Reduction of 2,2′-Bipyridine by Quasi-Linear 3d-Metal(I) Silylamides—A Structural and Spectroscopic Study
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Structural Characterisation
2.2. 1H-NMR Spectroscopic Features
2.3. UV/Vis-Spectroscopic Features
2.4. Magnetic Properties
2.5. Electrochemistry
3. Discussion
4. Materials and Methods
4.1. Synthesis of Complexes
4.2. X-ray Diffraction Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Power, P.P. Stable two-coordinate, open-shell (d1-d9) transition metal complexes. Chem. Rev. 2012, 112, 3482–3507. [Google Scholar] [PubMed]
- Ung, G.; Rittle, J.; Soleilhavoup, M.; Bertrand, G.; Peters, J.C. Two-Coordinate Fe0 and Co0 Complexes Supported by Cyclic (alkyl) (amino) carbenes. Angew. Chem. Int. Ed. 2014, 53, 8427–8431. [Google Scholar]
- Roy, S.; Mondal, K.C.; Roesky, H.W. Cyclic Alkyl (amino) Carbene Stabilized Complexes with Low Coordinate Metals of Enduring Nature. Acc. Chem. Res. 2016, 49, 357–369. [Google Scholar] [PubMed]
- Mo, Z.; Ouyang, Z.; Wang, L.; Fillman, K.L.; Neidig, M.L.; Deng, L. Two- and three-coordinate formal iron(I) compounds featuring monodentate aminocarbene ligands. Org. Chem. Front. 2014, 1, 1040–1044. [Google Scholar]
- Samuel, P.P.; Mondal, K.C.; Amin Sk, N.; Roesky, H.W.; Carl, E.; Neufeld, R.; Stalke, D.; Demeshko, S.; Meyer, F.; Ungur, L.; et al. Electronic Structure and Slow Magnetic Relaxation of Low-Coordinate Cyclic Alkyl(amino) Carbene Stabilized Iron(I) Complexes. J. Am. Chem. Soc. 2014, 136, 11964–11971. [Google Scholar] [PubMed]
- Werncke, C.G.; Bunting, P.C.; Duhayon, C.; Long, J.R.; Bontemps, S.; Sabo-Etienne, S. Two-coordinate iron(I) complex [Fe{N(SiMe3)2}2]−: Synthesis, properties, and redox activity. Angew. Chem. Int. Ed. 2015, 54, 245–248. [Google Scholar]
- Lin, C.-Y.; Fettinger, J.C.; Grandjean, F.; Long, G.J.; Power, P.P. Synthesis, Structure, and Magnetic and Electrochemical Properties of Quasi-Linear and Linear Iron(I), Cobalt(I), and Nickel(I) Amido Complexes. Inorg. Chem. 2014, 53, 9400–9406. [Google Scholar] [PubMed]
- Zadrozny, J.M.; Xiao, D.J.; Atanasov, M.; Long, G.J.; Grandjean, F.; Neese, F.; Long, J.R. Magnetic blocking in a linear iron(I) complex. Nat. Chem. 2013, 5, 577–581. [Google Scholar]
- Lipschutz, M.I.; Yang, X.; Chatterjee, R.; Tilley, T.D. A Structurally Rigid Bis (amido) Ligand Framework in Low-Coordinate Ni(I), Ni(II), and Ni(III) Analogues Provides Access to a Ni(III) Methyl Complex via Oxidative Addition. J. Am. Chem. Soc. 2013, 135, 15298–15301. [Google Scholar]
- Cai, I.C.; Lipschutz, M.I.; Tilley, T.D. A bis (amido) ligand set that supports two-coordinate chromium in the +1, +2, and +3 oxidation states. Chem. Commun. 2014, 50, 13062–13065. [Google Scholar]
- Samuel, P.P.; Neufeld, R.; Chandra Mondal, K.; Roesky, H.W.; Herbst-Irmer, R.; Stalke, D.; Demeshko, S.; Meyer, F.; Rojisha, V.C.; De, S.; et al. Cr(I)Cl as well as Cr+ are stabilised between two cyclic alkyl amino carbenes. Chem. Sci. 2015, 6, 3148–3153. [Google Scholar] [PubMed]
- Samuel, P.P.; Mondal, K.C.; Roesky, H.W.; Hermann, M.; Frenking, G.; Demeshko, S.; Meyer, F.; Stückl, A.C.; Christian, J.H.; Dalal, N.S.; et al. Synthesis and Characterization of a Two-Coordinate Manganese Complex and its Reaction with Molecular Hydrogen at Room Temperature. Angew. Chem. Int. Ed. 2013, 52, 11817–11821. [Google Scholar] [Green Version]
- Werncke, C.G.; Suturina, E.; Bunting, P.C.; Vendier, L.; Long, J.R.; Atanasov, M.; Neese, F.; Sabo-Etienne, S.; Bontemps, S. Homoleptic Two-Coordinate Silylamido Complexes of Chromium(I), Manganese(I), and Cobalt(I). Chem. Eur. J. 2016, 22, 1668–1674. [Google Scholar] [CrossRef] [PubMed]
- Werncke, C.G.; Pfeiffer, J.; Müller, I.; Vendier, L.; Sabo-Etienne, S.; Bontemps, S. C–Halide bond cleavage by a two-coordinate iron(I) complex. Dalton Trans. 2019, 48, 1757–1765. [Google Scholar] [CrossRef] [PubMed]
- Lipschutz, M.I.; Tilley, T.D. Carbon–Carbon Cross-Coupling Reactions Catalyzed by a Two-Coordinate Nickel(II)-Bis (amido) Complex via Observable NiI, NiII, and NiIII Intermediates. Angew. Chem. Int. Ed. 2014, 53, 7290–7294. [Google Scholar]
- Lipschutz, M.I.; Chantarojsiri, T.; Dong, Y.; Tilley, T.D. Synthesis, characterization, and alkyne trimerization catalysis of a heteroleptic two-coordinate Fe(I) complex. J. Am. Chem. Soc. 2015, 137, 6366–6372. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Z.; Du, J.; Wang, L.; Kneebone, J.L.; Neidig, M.L.; Deng, L. Linear and T-Shaped Iron(I) Complexes Supported by N-Heterocyclic Carbene Ligands: Synthesis and Structure Characterization. Inorg. Chem. 2015, 54, 8808–8816. [Google Scholar] [CrossRef] [Green Version]
- Hicks, J.; Jones, C. Low-Coordinate Cobalt(I) Complexes Stabilized by an Extremely Bulky Amide Ligand. Organometallics 2015, 34, 2118–2121. [Google Scholar] [CrossRef]
- Pfirrmann, S.; Limberg, C.; Herwig, C.; Stösser, R.; Ziemer, B. A dinuclear nickel(I) dinitrogen complex and its reduction in single-electron steps. Angew. Chem. Int. Ed. 2009, 48, 3357–3361. [Google Scholar] [CrossRef]
- MacLeod, K.C.; Lewis, R.A.; DeRosha, D.E.; Mercado, B.Q.; Holland, P.L. C-H and C-N Activation at Redox-Active Pyridine Complexes of Iron. Angew. Chem. Int. Ed. 2017, 56, 1069–1072. [Google Scholar] [CrossRef]
- Dugan, T.R.; Sun, X.; Rybak-Akimova, E.V.; Olatunji-Ojo, O.; Cundari, T.R.; Holland, P.L. A Masked Two-Coordinate Cobalt(I) Complex That Activates C–F Bonds. J. Am. Chem. Soc. 2011, 133, 12418–12421. [Google Scholar] [CrossRef] [PubMed]
- Constable, E.C. Homoleptic Complexes of 2,2′-Bipyridine. In Advances in Inorganic Chemistry, 1st ed.; Sykes, A.G., Ed.; Academic Press: Cambridge, MA, USA, 1989; Volume 34, pp. 1–63. [Google Scholar]
- Gore-Randall, E.; Irwin, M.; Denning, M.S.; Goicoechea, J.M. Synthesis and characterization of alkali-metal salts of 2,2′- and 2,4′-bipyridyl radicals and dianions. Inorg. Chem. 2009, 48, 8304–8316. [Google Scholar] [CrossRef] [PubMed]
- Denning, M.S.; Irwin, M.; Goicoechea, J.M. Synthesis and characterization of the 4,4’-bipyridyl dianion and radical monoanion. A structural study. Inorg. Chem. 2008, 47, 6118–6120. [Google Scholar] [CrossRef] [PubMed]
- Bock, H.; Lehn, J.-M.; Pauls, J.; Holl, S.; Krenzel, V. Sodium Salts of the Bipyridine Dianion: Polymer [(bpy)2−{Na+(dme)}2]∞, Cluster [(Na8O)6+Na+6(bpy)62−(tmeda)6], and Monomer [(bpy)2−{Na+(pmdta)}2]. Angew. Chem. Int. Ed. 1999, 38, 952–955. [Google Scholar] [CrossRef]
- Roitershtein, D.; Domingos, A.; Pereira, L.C.J.; Ascenso, J.R.; Marques, N. Coordination of 2,2′-bipyridyl and 1,10-phenanthroline to yttrium and lanthanum complexes based on a scorpionate ligand. Inorg. Chem. 2003, 42, 7666–7673. [Google Scholar] [CrossRef] [PubMed]
- Bellavance, P.L.; Corey, E.R.; Corey, J.Y.; Hey, G.W. Synthesis and characterization of complexes of aluminum halide with 2,2′-bipyridine, 1,10-phenanthroline and 2,2′,2′′-terpyridine in acetonitrile. Inorg. Chem. 1977, 16, 462–467. [Google Scholar] [CrossRef]
- Nikiforov, G.B.; Roesky, H.W.; Noltemeyer, M.; Schmidt, H.-G. Reactivity of Ti(bipy)3 and preparation of the Li(THF)4[Al(bipy)2] complex with the dinegative bipy ligand. Polyhedron 2004, 23, 561–566. [Google Scholar] [CrossRef]
- Jacquot, L.; Xémard, M.; Clavaguéra, C.; Nocton, G. Multiple One-Electron Transfers in Bipyridine Complexes of Bis (phospholyl) Thulium. Organometallics 2014, 33, 4100–4106. [Google Scholar] [CrossRef]
- Ortu, F.; Liu, J.; Burton, M.; Fowler, J.M.; Formanuik, A.; Boulon, M.-E.; Chilton, N.F.; Mills, D.P. Analysis of Lanthanide-Radical Magnetic Interactions in Ce(III) 2,2′-Bipyridyl Complexes. Inorg. Chem. 2017, 56, 2496–2505. [Google Scholar] [CrossRef]
- Ortu, F.; Zhu, H.; Boulon, M.-E.; Mills, D. Synthesis and Reactivity of a Cerium(III) Scorpionate Complex Containing a Redox Non-Innocent 2,2′-Bipyridine Ligand. Inorganics 2015, 3, 534–553. [Google Scholar] [CrossRef]
- Scarborough, C.C.; Wieghardt, K. Electronic structure of 2,2′-bipyridine organotransition-metal complexes. Establishing the ligand oxidation level by density functional theoretical calculations. Inorg. Chem. 2011, 50, 9773–9793. [Google Scholar] [CrossRef] [PubMed]
- Wolff, C.; Gottschlich, A.; England, J.; Wieghardt, K.; Saak, W.; Haase, D.; Beckhaus, R. Molecular and Electronic Structures of Mononuclear and Dinuclear Titanium Complexes Containing π-Radical Anions of 2,2′-Bipyridine and 1,10-Phenanthroline: An Experimental and DFT Computational Study. Inorg. Chem. 2015, 54, 4811–4820. [Google Scholar] [CrossRef] [PubMed]
- Irwin, M.; Jenkins, R.K.; Denning, M.S.; Kramer, T.; Grandjean, F.; Long, G.J.; Herchel, R.; McGrady, J.E.; Goicoechea, J.M. Experimental and computational study of the structural and electronic properties of FeII(2,2′-bipyridine)(mes)2 and [FeII(2,2′-bipyridine)(mes)2]−, a complex containing a 2,2′-bipyridyl radical anion. Inorg. Chem. 2010, 49, 6160–6171. [Google Scholar] [CrossRef] [PubMed]
- Irwin, M.; Doyle, L.R.; Krämer, T.; Herchel, R.; McGrady, J.E.; Goicoechea, J.M. A homologous series of first-row transition-metal complexes of 2,2′-bipyridine and their ligand radical derivatives: Trends in structure, magnetism, and bonding. Inorg. Chem. 2012, 51, 12301–12312. [Google Scholar] [CrossRef] [PubMed]
- Tokel-Takvoryan, N.E.; Hemingway, R.E.; Bard, A.J. Electrogenerated chemiluminescence. XIII. Electrochemical and electrogenerated chemiluminescence studies of ruthenium chelates. J. Am. Chem. Soc. 1973, 95, 6582–6589. [Google Scholar] [CrossRef]
- Bradley, D.C.; Hursthouse, M.B.; Newing, C.W.; Welch, A.J. Square planar and tetrahedral chromium (II) complexes; crystal structure determinations. Chem. Commun. 1972, 567. [Google Scholar] [CrossRef]
- Cotton, F.A.; Rice, C.E.; Rice, G.W. The crystal and molecular structures of bis (2,4-pentanedionato) chromium. Inorg. Chim. Acta 1977, 24, 231–234. [Google Scholar] [CrossRef]
- Babar, M.A.; Ladd, M.F.C.; Larkworthy, L.F.; Povey, D.C.; Proctor, K.J.; Summers, L.J. The crystal structures of propane-1,3-diammonium tetrachlorochromate(II), a sheet ferromagnet, and bis (dimethylammonium) tetrachlorochromate(II) an antiferromagnetic compound containing isolated [Cr3Cl12]6− units. Chem. Commun. 1981, 1046. [Google Scholar] [CrossRef]
- Scarborough, C.C.; Sproules, S.; Weyhermüller, T.; DeBeer, S.; Wieghardt, K. Electronic and molecular structures of the members of the electron transfer series [Cr(tbpy)3]n (n = 3+, 2+, 1+, 0): An X-ray absorption spectroscopic and density functional theoretical study. Inorg. Chem. 2011, 50, 12446–12462. [Google Scholar] [CrossRef]
- Schultz, M.; Boncella, J.M.; Berg, D.J.; Tilley, T.D.; Andersen, R.A. Coordination of 2,2′-Bipyridyl and 1,10-Phenanthroline to Substituted Ytterbocenes: An Experimental Investigation of Spin Coupling in Lanthanide Complexes. Organometallics 2002, 21, 460–472. [Google Scholar] [CrossRef]
- Zhou, W.; Desnoyer, A.N.; Bailey, J.A.; Patrick, B.O.; Smith, K.M. Direct synthesis of ligand-based radicals by the addition of bipyridine to chromium(II) compounds. Inorg. Chem. 2013, 52, 2271–2273. [Google Scholar] [CrossRef] [PubMed]
- Margraf, G.; Schödel, F.; Sänger, I.; Bolte, M.; Wagner, M.; Lerner, H.-W. Eine elektrochemische und strukturelle Studie an den Eisensilylamiden Fe[N(SiMe3)2]2 und Fe[N(SiMe3)2]3 / An Electrochemical and Structural Study of the Iron Silylamides Fe[N(SiMe3)2]2 and Fe[N(SiMe3)2]3. Z. Naturforsch. B Chem. Sci. 2012, 67, 549–556. [Google Scholar] [CrossRef]
- König, E.; Kremer, S. The lower excited electronic states of singly and doubly reduced 2,2′-bipyridine. Chem. Phys. Lett. 1970, 5, 87–90. [Google Scholar] [CrossRef]
- Da Re, R.E.; Kuehl, C.J.; Brown, M.G.; Rocha, R.C.; Bauer, E.D.; John, K.D.; Morris, D.E.; Shreve, A.P.; Sarrao, J.L. Electrochemical and spectroscopic characterization of the novel charge-transfer ground state in diimine complexes of ytterbocene. Inorg. Chem. 2003, 42, 5551–5559. [Google Scholar] [CrossRef]
- Schubert, E.M. Utilizing the Evans method with a superconducting NMR spectrometer in the undergraduate laboratory. J. Chem. Educ. 1992, 69, 62. [Google Scholar] [CrossRef]
- Evans, D.F. 400. The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance. J. Chem. Soc. 1959, 2003. [Google Scholar] [CrossRef]
- Awaga, K.; Maruyama, Y. Ferromagnetic and antiferromagnetic intermolecular interactions of organic radicals, α-nitronyl nitroxides. II. Phys. Chem. Chem. Phys. 1989, 91, 2743–2747. [Google Scholar] [CrossRef]
- Fujita, W.; Awaga, K. Room-Temperature Magnetic Bistability in Organic Radical Crystals. Science 1999, 286, 261–263. [Google Scholar] [CrossRef]
- Eusterwiemann, S.; Doerenkamp, C.; Dresselhaus, T.; Janka, O.; de Oliveira, M.; Daniliuc, C.G.; Eckert, H.; Neugebauer, J.; Pöttgen, R.; Studer, A. Strong intermolecular antiferromagnetic verdazyl-verdazyl coupling in the solid state. Phys. Chem. Chem. Phys. PCCP 2017, 19, 15681–15685. [Google Scholar] [CrossRef]
- Roffia, S.; Marcaccio, M.; Paradisi, C.; Paolucci, F.; Balzani, V.; Denti, G.; Serroni, S.; Campagna, S. Electrochemical reduction of (2,2′-bipyridine)- and bis ((2-pyridyl) pyrazine) ruthenium(II) complexes used as building blocks for supramolecular species. Redox series made of 8, 10, and 12 redox steps. Inorg. Chem. 1993, 32, 3003–3009. [Google Scholar] [CrossRef]
- Margel, S. Electrochemistry of 2,2′-Bipyridine Complexes of Cobalt in the Presence of Acrylonitrile. J. Electrochem. Soc. 1978, 125, 241. [Google Scholar] [CrossRef]
- Braterman, P.S.; Song, J.I.; Peacock, R.D. Electronic absorption spectra of the iron(II) complexes of 2,2′-bipyridine, 2,2′-bipyrimidine, 1,10-phenanthroline, and 2,2′:6′,2′′-terpyridine and their reduction products. Inorg. Chem. 1992, 31, 555–559. [Google Scholar] [CrossRef]
- De Bruin, B.; Bill, E.; Bothe, E.; Weyhermüller, T.; Wieghardt, K. Molecular and Electronic Structures of Bis (pyridine-2,6-diimine) metal Complexes [ML2](PF6)n (n = 0, 1, 2, 3; M = Mn, Fe, Co, Ni, Cu, Zn). Inorg. Chem. 2000, 39, 2936–2947. [Google Scholar] [CrossRef] [PubMed]
- Bourrez, M.; Molton, F.; Chardon-Noblat, S.; Deronzier, A. [Mn(bipyridyl)(CO)3Br]: An Abundant Metal Carbonyl Complex as Efficient Electrocatalyst for CO2 Reduction. Angew. Chem. Int. Ed. 2011, 9903–9906. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, B.P.; Bolinger, C.M.; Conrad, D.; Vining, W.J.; Meyer, T.J. One- and two-electron pathways in the electrocatalytic reduction of CO2 by fac-Re(bpy)(CO)3Cl (bpy = 2,2′-bipyridine). Chem. Commun. 1985, 1414–1416. [Google Scholar] [CrossRef]
- La Mar, G.N.; Horrocks, W.D.; Holm, R.H. NMR of Paramagnetic Molecules: Principles and Applications; Elsevier Science: Burlington, NJ, USA, 1973. [Google Scholar]
- Bertini, I.; Luchinat, C.; Parigi, G.; Pierattelli, R. NMR spectroscopy of paramagnetic metalloproteins. Chembiochem 2005, 6, 1536–1549. [Google Scholar] [CrossRef] [PubMed]
- Bürger, H.; Wannagat, U. Silylamido-Derivate von Eisen und Kobalt. Monatsh. Chem. 1963, 94, 1007–1012. [Google Scholar] [CrossRef]
- Bürger, H.; Wannagat, U. Silylamido-Verbindungen von Chrom, Mangan, Nickel und Kupfer. Monatsh. Chem. 1964, 95, 1099–1102. [Google Scholar] [CrossRef]
- Conley, M.P.; Delley, M.F.; Siddiqi, G.; Lapadula, G.; Norsic, S.; Monteil, V.; Safonova, O.V.; Copéret, C. Polymerization of Ethylene by Silica-Supported Dinuclear CrIII Sites through an Initiation Step Involving C–H Bond Activation. Angew. Chem. Int. Ed. 2014, 53, 1872–1876. [Google Scholar] [CrossRef]
- Dalvit, C.; Invernizzi, C.; Vulpetti, A. Fluorine as a hydrogen-bond acceptor: Experimental evidence and computational calculations. Chem. Eur. J. 2014, 20, 11058–11068. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, L.J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–838. [Google Scholar] [CrossRef]
- Betteridge, P.W.; Carruthers, J.R.; Cooper, R.I.; Prout, K.; Watkin, D.J. CRYSTALS version 12: Software for guided crystal structure analysis. J. Appl. Crystallogr. 2003, 36, 1487. [Google Scholar] [CrossRef]
- International Union of Crystallography. International Tables for Crystallography, 1st ed.; Springer: Chester, UK; New York, NY, USA, 2006. [Google Scholar]
- Bruker AXS Inc. SADABS; 2016/2; Bruker AXS Inc.: Madison, WI, USA, 2016. [Google Scholar]
- STOE&Cie GmbH. X-Area; X.-R. 1.6.1.0; STOE&Cie GmbH: Darmstadt, Germany, 2016. [Google Scholar]
Compound | 1 (Cr−) | 2 (Mn−) | 3 (Fe−) | 4 (Co−) |
---|---|---|---|---|
Bond Length/Å | ||||
M–N1 (bipy) | 2.089(3) | 2.140(4) | 2.0808(10) | 1.9980(16) |
M–N2 (bipy) | 2.073(3) | 2.168(3) | 2.0763(11) | 1.9966(16) |
M–N3 (hmds) | 2.102(3) | 2.083(3) | 2.0146(10) | 2.0037(16) |
M–N4 (hmds) | 2.076(3) | 2.063(3) | 2.0109(10) | 2.0079(16) |
N1–C1 | 1.342(5) | 1.347(7) | 1.358(2) | 1.359(2) |
N1–C5 | 1.395(5) | 1.359(6) | 1.384(2) | 1.385(2) |
C5–C6 | 1.417(6) | 1.422(9) | 1.425(2) | 1.432(3) |
N2–C6 | 1.403(5) | 1.384(7) | 1.385(2) | 1.379(2) |
N2–C10 | 1.336(6) | 1.357(7 | 1.353(2) | 1.357(2) |
Angles/° | ||||
N1–M–N2 | 77.21(14) | 76.16(13) | 77.17(4) | 80.63(6) |
N3–M–N4 | 102.44(12) | 121.84(11) | 126.28(4) | 121.91(6) |
N3–M–N4/ N1–M–N3 | 23.28° | 67.06° | 73.98 | 75.3 |
τ4′ | 0.26 | 0.78 | 0.77 | 0.81 |
Compound | 5 (Cr) [42] * | 6 (Mn) [43] | 7 (Fe) [43] * | 8 (Co) | 9 (Zn) | 10 (Zn−) # |
---|---|---|---|---|---|---|
Bond Length/Å | ||||||
M–N1 (bipy) | 2.159(2) | 2.267(5) | 2.208(7) | 2.121(3) | 2.173(4) | 2.090(11) |
M–N2 (bipy) | 2.157(2) | 2.253(5) | 2.159(8) | 2.099(3) | 2.174(4) | 2.095(12) |
M–N3 (hmds) | 2.057(2) | 2.045(4) | 1.971(6) | 1.961(3) | 1.939(3) | 1.979(6) |
M–N4 (hmds) | 2.052(2) | 2.050(4) | 1.979(7) | 1.959(3) | 1.942(3) | 1.969(8) |
N1–C1 | 1.343(2) | 1.337(8) | 1.335(12) | 1.335(4) | 1.334(6) | 1.379(19) |
N1–C5 | 1.356(2) | 1.352(7) | 1.357(11) | 1.349(4) | 1.356(5) | 1.379(15) |
C5–C6 | 1.481(3) | 1.502(8) | 1.491(14) | 1.479(5) | 1.474(7) | 1.419(9) |
N2–C6 | 1.350(2) | 1.363(7) | 1.404(12) | 1.346(4) | 1.344(6) | 1.413(6) |
N2–C10 | 1.342(2) | 1.352(8) | 1.316(13) | 1.338(4) | 1.333(6) | 1.336(17) |
Angles/° | ||||||
N1–M–N2 | 75.15(6) | 72.9(2) | 75.8(3) | 80.6(3) | 75.4(14) | 78.8(6) |
N3–M–N4 | 105.57(6) | 128.24(17) | 127.4(3) | 124.53(11) | 129.93(15) | 122.7(3) |
N1–M–N2/N3–M–N4 | 20.145(5) | 65.5(2) | 69.5(3) | 71.8(3) | 72.98(11) | 77.43(3) |
τ4′ | 0.28 | 0.74 | 0.76 | 0.81 | 0.74 | 0.83 |
Complex | δ (SiMe3)/ppm (w½/Hz) | δ (bipy)/ppm (w½/Hz) |
---|---|---|
1 (Cr−) | No useful signal attribution possible | |
5 (Cr) | 40.7 (2539 Hz) | 53.7, 46.85, 16.4, −70.9 |
2 (Mn−) | 19.9 (2312 Hz) | No useful signal attribution possible |
6 (Mn) | 29.5 (5723 Hz) | No useful signal attribution possible |
3 (Fe−) | 1.73 | 268.08 (711 Hz), 178.22 (478 Hz), 77.87 (1534 Hz), 64.49 (154 Hz), |
7 (Fe) | 10.95 (425 Hz) | 64.09 (114 Hz), 52.13 (129 Hz), −19.13 (62 Hz) |
4 (Co−) | 2.47 (83 Hz) | 155.75 (100 Hz), 143.95 (85 Hz), 104.35 (749 Hz), 50.26 (25 Hz) |
8 (Co) | 8.11 (68 Hz) | 59.68 (253 Hz), 50.94 (25 Hz), 42.65 (31 Hz), −21.01 (27 Hz) |
9 (Zn) | −0.11 (2 Hz) | 8.91 (d), 8.43 (d), 8.17 (d), 7.73 (d), |
10 (Zn−) | 0.54 (234 Hz) | 8.62 (34.9 Hz), 8.48 (30.3 Hz), 7.81 (37.5 Hz), 7.29 (36.3 Hz) |
Complex | λ/nm (ε/L·mol−1·cm−1) |
---|---|
“K{18c6}[bipy]” | 391, 428, 540, 576 |
1 (Cr−) | 359 (5698), 488 (2833), 525 (2301), 656 (1365), 912 (1443), 959 (1256) |
5 (Cr) | 373 (5698), 520 (4443), 914 (1434) |
2 (Mn−) | 366 (5781), 487 (3126), 523 (2164), 713 (965), 815 (1706), 916 (1841) |
6 (Mn) | 382 (878), 913 (74) |
3 (Fe−) | 337 (2155), 372 (2105), 428 (1061), 460 (926), 497 (842), 914 (491) |
7 (Fe) | 387 (2174), 622 (264), 908 (115), 941 (97) |
4 (Co−) | 405 (2659), 566 (418), 648 (308), 754 (651), 903 (125) |
8 (Co) | 356 (4276), 461 (2843), 660 (1219), 742 (1555), 917 (847) |
9 (Zn) | 374 (559), 917 (57) |
10 (Zn−) | 373 (4894), 505 (2248), 535 (2328), 750 (784), 807 (951), 931 (949) |
Complex | mol. weight (g/mol) | Diamagn. corr./10−4 emu·mol−1 | μeff/μB (300 K) | Θ/K | χTIM/10−4 emu·mol−4 | χT/cm3·mol−1·K (300 K) |
---|---|---|---|---|---|---|
1 (Cr−) | 832.37 | −2.87 | 3.66 | −0.634 | 5.75 | 1.84 |
2 (Mn−) | 835.32 | −2.85 | 4.71 | −1.13 | 7.43 | 2.98 |
3 (Fe−) | 836.22 | −2.87 | 6.67 | −43.87 | 0.0 | 4.80 |
4 (Co−) | 839.31 | −2.83 | 4.61 | −23.56 | 0.0 | 2.45 |
10 (Zn−) | 845.76 | −2.86 | 1.72 | −28.85 | 6.78 | 0.54 |
Compound | 6 (Mn) | 7 (Fe) | 8 (Co) | 9 (Zn) | bipy |
---|---|---|---|---|---|
E1/2/V | −2.48 | −2.74 | −2.50 | −2.81 | −2.67 |
ΔEPeak/V | 0.096 | 0.111 | 0.095 | 0.131 | 0.187 |
Ered2/V | −2.94 | −3.14 | −3.04 | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, I.; Schneider, C.; Pietzonka, C.; Kraus, F.; Werncke, C.G. Reduction of 2,2′-Bipyridine by Quasi-Linear 3d-Metal(I) Silylamides—A Structural and Spectroscopic Study. Inorganics 2019, 7, 117. https://doi.org/10.3390/inorganics7100117
Müller I, Schneider C, Pietzonka C, Kraus F, Werncke CG. Reduction of 2,2′-Bipyridine by Quasi-Linear 3d-Metal(I) Silylamides—A Structural and Spectroscopic Study. Inorganics. 2019; 7(10):117. https://doi.org/10.3390/inorganics7100117
Chicago/Turabian StyleMüller, Igor, Christian Schneider, Clemens Pietzonka, Florian Kraus, and C. Gunnar Werncke. 2019. "Reduction of 2,2′-Bipyridine by Quasi-Linear 3d-Metal(I) Silylamides—A Structural and Spectroscopic Study" Inorganics 7, no. 10: 117. https://doi.org/10.3390/inorganics7100117
APA StyleMüller, I., Schneider, C., Pietzonka, C., Kraus, F., & Werncke, C. G. (2019). Reduction of 2,2′-Bipyridine by Quasi-Linear 3d-Metal(I) Silylamides—A Structural and Spectroscopic Study. Inorganics, 7(10), 117. https://doi.org/10.3390/inorganics7100117