Synthesis and Thermochromic Luminescence of Ag(I) Complexes Based on 4,6-Bis(diphenylphosphino)-Pyrimidine
Abstract
:1. Introduction
2. Results and Discussion
Synthesis and Characterization
3. Materials and Methods
3.1. General
3.2. Synthesis of 4,6-Bis(diphenylphosphino)pyrimidine (L)
3.3. [Ag2L2(NO3)2(MeCN)2]·MeCN (1·MeCN)
3.4. [Ag2L(MeCN)3]n(BF4)2n·MeCN (2·MeCN)
3.5. X-ray Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Medici, S.; Peana, M.; Crisponi, G.; Nurchi, V.M.; Lachowicz, J.I.; Remelli, M.; Zoroddu, M.A. Silver coordination compounds: A new horizon in medicine. Coord. Chem. Rev. 2016, 327–328, 349–359. [Google Scholar] [CrossRef]
- Kulovi, S.; Dalbera, S.; Das, S.; Zangrando, E.; Puschmann, H.; Dalai, S. New silver(I) coordination polymers with hetero donor ligands: Synthesis, structure, luminescence study and photo-catalytic behavior. ChemistrySelect 2017, 2, 9029–9036. [Google Scholar] [CrossRef]
- Rawashdeh-Omary, M.A.; Rashdan, M.D.; Dharanipathi, S.; Elbjeirami, O.; Ramesh, P.; Rasika Dias, H.V. On/off luminescence vapochromic selective sensing of benzene and its methylated derivatives by a trinuclear silver(I) pyrazolate sensor. Chem. Commun. 2011, 47, 1160–1162. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, Y.; Zou, X.; He, Y.; Wang, X. Pyridylphosphine supported Ag(I) and Cu(I) complexes for detection of alcohols and nitriles via structural transformations from 1D to 0D. CrystEngComm 2019, 21, 5595–5601. [Google Scholar] [CrossRef]
- Fresta, E.; Carbonell-Vilar, J.M.; Yu, J.; Armentano, D.; Cano, J.; Viciano-Chumillas, M.; Costa, R.D. Deciphering the electroluminescence behavior of silver(I)-complexes in light-emitting electrochemical cells: Limitations and solutions toward highly stable devices. Adv. Funct. Mater. 2019, 29, 1901797. [Google Scholar] [CrossRef]
- Moudam, O.; Tsipis, A.C.; Kommanaboyina, S.; Horton, P.N.; Coles, S.J. First light-emitting electrochemical cell with [Ag (I)(N^N)(P^P)] type complex. RSC Adv. 2015, 5, 95047–95053. [Google Scholar] [CrossRef]
- Lu, Z.; Cheng, Y.; Fan, W.; Yang, S.; Liu, X.; Qin, Y.; Zhao, R.; Zheng, L.; Zhang, H. A stable silver metallacage with solvatochromic and mechanochromic behavior for white LED fabrication. Chem. Commun. 2019, 55, 8474–8477. [Google Scholar] [CrossRef]
- Khlobystov, A.N.; Blake, A.J.; Champness, N.R.; Lemenovskii, D.A.; Majouga, A.G.; Zyk, N.V.; Schröder, M. Supramolecular design of one-dimensional coordination polymers based on silver(I) complexes of aromatic nitrogen-donor ligands. Coord. Chem. Rev. 2001, 222, 155–192. [Google Scholar] [CrossRef]
- Sharma, S.; Chakrahari, K.K.; Saillard, J.-Y.; Liu, C.W. Structurally precise dichalcogenolate-protected copper and silver superatomic nanoclusters and their alloys. Acc. Chem. Res. 2018, 51, 2475–2483. [Google Scholar] [CrossRef]
- Huang, R.; Wei, Y.; Dong, X.; Wu, X.-H.; Du, C.-X.; Zang, S.-Q.; Mak, T.C.W. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal–organic framework. Nat. Chem. 2017, 9, 689–697. [Google Scholar] [CrossRef]
- Jin, G.-X.; Zhu, G.-Y.; Sun, Y.-Y.; Shi, Q.-X.; Liang, L.-P.; Wang, H.-Y.; Wu, X.-W.; Ma, J.-P. [Ag–Ag]2+ unit-encapsulated trimetallic cages: One-pot syntheses and modulation of argentophilic interactions by the uncoordinated substituents. Inorg. Chem. 2019, 58, 2916–2920. [Google Scholar] [CrossRef]
- Chupina, A.V.; Mukhacheva, A.A.; Abramov, P.A.; Sokolov, M.N. Complexation and isomerization of [β-Mo8O26]4− in the presence of Ag+ and DMF. J. Struct. Chem. 2020, 61, 299–308. [Google Scholar] [CrossRef]
- Shmakova, A.A.; Berezin, A.S.; Abramov, P.A.; Sokolov, M.N. Self-assembly of Ag+/[PW11NbO40]4– complexes in nonaqueous solutions. Inorg. Chem. 2020, 59, 1853–1862. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-Y.; Chao, T.-C.; Zhong, M.-S. Influence of counteranions on the structural modulation of silver–di(3-pyridylmethyl)amine coordination polymers. Cryst. Growth Des. 2013, 13, 2953–2964. [Google Scholar] [CrossRef]
- Liu, F.-J.; Sun, D.; Hao, H.-J.; Huang, R.-B.; Zheng, L.-S. Anion-controlled assembly of silver(I)/aminobenzonitrile compounds: Syntheses, crystal structures, and photoluminescence properties. Cryst. Growth Des. 2012, 12, 354–361. [Google Scholar] [CrossRef]
- Seward, C.; Chan, J.; Song, D.; Wang, S. Anion dependent structures of luminescent silver(I) complexes. Inorg. Chem. 2003, 42, 1112–1120. [Google Scholar] [CrossRef] [PubMed]
- Che, C.-M.; Tse, M.-C.; Chan, M.C.W.; Cheung, K.-K.; Phillips, D.L.; Leung, K.-H. Spectroscopic evidence for argentophilicity in structurally characterized luminescent binuclear silver(I) complexes. J. Am. Chem. Soc. 2000, 122, 2464–2468. [Google Scholar] [CrossRef]
- Feazell, R.P.; Carson, C.E.; Klausmeyer, K.K. Variability in the structures of luminescent [2-(aminomethyl)pyridine] silver(I) complexes: Effect of ligand ratio, anion, hydrogen bonding, and π-stacking. Eur. J. Inorg. Chem. 2005, 2005, 3287–3297. [Google Scholar] [CrossRef]
- Matos, C.R.M.O.; Monteiro, F.G.A.; Miranda, F.S.; Pinheiro, C.B.; Bond, A.D.; Ronconi, C.M. Tuning Photoluminescent properties of silver(I)-based coordination networks through their supramolecular interactions. Cryst. Growth Des. 2017, 17, 5965–5974. [Google Scholar] [CrossRef]
- Zhan, S.-Z.; Song, H.-Q.; Guo, L.-J.; Sun, R.W.-Y.; Li, D. Structure- and temperature-dependent luminescence properties of threefold interpenetrated networks: Coordination polymers based on dinuclear gridlike silver(I) units. Eur. J. Inorg. Chem. 2017, 2017, 5127–5133. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.Q.; Kuroda-Sowa, T.; Konaka, H.; Suenaga, Y.; Maekawa, M.; Mizutani, T.; Ning, G.L.; Munakata, M. Silver(I) coordination polymers of fluorescent oligo (phenylenevinylene) with π–π stackings: luminescence and conductivity. Inorg. Chem. 2005, 44, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.-H.; Liang, D.; Yu, R.; Chen, X.-L.; Meng, L.; Chang, J.-F.; Liao, J.-Z.; Yang, M.; Li, X.-N.; Lu, C.-Z. Coordination-induced thermally activated delayed fluorescence: From non-TADF donor–acceptor-type ligand to TADF-active Ag-based complexes. Chem. Mater. 2020, 32, 620–629. [Google Scholar] [CrossRef]
- Chen, J.; Teng, T.; Kang, L.; Chen, X.-L.; Wu, X.-Y.; Yu, R.; Lu, C.-Z. Highly efficient thermally activated delayed fluorescence in dinuclear Ag(I) complexes with a bis-bidentate tetraphosphane bridging ligand. Inorg. Chem. 2016, 55, 9528–9536. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.-M.; Yu, R.; Chen, X.-L.; Yang, M.; Lin, L.; Wu, X.-Y.; Lu, C.-Z. A unique tetranuclear Ag(I) complex emitting efficient thermally activated delayed fluorescence with a remarkably short decay time. Dalton Trans. 2018, 47, 5956–5960. [Google Scholar] [CrossRef]
- Shafikov, M.Z.; Suleymanova, A.F.; Czerwieniec, R.; Yersin, H. Thermally activated delayed fluorescence from Ag(I) complexes: A route to 100% quantum yield at unprecedentedly short decay time. Inorg. Chem. 2017, 56, 13274–13285. [Google Scholar] [CrossRef]
- Shafikov, M.Z.; Suleymanova, A.F.; Schinabeck, A.; Yersin, H. Dinuclear Ag(I) Complex designed for highly efficient thermally activated delayed fluorescence. J. Phys. Chem. Lett. 2018, 9, 702–709. [Google Scholar] [CrossRef]
- Shafikov, M.Z.; Suleymanova, A.F.; Czerwieniec, R.; Yersin, H. Design strategy for Ag(I)-Based thermally activated delayed fluorescence reaching an efficiency breakthrough. Chem. Mater. 2017, 29, 1708–1715. [Google Scholar] [CrossRef]
- Czerwieniec, R.; Leitl, M.J.; Homeier, H.H.H.; Yersin, H. Cu(I) complexes—Thermally activated delayed fluorescence. Photophysical approach and material design. Coord. Chem. Rev. 2016, 325, 2–28. [Google Scholar] [CrossRef]
- Moussa, M.S.; Khalil, A.M.; Evariste, S.; Wong, H.-L.; Delmas, V.; Le Guennic, B.; Calvez, G.; Costuas, K.; Yam, V.W.-W.; Lescop, C. Intramolecular rearrangements guided by adaptive coordination-driven reactions toward highly luminescent polynuclear Cu(I) assemblies. Inorg. Chem. Front. 2020, 7, 1334–1344. [Google Scholar] [CrossRef]
- Wei, Z.; Wu, X.-H.; Luo, P.; Wang, J.-Y.; Li, K.; Zang, S.-Q. Matrix coordination induced emission in a three-dimensional silver cluster-assembled material. Chem. Eur. J. 2019, 25, 2750–2756. [Google Scholar] [CrossRef] [Green Version]
- Du, L.-Y.; Shi, W.-J.; Hou, L.; Wang, Y.-Y.; Shi, Q.-Z.; Zhu, Z. Solvent or temperature induced diverse coordination polymers of silver(I) sulfate and bipyrazole systems: Syntheses, crystal structures, luminescence, and sorption properties. Inorg. Chem. 2013, 52, 14018–14027. [Google Scholar] [CrossRef]
- Durini, S.; Ardizzoia, G.A.; Therrien, B.; Brenna, S. Tuning the fluorescence emission in mononuclear heteroleptic trigonal silver(I) complexes. New J. Chem. 2017, 41, 3006–3014. [Google Scholar] [CrossRef]
- Shafikov, M.Z.; Czerwieniec, R.; Yersin, H. Ag(I) complex design affording intense phosphorescence with a landmark lifetime of over 100 milliseconds. Dalton Trans. 2019, 48, 2802–2806. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.-Q.; Dong, X.-Y.; Huang, R.-W.; Li, B.; Zang, S.-Q.; Mak, T.C.W. A thermochromic silver nanocluster exhibiting dual emission character. Nanoscale 2015, 7, 1650–1654. [Google Scholar] [CrossRef]
- Hsu, C.-W.; Lin, C.-C.; Chung, M.-W.; Chi, Y.; Lee, G.-H.; Chou, P.-T.; Chang, C.-H.; Chen, P.-Y. Systematic investigation of the metal-structure–photophysics relationship of emissive d10-complexes of group 11 elements: The prospect of application in organic light emitting devices. J. Am. Chem. Soc. 2011, 133, 12085–12099. [Google Scholar] [CrossRef] [PubMed]
- Yersin, H.; Leitl, M.J.; Czerwieniec, R. TADF for singlet harvesting: Next generation OLED materials based on brightly green and blue emitting Cu(I) and Ag(I) compounds. Proc. SPIE 2014, 9183, 91830N. [Google Scholar]
- Osawa, M.; Kawata, I.; Ishii, R.; Igawa, S.; Hashimoto, M.; Hoshino, M. Application of neutral d10 coinage metal complexes with an anionic bidentate ligand in delayed fluorescence-type organic light-emitting diodes. J. Mater. Chem. C 2013, 1, 4375–4383. [Google Scholar] [CrossRef]
- Artem’ev, A.V.; Shafikov, M.Z.; Schinabeck, A.; Antonova, O.V.; Berezin, A.S.; Bagryanskaya, I.Y.; Plusnin, P.E.; Yersin, H. Sky-blue thermally activated delayed fluorescence (TADF) based on Ag(I) complexes: Strong solvation-induced emission enhancement. Inorg. Chem. Front. 2019, 6, 3168–3176. [Google Scholar] [CrossRef]
- Osawa, M.; Hashimoto, M.; Kawata, I.; Hoshino, M. Photoluminescence properties of TADF-emitting three-coordinate silver(I) halide complexes with diphosphine ligands: A comparison study with copper(I) complexes. Dalton Trans. 2017, 46, 12446–12455. [Google Scholar] [CrossRef]
- Titov, A.A.; Filippov, O.A.; Smol’yakov, A.F.; Godovikov, I.A.; Shakirova, J.R.; Tunik, S.P.; Podkorytov, I.S.; Shubina, E.S. Luminescent complexes of the trinuclear silver(I) and copper(I) pyrazolates supported with bis(diphenylphosphino) methane. Inorg. Chem. 2019, 58, 8645–8656. [Google Scholar] [CrossRef] [PubMed]
- Hamze, R.; Shi, S.; Kapper, S.C.; Ravinson, D.S.M.; Estergreen, L.; Jung, M.-C.; Tadle, A.C.; Haiges, R.; Djurovich, P.I.; Peltier, J.L.; et al. “Quick-silver” from a systematic study of highly luminescent, two-coordinate, d10 coinage metal complexes. J. Am. Chem. Soc. 2019, 141, 8616–8626. [Google Scholar] [CrossRef]
- Chotard, F.; Sivchik, V.; Linnolahti, M.; Bochmann, M.; Romanov, A.S. Mono-versus bicyclic carbene metal amide photoemitters: Which design leads to the best performance? Chem. Mater. 2020, 32, 6114–6122. [Google Scholar] [CrossRef]
- Ruan, Z.-W.; Zhang, X.; Pang, A.-Y.; Dai, F.-R.; Chen, Z.-N. Blue luminescent silver(I) complexes constructed by 2-diphenylphosphinopyridine and dicyanamide or tricyanomethanide. Inorg. Chem. Commun. 2020, 116, 107916. [Google Scholar] [CrossRef]
- Kakizoe, D.; Nishikawa, M.; Degawa, T.; Tsubomura, T. Intense blue emission and a reversible hypsochromic shift of luminescence caused by grinding based on silver(I) complexes. Inorg. Chem. Front. 2016, 3, 1381–1387. [Google Scholar] [CrossRef]
- Yersin, H.; Czerwieniec, R.; Shafikov, M.Z.; Suleymanova, A.F. TADF material design: Photophysical background and case studies focusing on CuI and AgI complexes. ChemPhysChem 2017, 18, 3508–3535. [Google Scholar] [CrossRef] [PubMed]
- Chakkaradhari, G.; Eskelinen, T.; Degbe, C.; Belyaev, A.; Melnikov, A.S.; Grachova, E.V.; Tunik, S.P.; Hirva, P.; Koshevoy, I.O. Oligophosphine-thiocyanate copper(I) and silver(I) complexes and their borane derivatives showing delayed fluorescence. Inorg. Chem. 2019, 58, 3646–3660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crespo, O.; Gimeno, M.; Laguna, A.; Larraz, C. Luminescent silver(I) and copper(I) systems containing pyridyl phosphine bridges. Z. Naturforsch. B 2009, 64, 1525–1534. [Google Scholar] [CrossRef]
- Li, S.; Han, M.; Wu, B.; Wang, J.; Zhang, F.-Q.; Zhang, X.-M. Observation of contrary thermo-responsive trend for single crystal and powder samples in mechano-, thermo- and solvato-responsive luminescent cubane [Ag4I4L4] cluster. Sci. Rep. 2017, 7, 13058. [Google Scholar] [CrossRef] [Green Version]
- Dosen, M.; Kawada, Y.; Shibata, S.; Tsuge, K.; Sasaki, Y.; Kobayashi, A.; Kato, M.; Ishizaka, S.; Kitamura, N. Control of emissive excited states of silver(I) halogenido coordination polymers by a solid solution approach. Inorg. Chem. 2019, 58, 8419–8431. [Google Scholar] [CrossRef]
- Cui, H.-H.; Wu, N.-N.; Wang, J.-Y.; Hu, M.-Q.; Wen, H.-M.; Chen, C.-N. Pyridyl- and pyrimidyl-phosphine-substituted [FeFe]-hydrogenase mimics: Synthesis, characterization and properties. J. Organomet. Chem. 2014, 767, 46–53. [Google Scholar] [CrossRef]
- Miller, P.; Nieuwenhuyzen, M.; Charmant, J.P.H.; James, S.L. ROP relationships between coordination polymers and discrete complexes: Discrete bowl-shaped isomers of a 2-dimensional {M4L3}n polymer. CrystEngComm 2004, 6, 408–412. [Google Scholar] [CrossRef]
- Cingolani, A.; Effendy; Martini, D.; Pettinari, C.; Skelton, B.W.; White, A.H. Synthesis, spectroscopic and structural characterization of novel adducts of some silver(I) salts with the ambidentate donor PPh2py. Inorg. Chim. Acta 2006, 359, 2183–2193. [Google Scholar] [CrossRef]
- Kuang, S.-M.; Zhang, L.-M.; Zhang, Z.-Z.; Wu, B.-M.; Mak, T.C.W. Synthesis and structural characterization of binuclear silver(I) complexes bridged by three polydentate phosphine ligands. Inorg. Chim. Acta 1999, 284, 278–283. [Google Scholar] [CrossRef]
- Bondi, A. van der Waals volumes and radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Zheng, J.; Yu, Y.-D.; Liu, F.-F.; Liu, B.-Y.; Wei, G.; Huang, X.-C. Modulation of argentophilic interactions by bridging amine ligands: Photoluminescence tuneable by excitation energy or temperature. Chem. Commun. 2014, 50, 9000–9002. [Google Scholar] [CrossRef] [PubMed]
- Shekhovtsov, N.A.; Vinogradova, K.A.; Berezin, A.S.; Sukhikh, T.S.; Krivopalov, V.P.; Nikolaenkova, E.B.; Bushuev, M.B. Excitation wavelength dependent emission of silver(I) complexes with a pyrimidine ligand. Inorg. Chem. Front. 2020, 7, 2212–2223. [Google Scholar] [CrossRef]
- Rogovoy, M.I.; Frolova, T.S.; Samsonenko, D.G.; Berezin, A.S.; Bagryanskaya, I.Y.; Nedolya, N.A.; Tarasova, O.A.; Fedin, V.P.; Artem’ev, A.V. 0D to 3D coordination assemblies engineered on silver(I) salts and 2-(alkylsulfanyl)azine ligands: Crystal structures, dual luminescence, and cytotoxic activity. Eur. J. Inorg. Chem. 2020, 2020, 1635–1644. [Google Scholar] [CrossRef]
- Yersin, H. (Ed.) Highly Efficient OLEDs Materials Based on Thermally Activated Delayed Fluorescence; Wiley-VCH: Weinheim, Germany, 2019. [Google Scholar]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Relaxation dynamics in the B(1/2) and C(3/2) charge transfer states of XeF in solid Ar. J. Chem. Phys. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.; et al. Gaussian 09, Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- CrysAlisPro 1.171.38.46; Rigaku Oxford Diffraction: Tokyo, Japan, 2015.
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
1 | 2 | |
---|---|---|
λmax (300 K) (nm) | 550 | 580 |
ΦPL (300 K) (%) | 18 a | 56 b |
τ (300 K) (µs) | 15.5 | 9.4 |
λmax (77 K) (nm) | 580 | 602 |
τ (77 K) (µs) | 3970 | 300 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Artem’ev, A.V.; Davydova, M.P.; Berezin, A.S.; Samsonenko, D.G. Synthesis and Thermochromic Luminescence of Ag(I) Complexes Based on 4,6-Bis(diphenylphosphino)-Pyrimidine. Inorganics 2020, 8, 46. https://doi.org/10.3390/inorganics8090046
Artem’ev AV, Davydova MP, Berezin AS, Samsonenko DG. Synthesis and Thermochromic Luminescence of Ag(I) Complexes Based on 4,6-Bis(diphenylphosphino)-Pyrimidine. Inorganics. 2020; 8(9):46. https://doi.org/10.3390/inorganics8090046
Chicago/Turabian StyleArtem’ev, Alexander V., Maria P. Davydova, Alexey S. Berezin, and Denis G. Samsonenko. 2020. "Synthesis and Thermochromic Luminescence of Ag(I) Complexes Based on 4,6-Bis(diphenylphosphino)-Pyrimidine" Inorganics 8, no. 9: 46. https://doi.org/10.3390/inorganics8090046