Self-Assembly in Polyoxometalate and Metal Coordination-Based Systems: Synthetic Approaches and Developments
Abstract
:1. Introduction
2. Polyoxometalate Systems
2.1. POM-Based Clusters and Supramolecular Aggregates
2.2. POM-OFs
3. Metal–Organic Coordination Frameworks
3.1. Catalysis and Gas Storage
3.2. Drug Delivery Systems (DDS)
4. Supramolecular Interactions in LDH Materials
5. Transition Metal Coordination Cages
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lehn, J.-M. Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 1988, 27, 89–112. [Google Scholar] [CrossRef]
- Lehn, J.-M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev. 2007, 36, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Lehn, J.-M. Toward complex matter: Supramolecular chemistry and self-organization. Proc. Natl. Acad. Sci. USA 2002, 99, 4763–4768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Diemann, E.; Li, H.; Dress, A.W.M.; Müller, A. Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles. Nature 2003, 426, 59–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Imber, B.; Diemann, E.; Liu, G.; Cokleski, K.; Li, H.; Chen, Z.; Müller, A. Deprotonations and Charges of Well-Defined {Mo72Fe30} Nanoacids Simply Stepwise Tuned by pH Allow Control/Variation of Related Self-Assembly Processes. J. Am. Chem. Soc. 2006, 128, 15914–15920. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.F.; Miras, H.N.; Rosnes, M.H.; Cronin, L. Real-time observation of the self-assembly of hybrid polyoxometalates using mass spectrometry. Angew. Chem. Int. Ed. 2011, 50, 3720–3724. [Google Scholar] [CrossRef] [PubMed]
- Miras, H.N.; Wilson, E.F.; Cronin, L. Unravelling the complexities of inorganic and supramolecular self-assembly in solution with electrospray and cryospray mass spectrometry. Chem. Commun. 2009, 1297–1311. [Google Scholar] [CrossRef] [PubMed]
- Miras, H.N.; Richmond, C.J.; Long, D.L.; Cronin, L. Solution-phase monitoring of the structural evolution of a Molybdenum Blue nanoring. J. Am. Chem. Soc. 2012, 134, 3816–3824. [Google Scholar] [CrossRef] [PubMed]
- Yoneya, M.; Yamaguchi, T.; Sato, S.; Fujita, M. Simulation of Metal–Ligand Self-Assembly into Spherical Complex M6L8. J. Am. Chem. Soc. 2012, 134, 14401–14407. [Google Scholar] [CrossRef] [PubMed]
- Yoneya, M.; Tsuzuki, S.; Yamaguchi, T.; Sato, S.; Fujita, M. Coordination-Directed Self-Assembly of M12L24 Nanocage: Effects of Kinetic Trapping on the Assembly Process. ACS Nano 2014, 8, 1290–1296. [Google Scholar] [CrossRef] [PubMed]
- Miras, H.N.; Cooper, G.J.T.; Long, D.-L.; Bögge, H.; Müller, A.; Streb, C.; Cronin, L. Unveiling the transient template in the self-assembly of a molecular oxide nanowheel. Science 2010, 327, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Zakharov, L.N.; Nyman, M. Observing Assembly of Complex Inorganic Materials from Polyoxometalate Building Blocks. J. Am. Chem. Soc. 2013, 135, 16651–16657. [Google Scholar] [CrossRef] [PubMed]
- Nyman, M. Polyoxoniobate chemistry in the 21st century. Dalton Trans. 2011, 40, 8049. [Google Scholar] [CrossRef] [PubMed]
- Nelson, W.H.; Tobias, R.S. Structure of the Polyanions of the Transition Metals in Aqueous Solution: The Hexatantalate. Inorg. Chem. 1963, 2, 985–992. [Google Scholar] [CrossRef]
- Li, S.; Liu, S.; Liu, S.; Liu, Y.; Tang, Q.; Shi, Z.; Ouyang, S.; Ye, J. {Ta12}/{Ta16} Cluster-Containing Polytantalotungstates with Remarkable Photocatalytic H2 Evolution Activity. J. Am. Chem. Soc. 2012, 134, 19716–19721. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Izarova, N.V.; Schinle, F.; Hampe, O.; Keita, B.; Kortz, U. The selenite-capped polyoxo-4-aurate(III), [AuIII4O4(SeIVO3)4]4−. Chem. Commun. 2012, 48, 9849. [Google Scholar] [CrossRef] [PubMed]
- Izarova, N.V.; Vankova, N.; Heine, T.; Biboum, R.N.; Keita, B.; Nadjo, L.; Kortz, U. Polyoxometalates Made of Gold: The Polyoxoaurate [AuIII4AsV4O20]8−. Angew. Chem. Int. Ed. 2010, 49, 1886–1889. [Google Scholar] [CrossRef] [PubMed]
- Barsukova, M.; Izarova, N.V.; Biboum, R.N.; Keita, B.; Nadjo, L.; Ramachandran, V.; Dalal, N.S.; Antonova, N.S.; Carbó, J.J.; Poblet, J.M.; et al. Polyoxopalladates Encapsulating Yttrium and Lanthanide Ions, [XIIIPdII12(AsPh)8O32]5− (X = Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). Chem. A Eur. J. 2010, 16, 9076–9085. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Xiang, Y.; Lin, Z.; Lang, Z.; Jiménez-Lozano, P.; Carbó, J.J.; Poblet, J.M.; Fan, L.; Hu, C.; Kortz, U. Discrete Silver(I)-Palladium(II)-Oxo Nanoclusters, {Ag4Pd13} and {Ag5Pd15}, and the Role of Metal–Metal Bonding Induced by Cation Confinement. Angew. Chem. Int. Ed. 2016, 55, 15766–15770. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Li, H.; Ma, T.; Haso, F.; Liu, T.; Fan, L.; Lin, Z.; Hu, C.; Kortz, U. Rational Design of Organically Functionalized Polyoxopalladates and Their Supramolecular Properties. Chem. A Eur. J. 2018, 24, 2466–2473. [Google Scholar] [CrossRef] [PubMed]
- Chubarova, E.V.; Dickman, M.H.; Keita, B.; Nadjo, L.; Miserque, F.; Mifsud, M.; Arends, I.W.C.E.; Kortz, U. Self-Assembly of a Heteropolyoxopalladate Nanocube: [PdII13AsV8O34(OH)6]8−. Angew. Chem. Int. Ed. 2008, 47, 9542–9546. [Google Scholar] [CrossRef] [PubMed]
- Izarova, N.V.; Pope, M.T.; Kortz, U. Noble Metals in Polyoxometalates. Angew. Chem. Int. Ed. 2012, 51, 9492–9510. [Google Scholar] [CrossRef] [PubMed]
- Vilà-Nadal, L.; Cronin, L. Design and synthesis of polyoxometalate-framework materials from cluster precursors. Nat. Rev. Mater. 2017, 2, 17054. [Google Scholar] [CrossRef]
- Miras, H.N.; Long, D.-L.; Cronin, L. Exploring Self-Assembly and the Self-Organization of Nanoscale Inorganic Polyoxometalate Clusters. In Polyoxometalate Chemistry; Elsevier Inc.: Cambridge, MA, USA, 2017; Volume 69. [Google Scholar]
- Long, D.L.; Tsunashima, R.; Cronin, L. Polyoxometalates: Building blocks for functional nanoscale systems. Angew. Chem. Int. Ed. 2010, 49, 1736–1758. [Google Scholar] [CrossRef] [PubMed]
- Nomiya, K.; Miwa, M. Structural stability index of heteropoly- and isopoly-anions. Polyhedron 1984, 3, 341–346. [Google Scholar] [CrossRef]
- Müller, A.; Krickemeyer, E.; Meyer, J.; Bögge, H.; Peters, F.; Plass, W.; Diemann, E.; Dillinger, S.; Nonnenbruch, F.; Randerath, M.; et al. [Mo154(NO)14O420(OH)28(H2O)70](25±5)−: A Water-Soluble Big Wheel with More than 700 Atoms and a Relative Molecular Mass of About 24000. Angew. Chem. Int. Ed. Engl. 1995, 34, 2122–2124. [Google Scholar] [CrossRef]
- Müller, A.; Krickemeyer, E.; Bögge, H.; Schmidtmann, M.; Beugholt, C.; Kögerler, P.; Lu, C. Formation of a Ring-Shaped Reduced “Metal Oxide” with the Simple Composition [(MoO3)176(H2O)80H32]. Angew. Chem. Int. Ed. 1998, 37, 1220–1223. [Google Scholar] [CrossRef]
- Müller, A.; Krickemeyer, E.; Bögge, H.; Schmidtmann, M.; Peters, F. Organizational Forms of Matter: An Inorganic Super Fullerene and Keplerate Based on Molybdenum Oxide. Angew. Chem. Int. Ed. 1998, 37, 3359–3363. [Google Scholar] [CrossRef]
- Chilas, G.I.; Miras, H.N.; Manos, M.J.; Woollins, J.D.; Slawin, A.M.Z.; Stylianou, M.; Keramidas, A.D.; Kabanos, T.A. Oxovanadium(IV)-sulfite compounds: Synthesis and structural and physical studies. Pure Appl. Chem. 2005, 77, 1529–1538. [Google Scholar] [CrossRef] [Green Version]
- Miras, H.N.; Stone, D.J.; McInnes, E.J.L.; Raptis, R.G.; Baran, P.; Chilas, G.I.; Sigalas, M.P.; Kabanos, T.A.; Cronin, L. Solution identification and solid state characterisation of a heterometallic polyoxometalate {Mo11V7}: [MoVI11VV5VIV2O52(μ9-SO3)]7−. Chem. Commun. (Camb.) 2008, 52, 4703–4705. [Google Scholar] [CrossRef] [PubMed]
- Sartzi, H.; Long, D.-L.; Sproules, S.; Cronin, L.; Miras, H.N. Directed Self-Assembly, Symmetry Breaking, and Electronic Modulation of Metal Oxide Clusters by Pyramidal Heteroanions. Chem. A Eur. J. 2018, 24, 4399–4411. [Google Scholar] [CrossRef] [PubMed]
- Finke, R.G.; Rapko, B.; Saxton, R.J.; Domaille, P.J. Trisubstituted heteropolytungstates as soluble metal oxide analogs. III. Synthesis, characterization, phosphorus-31, silicon-29, vanadium-51, and 1- and 2-D tungsten-183 NMR, deprotonation, and proton mobility studies of organic solvent solute forms of HxSiW9V3O40x−7 and HxP2W15V3O62x−9. J. Am. Chem. Soc. 1986, 108, 2947–2960. [Google Scholar] [CrossRef]
- Finke, R.G.; Lyon, D.K.; Nomiya, K.; Weakley, T.J.R. Structure of nonasodium α-triniobatopentadecawolframatodiphosphate–acetonitrile–water (1/2/23), Na9[P2W15Nb3O62]·2CH3CN·23H2O. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1990, 46, 1592–1596. [Google Scholar] [CrossRef]
- Sakai, Y.; Kitakoga, Y.; Hayashi, K.; Yoza, K.; Nomiya, K. Isolation and Molecular Structure of a Monomeric, Tris[peroxotitanium(IV)]-Substituted α-Dawson Polyoxometalate Derived from the Tetrameric Anhydride Form Composed of Four Tris[titanium(IV)]-Substituted α-Dawson Substructures and Four Bridging Titanium(IV) Octahedral Groups. Eur. J. Inorg. Chem. 2004, 2004, 4646–4652. [Google Scholar] [CrossRef]
- Finke, R.G.; Droege, M.W. Trivacant heteropolytungstate derivatives. 2. Synthesis, characterization, and tungsten-183 NMR of P4W30M4(H2O)2O11216− (M = Co, Cu, Zn). Inorg. Chem. 1983, 22, 1006–1008. [Google Scholar] [CrossRef]
- Gomez-Garcia, C.J.; Borras-Almenar, J.J.; Coronado, E.; Ouahab, L. Single-Crystal X-ray Structure and Magnetic Properties of the Polyoxotungstate Complexes Na16[M4(H2O)2(P2W15O56)2]·nH2O (M = MnII, n = 53; M = NiII, n = 52): An Antiferromagnetic MnII Tetramer and a Ferromagnetic NiII Tetramer. Inorg. Chem. 1994, 33, 4016–4022. [Google Scholar] [CrossRef]
- Zhang, Χ.; Chen, Q.; Duncan, D.C.; Campana, C.F.; Hill, C.L. Multiiron Polyoxoanions. Syntheses, Characterization, X-ray Crystal Structures, and Catalysis of H2O2-Based Hydrocarbon Oxidations by [FeIII4(H2O)2(P2W15O56)2]12−. Inorg. Chem. 1997, 36, 4208–4215. [Google Scholar] [CrossRef]
- Weakley, T.J.R.; Finke, R.G. Single-crystal X-ray structures of the polyoxotungstate salts K8.3Na1.7[Cu4(H2O)2(PW9O34)2]·24H2O and Na14Cu[Cu4(H2O)2(P2W15O56)2]·53H2O. Inorg. Chem. 1990, 29, 1235–1241. [Google Scholar] [CrossRef]
- Fang, X.; Kögerler, P. PO43−-Mediated Polyoxometalate Supercluster Assembly. Angew. Chem. Int. Ed. 2008, 47, 8123–8126. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, C.P.; Long, D.-L.; Kögerler, P.; Cronin, L. Controlled assembly and solution observation of a 2.6 nm polyoxometalate ‘super’ tetrahedron cluster: [KFe12(OH)18(α-1,2,3-P2W15O56)4]29–. Chem. Commun. 2007, 4254–4256. [Google Scholar] [CrossRef]
- Sakai, Y.; Yoshida, S.; Hasegawa, T.; Murakami, H.; Nomiya, K. Tetrameric, Tri-Titanium(IV)-Substituted Polyoxometalates with an α-Dawson Substructure as Soluble Metal Oxide Analogues. Synthesis and Molecular Structure of Three Giant “Tetrapods” Encapsulating Different Anions (Br−, I−, and NO3− ). Bull. Chem. Soc. Jpn. 2007, 80, 1965–1974. [Google Scholar] [CrossRef]
- Cadot, E.; Pilette, M.-A.; Marrot, J.; Sécheresse, F. A Supramolecular Tetra-Dawson Polyoxothiometalate: [(α-H2P2W15O56)4{Mo2O2S2(H2O)2}4{Mo4S4O4(OH)2(H2O)}2]28−. Angew. Chem. Int. Ed. 2003, 42, 2173–2176. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Kögerler, P.; Isaacs, L.; Uchida, S.; Mizuno, N. Cucurbit[n]uril-Polyoxoanion Hybrids. J. Am. Chem. Soc. 2009, 131, 432–433. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.-L.; Cai, F.-Y.; Huang, H.-B.; Karadeniz, B.; Lü, J. Polyoxometalate-cucurbituril molecular solid as photocatalyst for dye degradation under visible light. Inorg. Chem. Commun. 2017, 84, 164–167. [Google Scholar] [CrossRef]
- Zou, C.; Zhao, P.; Ge, J.; Qin, Y.; Luo, P. Oxidation/adsorption desulfurization of natural gas by bridged cyclodextrins dimer encapsulating polyoxometalate. Fuel 2013, 104, 635–640. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, R.; Wu, Y.-L.; Holcroft, J.M.; Liu, Z.; Frasconi, M.; Wasielewski, M.R.; Li, H.; Stoddart, J.F. Complexation of Polyoxometalates with Cyclodextrins. J. Am. Chem. Soc. 2015, 137, 4111–4118. [Google Scholar] [CrossRef] [PubMed]
- Moussawi, M.A.; Leclerc-Laronze, N.; Floquet, S.; Abramov, P.A.; Sokolov, M.N.; Cordier, S.; Ponchel, A.; Monflier, E.; Bricout, H.; Landy, D.; et al. Polyoxometalate, Cationic Cluster, and γ-Cyclodextrin: From Primary Interactions to Supramolecular Hybrid Materials. J. Am. Chem. Soc. 2017, 139, 12793–12803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moussawi, M.A.; Haouas, M.; Floquet, S.; Shepard, W.E.; Abramov, P.A.; Sokolov, M.N.; Fedin, V.P.; Cordier, S.; Ponchel, A.; Monflier, E.; et al. Nonconventional Three-Component Hierarchical Host–Guest Assembly Based on Mo-Blue Ring-Shaped Giant Anion, γ-Cyclodextrin, and Dawson-type Polyoxometalate. J. Am. Chem. Soc. 2017, 139, 14376–14379. [Google Scholar] [CrossRef] [PubMed]
- Miras, H.N.; Vilà-Nadal, L.; Cronin, L. Polyoxometalate based open-frameworks (POM-OFs). Chem. Soc. Rev. 2014, 43, 5679–5699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, H.; Hou, Y.; Wang, L.; Zhang, Y.; Yang, W.; Chang, S. Evans–Showell-Type Polyoxometalates Constructing High-Dimensional Inorganic–Organic Hybrid Compounds with Copper–Organic Coordination Complexes: Synthesis and Oxidation Catalysis. Inorg. Chem. 2017, 56, 11619–11632. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sun, J.; Lin, H.; Chang, Z.; Wang, X.; Liu, G. A series of Anderson-type polyoxometalate-based metal–organic complexes: Their pH-dependent electrochemical behaviour, and as electrocatalysts and photocatalysts. Dalton Trans. 2016, 45, 12465–12478. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.-Q.; Li, S.-L.; Wang, X.-L.; Shao, K.-Z.; Du, D.-Y.; Zang, H.-Y.; Su, Z.-M. Self-Assembly of Polyoxometalate-Based Metal Organic Frameworks Based on Octamolybdates and Copper–Organic Units: From CuII, CuI,II to CuI via Changing Organic Amine. Inorg. Chem. 2008, 47, 8179–8187. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.-K.; Bewley, L.; Golub, V.; Rarig, R.S.; Burkholder, E.; O’Connor, C.J.; Zubieta, J. Anion influences on the construction of one-dimensional structures of the Cu(II)–bisterpy family (bisterpy = 2,2′:4′,4″:2″,2‴-quarterpyridyl, 6′,6″-di-2-pyridiine). Inorg. Chim. Acta 2003, 351, 167–176. [Google Scholar] [CrossRef]
- Su, Z.-H.; Zhou, B.-B.; Zhao, Z.-F.; Zhang, X. A novel 1D chain compound constructed from copper-complex fragments-substituted dilacunary β-octamolybdate units and saturated β-octamolybdate clusters. Inorg. Chem. Commun. 2008, 11, 334–337. [Google Scholar] [CrossRef]
- Li, S.-L.; Lan, Y.-Q.; Ma, J.-F.; Yang, J.; Wang, X.-H.; Su, Z.-M. Syntheses and Structures of Organic-Inorganic Hybrid Compounds Based on Metal-Fluconazole Coordination Polymers and the β-Mo8O26 Anion. Inorg. Chem. 2007, 46, 8283–8290. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.; Streb, C.; Pickering, A.L.; Neil, A.R.; Long, D.-L.; Cronin, L. Molecular Growth of Polyoxometalate Architectures Based on [–Ag{Mo8}Ag–] Synthons: Toward Designed Cluster Assemblies. Cryst. Growth Des. 2008, 8, 635–642. [Google Scholar] [CrossRef]
- Abbas, H.; Pickering, A.L.; Long, D.-L.; Kögerler, P.; Cronin, L. Controllable Growth of Chains and Grids from Polyoxomolybdate Building Blocks Linked by Silver(I) Dimers. Chem. A Eur. J. 2005, 11, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Dolbecq, A.; Mialane, P.; Sécheresse, F.; Keita, B.; Nadjo, L. Functionalized polyoxometalates with covalently linked bisphosphonate, N-donor or carboxylate ligands: From electrocatalytic to optical properties. Chem. Commun. 2012, 48, 8299–8316. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, M.; Eshtiagh-Hosseini, H.; Nikpour, M.; Gholizadeh, A.; Ebrahimi, A. Synthesis, X-ray Crystal Structure and Spectroscopic Characterization of a Hybrid Material Based on Glycine and α-Keggin Type Polyoxotungstate. Mendeleev Commun. 2012, 22, 141–142. [Google Scholar] [CrossRef]
- Eshtiagh-Hosseini, H.; Mirzaei, M. Two Novel Chiral Inorganic–Organic Hybrid Materials Containing Preyssler and Wells–Dawson Heteropolyoxometallates with Valine (val), Glycine (gly), and Proline (pro) Amino acids: (Hval)2(Hgly)(H3O)6K5[Na(H2O)P5W30O110]·19.5H2O and (Hpro)6[P2W18O62]·8H2O. J. Clust. Sci. 2012, 23, 345–355. [Google Scholar] [CrossRef]
- Compain, J.-D.; Mialane, P.; Marrot, J.; Sécheresse, F.; Zhu, W.; Oldfield, E.; Dolbecq, A. Tetra- to Dodecanuclear Oxomolybdate Complexes with Functionalized Bisphosphonate Ligands: Activity in Killing Tumor Cells. Chem. A Eur. J. 2010, 16, 13741–13748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarafianos, S.G.; Kortz, U.; Pope, M.T.; Modak, M.J. Mechanism of polyoxometalate-mediated inactivation of DNA polymerases: An analysis with HIV-1 reverse transcriptase indicates specificity for the DNA-binding cleft. Biochem. J. 1996, 319, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Rhule, J.T.; Hill, C.L.; Judd, D.A.; Schinazi, R.F. Polyoxometalates in Medicine. Chem. Rev. 1998, 98, 327–358. [Google Scholar] [CrossRef] [PubMed]
- Hasenknopf, B. Polyoxometalates: Introduction to a class of inorganic compounds and their biomedical applications. Front. Biosci. 2005. [Google Scholar] [CrossRef]
- Molitor, C.; Bijelic, A.; Rompel, A. In situ formation of the first proteinogenically functionalized [TeW6O24O2(Glu)]7− structure reveals unprecedented chemical and geometrical features of the Anderson-type cluster. Chem. Commun. 2016, 52, 12286–12289. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Gao, H.; Yan, M.; Li, S.; Li, X.; Dai, Z.; Liu, S. Polyoxometalate-Based Organic–Inorganic Hybrids as Antitumor Drugs. Small 2015, 11, 2938–2945. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Jiang, J.; Li, M.; Mu, T. Gadolinium-Based Metal—Organic Framework as an E ffi cient and Heterogeneous Catalyst To Activate Epoxides for Cycloaddition of CO2 and Alcoholysis. ACS Sustain. Chem. Eng. 2017, 5, 2623–2631. [Google Scholar] [CrossRef]
- Sun, J.-W.; Yan, P.-F.; An, G.-H.; Sha, J.-Q.; Li, G.-M.; Yang, G.-Y. Immobilization of Polyoxometalate in the Metal–organic Framework rht-MOF-1: Towards a Highly Effective Heterogeneous Catalyst and Dye Scavenger. Sci. Rep. 2016, 6, 25595. [Google Scholar] [CrossRef] [PubMed]
- Nohra, B.; El Moll, H.; Rodriguez Albelo, L.M.; Mialane, P.; Marrot, J.; Mellot-Draznieks, C.; O’Keeffe, M.; Ngo Biboum, R.; Lemaire, J.; Keita, B.; et al. Polyoxometalate-Based Metal Organic Frameworks (POMOFs): Structural Trends, Energetics, and High Electrocatalytic Efficiency for Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2011, 133, 13363–13374. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.G.; Streb, C.; Miras, H.N.; Boyd, T.; Long, D.-L.; Cronin, L. Face-directed self-assembly of an electronically active Archimedean polyoxometalate architecture. Nat. Chem. 2010, 2, 308–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.-L.; Liao, J.-Z.; Yang, W.; Wu, X.-Y.; Lu, C.-Z. A novel naphthalenediimide-based lanthanide–organic framework with polyoxometalate templates exhibiting reversible photochromism. Dalton Trans. 2017, 46, 4898–4901. [Google Scholar] [CrossRef] [PubMed]
- Yaghi, O.M.; Li, H. Hydrothermal Synthesis of a Metal–organic Framework Containing Large Rectangular Channels. J. Am. Chem. Soc. 1995, 117, 10401–10402. [Google Scholar] [CrossRef]
- Chen, T.-H.; Popov, I.; Kaveevivitchai, W.; Miljanić, O.Š. Metal–Organic Frameworks: Rise of the Ligands. Chem. Mater. 2014, 26, 4322–4325. [Google Scholar] [CrossRef]
- Zhou, H.-C.; Kitagawa, S. Metal–Organic Frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Bai, J.; Duan, J.; Wojtas, L.; Zaworotko, M.J. Enhanced CO2 Binding Affinity of a High-Uptake rht-Type Metal–Organic Framework Decorated with Acylamide Groups. J. Am. Chem. Soc. 2011, 133, 748–751. [Google Scholar] [CrossRef] [PubMed]
- Kondo, M.; Furukawa, S.; Hirai, K.; Kitagawa, S. Coordinatively Immobilized Monolayers on Porous Coordination Polymer Crystals. Angew. Chem. Int. Ed. 2010, 49, 5327–5330. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.-Y. Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011–6061. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.-S.; Lee, Y.-R.; Ahn, W.-S. CO2 Cycloaddition of Epichlorohydrin over NH2-Functionalized MIL-101. Bull. Korean Chem. Soc. 2015, 36, 363–366. [Google Scholar] [CrossRef]
- Jeong, H.-M.; Roshan, R.; Babu, R.; Kim, H.-J.; Park, D.-W. Zirconium-based isoreticular metal–organic frameworks for CO2 fixation via cyclic carbonate synthesis. Korean J. Chem. Eng. 2018, 35, 438–444. [Google Scholar] [CrossRef]
- Li, H.; Wang, K.; Sun, Y.; Lollar, C.T.; Li, J.; Zhou, H.-C. Recent advances in gas storage and separation using metal–organic frameworks. Mater. Today 2018, 21, 108–121. [Google Scholar] [CrossRef]
- Jiang, J.; Furukawa, H.; Zhang, Y.-B.; Yaghi, O.M. High Methane Storage Working Capacity in Metal–Organic Frameworks with Acrylate Links. J. Am. Chem. Soc. 2016, 138, 10244–10251. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Zhou, H.-C. Hydrogen Storage in Metal–organic Frameworks. In Nanostructured Materials for Next-Generation Energy Storage and Conversion; Springer: Berlin/Heidelberg, Germany, 2017; pp. 143–170. [Google Scholar]
- Dey, C.; Kundu, T.; Biswal, B.P.; Mallick, A.; Banerjee, R. Crystalline metal–organic frameworks (MOFs): Synthesis, structure and function. Acta Crystallogr. Sect. B 2014, 70, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Al Haydar, M.; Abid, H.R.; Sunderland, B.; Wang, S. Metal organic frameworks as a drug delivery system for flurbiprofen. Drug Des. Dev. Ther. 2017, 11, 2685–2695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, C.-Y.; Qin, C.; Wang, X.-L.; Su, Z.-M. Metal–organic frameworks as potential drug delivery systems. Expert Opin. Drug Deliv. 2013, 10, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Orellana-Tavra, C.; Marshall, R.J.; Baxter, E.F.; Abá, I.; Zaro, L.; Tao, A.; Cheetham, A.K.; Forgan, R.S.; Fairen-Jimenez, D. Drug delivery and controlled release from biocompatible metal–organic frameworks using mechanical amorphization. J. Mater. Chem. B 2016, 4, 7697–7707. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Miras, H.N.; Song, Y.-F. Polyoxometalate (POM)-Layered Double Hydroxides (LDH) composite materials: Design and catalytic applications. Catalysts 2017, 7, 260. [Google Scholar] [CrossRef]
- Chen, Y.; Yao, Z.; Miras, H.N.; Song, Y.-F. Modular Polyoxometalate-Layered Double Hydroxide Composites as Efficient Oxidative Catalysts. Chem. A Eur. J. 2015, 21. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xuan, W.; Zhang, M.; Miras, H.N.; Song, Y.-F. A multicomponent assembly approach for the design of deep desulfurization heterogeneous catalysts. Dalton Trans. 2016, 45. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Yao, Z.; Miras, H.N.; Song, Y.-F. Facile Immobilization of a Lewis Acid Polyoxometalate onto Layered Double Hydroxides for Highly Efficient N-Oxidation of Pyridine-Based Derivatives and Denitrogenation. ChemCatChem 2015, 7. [Google Scholar] [CrossRef]
- Li, T.; Wang, Z.; Chen, W.; Miras, H.N.; Song, Y.F. Rational Design of a Polyoxometalate Intercalated Layered Double Hydroxide: Highly Efficient Catalytic Epoxidation of Allylic Alcohols under Mild and Solvent-Free Conditions. Chem. A Eur. J. 2017, 23, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Fan, L.; Sun, D. Recent advances and challenges of metal–organic framework membranes for gas separation. J. Mater. Chem. A 2017, 5, 10073–10091. [Google Scholar] [CrossRef]
- Zhao, Z.; Ma, X.; Kasik, A.; Li, Z.; Lin, Y.S. Gas Separation Properties of Metal Organic Framework (MOF-5) Membranes. Ind. Eng. Chem. Res. 2013, 52, 1102–1108. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, N.; Diestel, L.; Steinbach, F.; Caro, J. MOF membrane synthesis in the confined space of a vertically aligned LDH network. Chem. Commun. 2014, 50, 4225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.-F.; Tao, K.; Li, G.-C.; Wu, M.-K.; Zhu, S.-R.; Yi, F.-Y.; Zhao, W.-N.; Han, L. In situ growth of ZIF-8 nanocrystals on layered double hydroxide nanosheets for enhanced CO2 capture. Dalton Trans. 2016, 45, 12632–12635. [Google Scholar] [CrossRef] [PubMed]
- Fujita, M.; Ogura, K. Supramolecular Self-Assembly of Macrocycles, Catenanes, and Cages through Coordination of Pyridine-Based Ligands to Transition Metals. Bull. Chem. Soc. Jpn. 1996, 69, 1471–1482. [Google Scholar] [CrossRef]
- Cook, T.R.; Zheng, Y.-R.; Stang, P.J. Metal–Organic Frameworks and Self-Assembled Supramolecular Coordination Complexes: Comparing and Contrasting the Design, Synthesis, and Functionality of Metal–Organic Materials. Chem. Rev. 2013, 113, 734–777. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.-F.; Iwasa, J.; Ogawa, D.; Ishido, Y.; Sato, S.; Ozeki, T.; Sei, Y.; Yamaguchi, K.; Fujita, M. Self-Assembled M24L48 Polyhedra and Their Sharp Structural Switch upon Subtle Ligand Variation. Science 2010, 328, 1144–1147. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, R.; Mukherjee, P.S.; Stang, P.J. Supramolecular Coordination: Self-Assembly of Finite Two- and Three-Dimensional Ensembles. Chem. Rev. 2011, 111, 6810–6918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, P.S.; Das, N.; Stang, P.J. Self-Assembly of Nanoscopic Coordination Cages Using a Flexible Tripodal Amide Containing Linker. J. Org. Chem. 2004, 69, 3526–3529. [Google Scholar] [CrossRef] [PubMed]
- Castilla, A.M.; Ramsay, W.J.; Nitschke, J.R. Stereochemistry in Subcomponent Self-Assembly. Acc. Chem. Res. 2014, 47, 2063–2073. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.J.; Toste, F.D.; Bergman, R.G.; Raymond, K.N. Supramolecular Catalysis in Metal-Ligand Cluster Hosts. Chem. Rev. 2015, 115, 3012–3035. [Google Scholar] [CrossRef] [PubMed]
- Howlader, P.; Das, P.; Zangrando, E.; Mukherjee, P.S. Urea-Functionalized Self-Assembled Molecular Prism for Heterogeneous Catalysis in Water. J. Am. Chem. Soc. 2016, 138, 1668–1676. [Google Scholar] [CrossRef] [PubMed]
- Mal, P.; Breiner, B.; Rissanen, K.; Nitschke, J.R. White phosphorus is air-stable within a self-assembled tetrahedral capsule. Science 2009, 324, 1697–1699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Martinez, A.; Dutasta, J.-P. Emergence of Hemicryptophanes: From Synthesis to Applications for Recognition, Molecular Machines, and Supramolecular Catalysis. Chem. Rev. 2017, 117, 4900–4942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzuto, F.J.; Wu, W.-Y.; Ronson, T.K.; Nitschke, J.R. Peripheral Templation Generates an MII6L4 Guest-Binding Capsule. Angew. Chem. Int. Ed. 2016, 55, 7958–7962. [Google Scholar] [CrossRef] [PubMed]
- Catti, L.; Zhang, Q.; Tiefenbacher, K. Advantages of Catalysis in Self-Assembled Molecular Capsules. Chem. A Eur. J. 2016, 22, 9060–9066. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, S.; Murase, T.; Fujita, M. Noncovalent Trapping and Stabilization of Dinuclear Ruthenium Complexes within a Coordination Cage. J. Am. Chem. Soc. 2011, 133, 12445–12447. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, S.; Murase, T.; Fujita, M. A Remarkable Organometallic Transformation on a Cage-Incarcerated Dinuclear Ruthenium Complex. Angew. Chem. Int. Ed. 2012, 51, 12029–12031. [Google Scholar] [CrossRef] [PubMed]
- Vajpayee, V.; Song, Y.H.; Jung, Y.J.; Kang, S.C.; Kim, H.; Kim, I.S.; Wang, M.; Cook, T.R.; Stang, P.J.; Chi, K.-W. Coordination-driven self-assembly of ruthenium-based molecular-rectangles: Synthesis, characterization, photo-physical and anticancer potency studies. Dalton Trans. 2012, 41, 3046–3052. [Google Scholar] [CrossRef] [PubMed]
- Vajpayee, V.; Kim, H.; Mishra, A.; Mukherjee, P.S.; Stang, P.J.; Lee, M.H.; Kim, H.K.; Chi, K.-W. Self-assembled molecular squares containing metal-based donor: Synthesis and application in the sensing of nitro-aromatics. Dalton Trans. 2011, 40, 3112–3115. [Google Scholar] [CrossRef] [PubMed]
- Sanz, S.; O’Connor, H.M.; Comar, P.; Baldansuren, A.; Pitak, M.B.; Coles, S.J.; Weihe, H.; Chilton, N.F.; McInnes, E.J.L.; Lusby, P.J.; et al. Modular [FeIII8MII6]n+ (MII = Pd, Co, Ni, Cu) Coordination Cages. Inorg. Chem. 2018, 57, 3500–3506. [Google Scholar] [CrossRef] [PubMed]
- Sanz, S.; O’Connor, H.M.; Marti-Centelles, V.; Comar, P.; Pitak, M.B.; Coles, S.J.; Lorusso, G.; Palacios, E.; Evangelisti, M.; Baldansuren, A.; et al. [MIII2MII3]n+ trigonal bipyramidal cages based on diamagnetic and paramagnetic metalloligands. Chem. Sci. 2017, 8, 5526–5535. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Toste, F.D.; Raymond, K.N.; Bergman, R.G. Nucleophilic Substitution Catalyzed by a Supramolecular Cavity Proceeds with Retention of Absolute Stereochemistry. J. Am. Chem. Soc. 2014, 136, 14409–14412. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Zhou, G.-J.; Yu, Y.-Z.; Nojiri, H.; Schröder, C.; Winpenny, R.E.P.; Zheng, Y.-Z. Topological Self-Assembly of Highly Symmetric Lanthanide Clusters: A Magnetic Study of Exchange-Coupling “Fingerprints” in Giant Gadolinium(III) Cages. J. Am. Chem. Soc. 2017, 139, 16405–16411. [Google Scholar] [CrossRef] [PubMed]
- Boulon, M.-E.; Fernandez, A.; Moreno Pineda, E.; Chilton, N.F.; Timco, G.; Fielding, A.J.; Winpenny, R.E.P. Measuring Spin Spin Interactions between Heterospins in a Hybrid [2]Rotaxane. Angew. Chem. Int. Ed. 2017, 56, 3876–3879. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Passadis, S.; Kabanos, T.A.; Song, Y.-F.; Miras, H.N. Self-Assembly in Polyoxometalate and Metal Coordination-Based Systems: Synthetic Approaches and Developments. Inorganics 2018, 6, 71. https://doi.org/10.3390/inorganics6030071
Passadis S, Kabanos TA, Song Y-F, Miras HN. Self-Assembly in Polyoxometalate and Metal Coordination-Based Systems: Synthetic Approaches and Developments. Inorganics. 2018; 6(3):71. https://doi.org/10.3390/inorganics6030071
Chicago/Turabian StylePassadis, Stamatis, Themistoklis A. Kabanos, Yu-Fei Song, and Haralampos N. Miras. 2018. "Self-Assembly in Polyoxometalate and Metal Coordination-Based Systems: Synthetic Approaches and Developments" Inorganics 6, no. 3: 71. https://doi.org/10.3390/inorganics6030071
APA StylePassadis, S., Kabanos, T. A., Song, Y. -F., & Miras, H. N. (2018). Self-Assembly in Polyoxometalate and Metal Coordination-Based Systems: Synthetic Approaches and Developments. Inorganics, 6(3), 71. https://doi.org/10.3390/inorganics6030071