Angew. Chem. Int. Ed. 2009, 48, 8770–8772. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.; Suchentrunk, C.; Kraus, F.; Korber, N. [Si9]4– Anions in Solution—Structures of the Solvates Rb4Si9·4.75NH3 and [Rb(18-crown-6)]Rb3Si9·4NH3, and Chemical Bonding in [Si9]4–. Eur. J. Inorg. Chem. 2009, 2009, 4641–4647. [Google Scholar] [CrossRef]
- Waibel, M.; Kraus, F.; Scharfe, S.; Wahl, B.; Fässler, T.F. [(MesCu)2(η3-Si4)]4–: A Mesitylcopper-Stabilized Tetrasilicide Tetraanion. Angew. Chem. Int. Ed. 2010, 49, 6611–6615. [Google Scholar] [CrossRef] [PubMed]
- Geitner, F.S.; Fässler, T.F. Low Oxidation State Silicon Clusters—Synthesis and Structure of [NHCDippCu(η4-Si9)]2−. Chem. Commun. 2017, 53, 12974–12977. [Google Scholar] [CrossRef] [PubMed]
- Gärtner, S.; Hamberger, M.; Korber, N. The First Chelate-Free Crystal Structure of a Silicide Transition Metal Complex K0.28Rb7.72Si9(Ni(CO)2)2·16NH3. Crystals 2015, 5, 275–282. [Google Scholar] [CrossRef]
- Riley, A.E.; Korlann, S.D.; Richman, E.K.; Tolbert, S.H. Synthesis of semiconducting thin films with nanometer-scale periodicity by solution-phase coassembly of zintl clusters with surfactants. Angew. Chem. Int. Ed. 2005, 45, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Nolan, B.M.; Henneberger, T.; Waibel, M.; Fässler, T.F.; Kauzlarich, S.M. Silicon Nanoparticles by the Oxidation of [Si4]4−- and [Si9]4−- Containing Zintl Phases and Their Corresponding Yield. Inorg. Chem. 2015, 54, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Hanson, B. Jmol: An open-source Java viewer for chemical structures in 3D; Northfield, MN, USA, 2016. [Google Scholar]
- Rappe, A.M.; Joannopoulos, J.D.; Bash, P.A. A test of the utility of plane-waves for the study of molecules from first principles. J. Am. Chem. Soc. 1992, 114, 6466–6469. [Google Scholar] [CrossRef]
- Dovesi, R.; Saunders, V.R.; Roetti, R.; Orlando, R.; Zicovich-Wilson, C.M.; Pascale, F.; Civalleri, B.; Doll, K.; Harrison, N.M.; Bush, I.J.; et al. CRYSTAL09 User’s Manual; University of Turino: Turino, Italy, 2009. [Google Scholar]
- Dovesi, R.; Orlando, R.; Civalleri, B.; Roetti, C.; Saunders, V.R.; Zicovich-Wilson, C.M. CRYSTAL: A computational tool for the ab initio study of the electronic properties of crystals. Z. Kristallogr. 2005, 220, 571–573. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Karttunen, A.J.; Fässler, T.F.; Linnolahti, M.; Pakkanen, T.A. Structural Principles of Semiconducting Group 14 Clathrate Frameworks. Inorg. Chem. 2011, 50, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Scalmani, G.; Frisch, M.J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 2010, 132, 114110. [Google Scholar] [CrossRef] [PubMed]
- Karttunen, A.J.; Fässler, T.F.; Linnolahti, M.; Pakkanen, T.A. Two-, One-, and Zero-Dimensional Elemental Nanostructures Based on Ge9-Clusters. ChemPhysChem 2010, 11, 1944–1950. [Google Scholar] [CrossRef] [PubMed]
- Spiekermann, A.; Hoffmann, S.D.; Kraus, F.; Fässler, T.F. [Au3Ge18]5−—A gold-germanium cluster with remarkable Au–Au interactions. Angew. Chem. Int. Ed. 2007, 46, 1638–1640. [Google Scholar] [CrossRef] [PubMed]
Molecular Anions | Distances/Å | Distances/Å | Angles/° | Angles/° | Angles/° |
---|---|---|---|---|---|
X3Si–Si(Si9) | Si–Cl | X–Si–X | (Si9)–Si–X | (Si9)–Si–(Si9) | |
M1 | 2.58 (η3) | 2.20 | 94.6 | - | - |
M2 | 2.33 | - | 105.3 | 113.3 | - |
M3 | 2.35 | - | 107.8 | 111.1 | - |
M4 | 2.34 | 2.14 | 101.2 | 107.9 | 121.7 |
M5 | 2.37 | 2.18 | - | 100.6 | 116.7 |
M6 | 2.39 | - | - | - | 109.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jantke, L.-A.; Fässler, T.F. Predicted Siliconoids by Bridging Si9 Clusters through sp3-Si Linkers. Inorganics 2018, 6, 31. https://doi.org/10.3390/inorganics6010031
Jantke L-A, Fässler TF. Predicted Siliconoids by Bridging Si9 Clusters through sp3-Si Linkers. Inorganics. 2018; 6(1):31. https://doi.org/10.3390/inorganics6010031
Chicago/Turabian StyleJantke, Laura-Alice, and Thomas F. Fässler. 2018. "Predicted Siliconoids by Bridging Si9 Clusters through sp3-Si Linkers" Inorganics 6, no. 1: 31. https://doi.org/10.3390/inorganics6010031
APA StyleJantke, L.-A., & Fässler, T. F. (2018). Predicted Siliconoids by Bridging Si9 Clusters through sp3-Si Linkers. Inorganics, 6(1), 31. https://doi.org/10.3390/inorganics6010031