A New Complex Borohydride LiAl(BH4)2Cl2
Abstract
:1. Introduction
2. Results and Discussions
2.1. Initial Phase Analysis
2.2. Crystal Structure Refinement
2.3. NMR Characterization
2.4. Dehydrogenation
3. Materials and Methods
3.1. Sample Preparation
3.2. Powder X-Ray Diffraction
3.3. Hydrogen Desorption
3.4. Solid-State NMR
3.5. Structural Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mauron, P.; Buchter, F.; Friedrichs, O.; Remhof, A.; Bielmann, M.; Zwicky, C.; Zuttel, A. Stability and Reversibility of LiBH4. J. Phys. Chem. B 2008, 112, 906–910. [Google Scholar] [CrossRef] [PubMed]
- Barkhordarian, G.; Klassen, T.; Dornheim, M.; Bormann, R. Unexpected kinetic effect of MgB2 in reactive hydride composites containing complex borohydrides. J. Alloys Compd. 2007, 440, L18–L21. [Google Scholar] [CrossRef]
- Martelli, P.; Caputo, R.; Remhof, A.; Mauron, P.; Borgschulte, A.; Zuttel, A. Stability and Decomposition of NaBH4. J. Phys. Chem. C 2010, 114, 7173–7177. [Google Scholar] [CrossRef]
- Miwa, K.; Aoki, M.; Noritake, T.; Ohba, N.; Nakamori, Y.; Towata, S.-I.; Zuttel, A.; Orimo, S.-I. Thermodynamical stability of calcium borohydride Ca(BH4)2. Phys. Rev. B. 2006, 74, 155122. [Google Scholar] [CrossRef]
- Maekawa, H.; Matsuo, M.; Takamura, H.; Ando, M.; Noda, Y.; Karahashi, T.; Orimo, S.-I. Halide-Stabilized LiBH4, a Room-Temperature Lithium Fast-Ion Conductor. J. Am. Chem. Soc. 2009, 131, 894–895. [Google Scholar] [CrossRef]
- Mosegaard, L.; Moller, B.; Jorgensen, J.-E.; Filinchuk, Y.; Cerenius, Y.; Hanson, J.C.; Dimasi, E.; Besenbacher, F.; Jensen, T.R. Reactivity of LiBH4: In Situ Synchrotron Radiation Powder X-ray Diffraction Study. J. Phys. Chem. C 2008, 112, 1299–1303. [Google Scholar] [CrossRef] [Green Version]
- Arnbjerg, L.M.; Ravnsbæk, D.B.; Filinchuk, Y.; Vang, R.T.; Cerenius, Y.; Besenbacher, F.; Jorgensen, J.-E.; Jakobsen, H.J.; Jensen, T.R. Structure and Dynamics for LiBH4−LiCl Solid Solutions. Chem. Mater. 2009, 21, 5772–5782. [Google Scholar] [CrossRef] [Green Version]
- Rude, L.H.; Filinchuk, Y.; Sorby, M.H.; Hauback, B.C.; Besenbacher, F.; Jensen, T.R. Anion Substitution in Ca(BH4)2−CaI2: Synthesis, Structure and Stability of Three New Compounds. J. Phys. Chem. C 2010, 115, 7768–7777. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, Y.-S.; Suh, J.-Y.; Shim, J.H.; Cho, Y.W. Metal halide doped metal borohydrides for hydrogen storage: The case of Ca (BH4)2–CaX2 (X = F, Cl) mixture. J. Alloys Compds. 2009, 506, 721–727. [Google Scholar] [CrossRef]
- Nakamori, Y.; Miwa, K.; Ninomiya, A.; Li, H.; Ohba, N.; Towata, S.-I.; Zuttel, A.; Orimo, S.-I. Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativites: First-principles calculations and experiments. Phys. Rev. B 2006, 74, 045126. [Google Scholar] [CrossRef] [Green Version]
- Nickels, E.A.; Jones, M.O.; David, W.I.F.; Johnson, S.R.; Lowton, R.L.; Sommariva, M.; Edwards, P.P. Tuning the decomposition temperature in complex hydrides: Synthesis of a mixed alkali metal borohydrides. Angew. Chem. Int. Ed. 2008, 120, 2859–2861. [Google Scholar] [CrossRef]
- Hagemann, H.; Longhini, M.; Kaminski, J.W.; Wesolowski, T.A.; Cerny, R.; Penin, N.; Sorby, M.; Hauback, B.; Severa, G.; Jensen, C. LiSc(BH4)4: A Novel Salt of Li+ and Discrete Sc(BH4)4− Complex Anions. J. Phys. Chem. A 2008, 112, 7551–7555. [Google Scholar] [CrossRef] [Green Version]
- Cerny, R.; Severa, G.; Ravnsbaek, D.; Filinchuk, Y.; d’Anna, V.; Hagemann, H.; Haase, D.; Jensen, C.M.; Jensen, T.R. NaSc(BH4)4: A Novel Scandium-Based Borohydride. J. Phys. Chem. C 2010, 114, 1357–1364. [Google Scholar] [CrossRef] [Green Version]
- Ravnsbaek, D.; Filinchuk, Y.; Cerenius, Y.; Jakobsen, H.J.; Besenbacher, F.; Skibsted, J.; Jensen, T.R. A Series of Mixed-Metal Borohydrides. Angew. Chem. Int. Ed. 2009, 48, 6659–6663. [Google Scholar]
- Lindemann, I.; Domenech, F.R.; Dunsch, L.; Filinchuk, Y.; Cerny, R.; Hagemann, H.; D’Anna, V.; Daku, L.M.L.; Schultz, L.; Gutfleisch, O. Al3Li4(BH4)13: A Complex Double-Cation Borohydride with a New Structure. Chem. Euro. J. 2010, 16, 8707–8712. [Google Scholar]
- Lindemann, I.; Borgschulte, A.; Callini, E.; Zuttel, A.; Schultz, L.; Gutfleisch, O. Insight into the decomposition pathway of the complex hydride Al3Li4 (BH4)13. Int. J. Hydrogen Energy 2013, 38, 2790–2795. [Google Scholar] [CrossRef]
- Li, H.-W.; Yan, Y.; Orimo, S.-I.; Zuttel, A.; Jensen, C.M. Recent progress in metal borohydrides for hydrogen storage. Energies 2011, 4, 185–214. [Google Scholar] [CrossRef]
- Ravnsbæk, D.B.; Ley, M.B.; Lee, Y.-S.; Hagemann, H.; D’Anna, V.; Cho, Y.W.; Filinchuk, Y.; Jensen, T.R. A mixed-cation mixed-anion borohydride NaY(BH4)2Cl2. Int. J. Hydrogen Energy 2012, 37, 8428–8438. [Google Scholar]
- Dolotko, O.; Gupta, S.; Kobayashi, T.; McDonald, E.; Hlova, I.; Majzoub, E.; Balema, V.P.; Pruski, M.; Pecharsky, V.K. Mechanochemical reactions and hydrogen storage capacities in MBH4–SiS2 systems. Int. J. Hydrogen Energy 2019, 44, 7381–7391. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T.; Dolotko, O.; Gupta, S.; Pecharsky, V.K.; Pruski, M. Mechanochemistry of the LiBH4–AlCl3 System: Structural Characterization of the Products by Solid-State NMR. J. Phys. Chem. C 2018, 122, 1955–1962. [Google Scholar] [CrossRef] [Green Version]
- Lesage, A.; Sakellariou, D.; Steuernagel, S.; Emsley, L. Carbon−proton chemical shift correlation in solid-state NMR by through-bond multiple-quantum spectroscopy. J. Am. Chem. Soc. 1998, 120, 13194–13201. [Google Scholar]
- Fung, B.M.; Khitrin, A.K.; Ermolaev, K. An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 2000, 142, 97–101. [Google Scholar] [CrossRef]
- Eriksson, L.; Westdahl, M. TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries. J. Appl. Crystallogr. 1985, 18, 367–370. [Google Scholar]
- Roisnel, T.; Rodríquez-Carvajal, J. WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis. Mat. Sci. Forum 2001, 378–381, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Favre-Nicolin, V.; Cerny, R. FOX, free objects for crystallography’: A modular approach to ab initio structure determination from powder diffraction. J. Appl. Crystallogr. 2002, 35, 734–743. [Google Scholar] [CrossRef] [Green Version]
LiBH4:AlCl3 Molar Ratio | Li4Al3(BH4)13 | LiAlCl2(BH4)2 | LiAlCl4 | LiCl |
---|---|---|---|---|
4.3:1 | a = 11.390(1) Å | not present | not present | present |
4:1 | a = 11.367(1) Å | not present | not present | present |
3.65:1 | a = 11.350(1) Å | not present | not present | present |
3:1 | a = 11.291(2) Å | a = 12.159(4) Å, b = 8.493(4) Å, c = 7.377(3) Å | not present | present |
2:1 | not present | a = 11.6698(5) Å, b = 8.4724(4) Å, c = 7.5116(3) Å | not present | present |
1.3:1 | not present | a = 11.577(1) Å, b = 8.436(1) Å, c = 7.553(1) Å | present | present |
1:1 | not present | a = 11.575(2) Å, b = 8.417(1) Å, c = 7.541(1) Å | present | not present |
Atom | Site | x | y | z | Uiso, Å2 | Occupancy |
---|---|---|---|---|---|---|
M1 (Al1) | 4a | 0.633(2) | 0 | 0 | 0.081(2) | 0.45(2) |
M1 (Li1) | 4a | 0.633(2) | 0 | 0 | 0.081(2) | 0.55(2) |
M2 (Al2) | 4a | −0.119(2) | 0 | 0 | 0.081(2) | 0.55(2) |
M2 (Li2) | 4a | −0.119(2) | 0 | 0 | 0.081(2) | 0.45(2) |
Cl | 8c | 0.752(1) | 0.8070(2) | 0.0306(3) | 0.098(1) | 1 |
B1 | 4b | 0 | 0.479(1) | ¼ | 0.052(3) | 1 |
H11 | 8c | 0.063 | 0.401(1) | 0.327 | 0.052(3) | 1 |
H12 | 8c | 0.050 | 0.558(1) | 0.152 | 0.052(3) | 1 |
B2 | 4b | 0 | 0.983(1) | ¼ | 0.052(3) | 1 |
H21 | 8c | 0.065 | 1.061(1) | 0.175 | 0.052(3) | 1 |
H22 | 8c | 0.048 | 0.904(1) | 0.350 | 0.052(3) | 1 |
M1–H11 | 2.7202(1) | 2x |
M1–H11 | 2.7628(1) | 2x |
M1–H12 | 1.5758(1) | 2x |
M1–B1 | 2.4411(1) | 2x |
M1–Cl | 2.1613(1) | 2x |
M2–H21 | 2.5683(1) | 2x |
M2–H21 | 2.5715(1) | 2x |
M2–H22 | 1.6158(1) | 2x |
M2–B2 | 2.3385(1) | 2x |
M2–Cl | 2.2337(1) | 2x |
M1–Cl–M2 | 82.515(4) | 2x |
B1–H11 | 1.1503(1) | 2x |
B1–H12 | 1.1508(1) | 2x |
H–B1–H | 109.1(1)–109.8(1) | |
B2–H21 | 1.1502(1) | 2x |
B2–H22 | 1.1502(1) | 2x |
H–B2–H | 109.4(1)–109.6(1) |
LiBH4:AlCl3 Ratio | H2 Release (wt. %) 1 | H2 (vol. %) | B2H6 (vol. %) |
---|---|---|---|
4.33:1 | 2.8 | 84.0 | 16.0 |
3.67:1 | 3.5 | 97.0 | 3.0 |
3:1 | 3.0 | 99.7 | 0.3 |
2:1 | 2.0 | 99.8 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolotko, O.; Kobayashi, T.; Hlova, I.Z.; Gupta, S.; Pecharsky, V.K. A New Complex Borohydride LiAl(BH4)2Cl2. Inorganics 2021, 9, 35. https://doi.org/10.3390/inorganics9050035
Dolotko O, Kobayashi T, Hlova IZ, Gupta S, Pecharsky VK. A New Complex Borohydride LiAl(BH4)2Cl2. Inorganics. 2021; 9(5):35. https://doi.org/10.3390/inorganics9050035
Chicago/Turabian StyleDolotko, Oleksandr, Takeshi Kobayashi, Ihor Z. Hlova, Shalabh Gupta, and Vitalij K. Pecharsky. 2021. "A New Complex Borohydride LiAl(BH4)2Cl2" Inorganics 9, no. 5: 35. https://doi.org/10.3390/inorganics9050035
APA StyleDolotko, O., Kobayashi, T., Hlova, I. Z., Gupta, S., & Pecharsky, V. K. (2021). A New Complex Borohydride LiAl(BH4)2Cl2. Inorganics, 9(5), 35. https://doi.org/10.3390/inorganics9050035