In Vitro Models Used in the Formation of Root Caries Lesions—A Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Study Inclusion and Exclusion Criteria
2.2.1. Inclusion Criteria
- (1)
- In vitro studies.
- (2)
- Studies on primary root caries.
- (3)
- Studies which utilised root surfaces or root dentine.
- (4)
- Studies which used chemical or microbiological models to induce or attempt to induce root caries formation.
2.2.2. Exclusion Criteria
- (1)
- Articles not written in English.
- (2)
- Studies which used coronal dentine.
- (3)
- Studies on secondary root caries following placement of restorations.
- (4)
- Studies inducing erosion rather than caries or demineralisation.
- (5)
- Full article texts unavailable.
- (6)
- Case reports, conference papers, book chapters, patents, letters to the editor, systematic reviews, meta-analyses, and literature review papers.
3. Results
4. Discussion
5. Conclusions
- This review provides a holistic overview which may facilitate and direct future studies that aim to induce in vitro root caries lesions.
- It is apparent that the methodology used for inducing these experimental lesions has evolved over the past two decades, although there remains no consensus regarding an ideal protocol.
- We have generated a guide to induce root caries lesions in in vitro model systems in this review.
- It is acknowledged, however, that alternative techniques and approaches may be employed based on the expertise and available resources in individual research laboratories.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fejerskov, O.; Kidd, E. Dental Caries: The Disease and Its Clinical Management; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- de Souza, B.M.; Silva, M.S.; Braga, A.S.; Bueno, P.S.K.; da Silva Santos, P.S.; Buzalaf, M.A.R.; Magalhaes, A.C. Protective effect of titanium tetrafluoride and silver diamine fluoride on radiation-induced dentin caries in vitro. Sci. Rep. 2021, 11, 6083. [Google Scholar] [CrossRef]
- Jati, A.S.; Furquim, L.Z.; Consolaro, A. Gingival recession: Its causes and types, and the importance of orthodontic treatment. Dent. Press J. Orthod. 2016, 21, 18–29. [Google Scholar] [CrossRef]
- Kantrong, N.; Khongkhaphet, K.; Sitornsud, N.; Lo-Apirukkul, P.; Phanprom, W.; Rojviriya, C.; Amonpattaratkit, P.; Ariyakriangkai, W. Synchrotron radiation analysis of root dentin: The roles of fluoride and calcium ions in hydroxyapatite remineralization. J. Synchrotron Radiat. 2022, 29 Pt 2, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Gati, D.; Vieira, A.R. Elderly at greater risk for root caries: A look at the multifactorial risks with emphasis on genetics susceptibility. Int. J. Dent. 2011, 2011, 647168. [Google Scholar] [CrossRef] [PubMed]
- Griffin, S.; Griffin, P.; Swann, J.; Zlobin, N. Estimating rates of new root caries in older adults. J. Dent. Res. 2004, 83, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Satheesh, K.; MacNeill, S.R.; Rapley, J.W.; Cobb, C.M. The CEJ: A Bioflim and Calculus Trap. Compend. Contin. Educ. Dent. 2011, 32, 30–40. [Google Scholar] [PubMed]
- Hellyer, P. Root caries. Br. Dent. J. 2021, 231, 32. [Google Scholar] [CrossRef]
- Banting, D.; Eggertsson, H.; Ekstrand, K.; Ferreira-Zandoná, A.; Ismail, A.; Longbottom, C.; Pitts, N.; Reich, E.; Ricketts, D.; Selwitz, R. Rationale and evidence for the international caries detection and assessment system (ICDAS II). Ann. Arbor 2005, 1001, 48109-1078. [Google Scholar]
- Gostemeyer, G.; Kohls, A.; Paris, S.; Schwendicke, F. Root caries prevention via sodium fluoride, chlorhexidine and silver diamine fluoride in vitro. Odontology 2018, 106, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Yu, O.Y.; Zhao, I.S.; Mei, M.L.; Lo, E.C.-M.; Chu, C.-H. A review of the common models used in mechanistic studies on demineralization-remineralization for cariology research. Dent. J. 2017, 5, 20. [Google Scholar] [CrossRef]
- Salli, K.M.; Ouwehand, A.C. The use of in vitro model systems to study dental biofilms associated with caries: A short review. J. Oral Microbiol. 2015, 7, 26149. [Google Scholar] [CrossRef] [PubMed]
- Yu, O.Y.; Zhao, I.S.; Mei, M.L.; Lo, E.C.-M.; Chu, C.-H. Dental biofilm and laboratory microbial culture models for cariology research. Dent. J. 2017, 5, 21. [Google Scholar] [CrossRef]
- Özok, A.; Wu, M.-K.; Ten Cate, J.; Wesselink, P. Effect of perfusion with water on demineralization of human dentin in vitro. J. Dent. Res. 2002, 81, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Dietz, W.; Kraft, U.; Hoyer, I.; Klingberg, G. Influence of cementum on the demineralization and remineralization processes of root surface caries in vitro. Acta Odontol. Scand. 2002, 60, 241–247. [Google Scholar] [CrossRef]
- Warren, J.J.; Levy, S.M.; Wefel, J.S. Explorer probing of root caries lesions: An in vitro study. Spec. Care Dent. 2003, 23, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Pretty, I.; Ingram, G.; Agalamanyi, E.; Edgar, W.; Higham, S. The use of fluorescein-enhanced quantitative light-induced fluorescence to monitor de-and re-mineralization of in vitro root caries. J. Oral Rehabil. 2003, 30, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Ivancakova, R.; Hogan, M.; Harless, J.; Wefel, J. Effect of fluoridated milk on progression of root surface lesions in vitro under pH cycling conditions. Caries Res. 2003, 37, 166–171. [Google Scholar] [CrossRef]
- Shen, S.; Samaranayake, L.P.; Yip, H.K. In vitro growth, acidogenicity and cariogenicity of predominant human root caries flora. J. Dent. 2004, 32, 667–678. [Google Scholar] [CrossRef]
- Petersson, L.G.; Kambara, M. Remineralisation study of artificial root caries lesions after fluoride treatment. An in vitro study using Electric Caries Monitor and Transversal Micro-Radiography. Gerodontology 2004, 21, 85–92. [Google Scholar] [CrossRef]
- Kuramoto, A.; Imazato, S.; Walls, A.; Ebisu, S. Inhibition of root caries progression by an antibacterial adhesive. J. Dent. Res. 2005, 84, 89–93. [Google Scholar] [CrossRef]
- Ivancakova, R.; Harless, J.D.; Hogan, M.M.; Wefel, J.S. Effect of 2% plain and fluoridated milk on root surface caries in vitro: Root Surface Caries. Spec. Care Dent. 2005, 25, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.W.; Preston, K.P.; Higham, S.M. Development of an in situ root caries model. A. In vitro investigations. J. Dent. 2005, 33, 253–267. [Google Scholar] [CrossRef]
- Mello, A.M.; Mayer, M.P.; Mello, F.A.; Matos, A.B.; Marques, M.M. Effects of Er:YAG laser on the sealing of glass ionomer cement restorations of bacterial artificial root caries. Photomed. Laser Surg. 2006, 24, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Yip, H.; Guo, J.; Wong, W. Incipient caries lesions on cementum by mono-and co-culture oral bacteria. J. Dent. 2007, 35, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Preston, K.P.; Higham, S.M.; Smith, P.W. The efficacy of techniques for the disinfection of artificial sub-surface dentinal caries lesions and their effect on demineralization and remineralization in vitro. J. Dent. 2007, 35, 490–495. [Google Scholar] [CrossRef]
- Jeon, R.J.; Hellen, A.; Matvienko, A.; Mandelis, A.; Abrams, S.H.; Amaechi, B.T. In vitro detection and quantification of enamel and root caries using infrared photothermal radiometry and modulated luminescence. J. Biomed. Opt. 2008, 13, 034025. [Google Scholar] [CrossRef]
- Preston, K.; Smith, P.; Higham, S. The influence of varying fluoride concentrations on in vitro remineralisation of artificial dentinal lesions with differing lesion morphologies. Arch. Oral Biol. 2008, 53, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Bedran-Russo, A.K.; Wu, C.D. In vitro remineralization effects of grape seed extract on artificial root caries. J. Dent. 2008, 36, 900–906. [Google Scholar] [CrossRef]
- Thneibat, A.; Fontana, M.; Cochran, M.A.; Gonzalez-Cabezas, C.; Moore, B.K.; Matis, B.A.; Lund, M.R. Anticariogenic and antibacterial properties of a copper varnish using an in vitro microbial caries model. Oper. Dent. 2008, 33, 142–148. [Google Scholar] [CrossRef]
- Shellis, R. Formation of caries-like lesions in vitro on the root surfaces of human teeth in solutions simulating plaque fluid. Caries Res. 2010, 44, 380–389. [Google Scholar] [CrossRef]
- Geraldo-Martins, V.; Thome, T.; Mayer, M.; Marques, M. The use of bur and laser for root caries treatment: A comparative study. Oper. Dent. 2013, 38, 290–298. [Google Scholar] [CrossRef]
- Zhou, Y.; Matin, K.; Shimada, Y.; Sumi, Y.; Tagami, J. Evaluation of resin infiltration on demineralized root surface: An in vitro study. Dent. Mater. J. 2017, 36, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Shimada, Y.; Matin, K.; Sadr, A.; Yoshiyama, M.; Sumi, Y.; Tagami, J. Assessment of root caries under wet and dry conditions using swept-source optical coherence tomography (SS-OCT). Dent. Mater. J. 2018, 37, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Sleibi, A.; Tappuni, A.; Mills, D.; Davis, G.; Baysan, A. Comparison of the efficacy of different fluoride varnishes on dentin remineralization during a critical pH exposure using quantitative X-ray microtomography. Oper. Dent. 2018, 43, E308–E316. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.Y.; Lei, M.; Chu, C.H.; Lo, E.C.M. Effect of Silver Fluoride in Preventing the Formation of Artificial Dentinal Caries Lesions in vitro. Chin. J. Dent. Res. 2019, 22, 273–280. [Google Scholar] [PubMed]
- Cai, J.; Burrow, M.F.; Manton, D.J.; Tsuda, Y.; Sobh, E.G.; Palamara, J.E. Effects of silver diamine fluoride/potassium iodide on artificial root caries lesions with adjunctive application of proanthocyanidin. Acta Biomater. 2019, 88, 491–502. [Google Scholar] [CrossRef]
- Yang, V.; Fried, D. Measurement of the shrinkage of natural and simulated lesions on root surfaces using CP-OCT. J. Dent. 2019, 90, 103213. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, J.; Veeresh, D.J.; Akhil, P.; Vishnuprasad, S.; Premkumar, S.; Shaswata, K. Comparative Evaluation of Root Caries Remineralization Effect of Plain Milk, 5 ppm of Fluoridated Milk, and 5 ppm of Sodium Fluoride in Deionized Water Using Surface Microhardness Test: An In Vitro Study. J. Pharm. Bioallied Sci. 2020, 12 (Suppl. S1), S182–S189. [Google Scholar] [CrossRef] [PubMed]
- Castro, R.J.; Maltz, M.; Arthur, R.A.; Giacaman, R.A. Anti-caries effect of fluoridated milk-based drink consumed by older adults on an in vitro root caries experimental model. Arch. Oral Biol. 2020, 118, 104878. [Google Scholar] [CrossRef]
- Ngoc, C.H.; Manh, D.T.; Le, H. An experimental and clinically controlled study of the prevention of dental caries using 1.23% fluoride gel in elderly patients. J. Int. Soc. Prev. Community Dent. 2021, 11, 661. [Google Scholar]
- Mukai, Y.; Ten Cate, J. Remineralization of advanced root dentin lesions in vitro. Caries Res. 2002, 36, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Takatsuka, T.; Tanaka, K.; Iijima, Y. Inhibition of dentine demineralization by zinc oxide: In vitro and in situ studies. Dent. Mater. 2005, 21, 1170–1177. [Google Scholar] [CrossRef]
- Natsume, Y.; Nakashima, S.; Sadr, A.; Shimada, Y.; Tagami, J.; Sumi, Y. Estimation of lesion progress in artificial root caries by swept source optical coherence tomography in comparison to transverse microradiography. J. Biomed. Opt. 2011, 16, 071408. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Que, K.-H.; Yang, J.; Wang, B.; Liang, Q.-Q.; Xie, H.-H. Effect of Galla chinensis on the remineralization of two bovine root lesions morphous in vitro. Int. J. Oral Sci. 2012, 4, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Imazato, S.; Chen, J.H.; Mayanagi, G.; Takahashi, N.; Ishimoto, T.; Nakano, T. Effects of a coating resin containing S-PRG filler to prevent demineralization of root surfaces. Dent. Mater. J. 2012, 31, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, T.; Nakashima, S.; Shimizu, A.; Tagami, J.; Momoi, Y. Evaluation of a new hardness tester (Cariotester): Comparison with transverse microradiography for assessing the inhibitory effect of fluoride application on bovine root dentin demineralization. Dent. Mater. J. 2015, 34, 371–378. [Google Scholar] [CrossRef]
- Thanatvarakorn, O.; Islam, M.S.; Nakashima, S.; Sadr, A.; Nikaido, T.; Tagami, J. Effects of zinc fluoride on inhibiting dentin demineralization and collagen degradation in vitro: A comparison of various topical fluoride agents. Dent. Mater. J. 2016, 35, 769–775. [Google Scholar] [CrossRef]
- Saad, A.; Inoue, G.; Nikaido, T.; Ikeda, M.; Burrow, M.; Tagami, J. Microtensile bond strength of resin-modified glass ionomer cement to sound and artificial caries–affected root dentin with different conditioning. Oper. Dent. 2017, 42, 626–635. [Google Scholar] [CrossRef]
- Göstemeyer, G.; Schulze, F.; Paris, S.; Schwendicke, F. Arrest of root carious lesions via sodium fluoride, chlorhexidine and silver diamine fluoride in vitro. Materials 2017, 11, 9. [Google Scholar] [CrossRef]
- Gonçalves, R.S.; Scaffa, P.M.C.; Giacomini, M.C.; Buzalaf, M.A.R.; Honório, H.M.; Wang, L. Use of sodium trimetaphosphate in the inhibition of dentin matrix metalloproteinases and as a remineralizing agent. J. Dent. 2018, 68, 34–40. [Google Scholar] [CrossRef]
- Hiraishi, N.; Kobayashi, S.; Yurimoto, H.; Tagami, J. 44Ca doped remineralization study on dentin by isotope microscopy. Dent. Mater. 2018, 34, e57–e62. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, D.M.S.; Pires, J.G.; Silva, A.B.; Salomão, P.M.A.; Buzalaf, M.A.R.; Magalhães, A.C. Protective effect of 4% titanium tetrafluoride varnish on dentin demineralization using a microcosm biofilm model. Caries Res. 2019, 53, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Wierichs, R.J.; Rupp, K.; Meyer-Lueckel, H.; Apel, C.; Esteves-Oliveira, M. Effects of dentifrices differing in fluoride content on remineralization characteristics of dentin in vitro. Caries Res. 2020, 54, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Chen, J.; Han, H.; Liu, P.; Wang, H.; Lin, S.; Zhang, Q.; Lu, D.; Zhang, X. Effects of lemon essential oil and limonene on the progress of early caries: An in vitro study. Arch. Oral Biol. 2020, 111, 104638. [Google Scholar] [CrossRef]
- Zamperini, C.A.; Aydin, B.; Sroussi, H.Y.; Bedran-Russo, A.K. In vitro Study of the Role of Human Neutrophil Enzymes on Root Caries Progression. Caries Res. 2021, 55, 99–107. [Google Scholar] [CrossRef]
- Khunkar, S.; Hariri, I.; Alsayed, E.; Linjawi, A.; Khunkar, S.; Islam, S.; Bakhsh, T.A.; Nakashima, S. Inhibitory effect of Salvadora persica extract (Miswak) on collagen degradation in demineralized dentin: In vitro study. J. Dent. Sci. 2021, 16, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Gostemeyer, G.; Woike, H.; Paris, S.; Schwendicke, F.; Schlafer, S. Root Caries Preventive Effect of Varnishes Containing Fluoride or Fluoride + Chlorhexidine/Cetylpyridinium Chloride In Vitro. Microorganisms 2021, 9, 737. [Google Scholar] [CrossRef]
- Yassen, G.H.; Platt, J.A.; Hara, A.T. Bovine teeth as substitute for human teeth in dental research: A review of literature. J. Oral Sci. 2011, 53, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Lippert, F.; Churchley, D.; Lynch, R.J. Effect of lesion baseline severity and mineral distribution on remineralization and progression of human and bovine dentin caries lesions. Caries Res. 2015, 49, 467–476. [Google Scholar] [CrossRef]
- Ziskind, D.; Gleitman, J.; Rotstein, I.; Friedman, M. Evaluation of cetylpyridinium chloride for infection control in storage solution. J. Oral Rehabil. 2003, 30, 477–481. [Google Scholar] [CrossRef]
- Secilmis, A.; Dilber, E.; Gokmen, F.; Ozturk, N.; Telatar, T. Effects of storage solutions on mineral contents of dentin. J. Dent. Sci. 2011, 6, 189–194. [Google Scholar] [CrossRef]
- Shapiro, S.; Guggenheim, B. The action of thymol on oral bacteria. Oral Microbiol. Immunol. 1995, 10, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Dastmalchi, R.; Poison, A.; Bouwsma, O.; Proskin, H. Cementum thickness and mesial drift. J. Clin. Periodontol. 1990, 17, 709–713. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, Y. Teeth. In Advanced Ceramics for Dentistry; Elsevier: Amsterdam, The Netherlands, 2014; pp. 5–21. [Google Scholar]
- Chien, Y.; Burwell, A.; Saeki, K.; Fernandez-Martinez, A.; Pugach, M.; Nonomura, G.; Habelitz, S.; Ho, S.; Rapozo-Hilo, M.; Featherstone, J. Distinct decalcification process of dentin by different cariogenic organic acids: Kinetics, ultrastructure and mechanical properties. Arch. Oral Biol. 2016, 63, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Byun, R.; Nadkarni, M.A.; Chhour, K.-L.; Martin, F.E.; Jacques, N.A.; Hunter, N. Quantitative analysis of diverse Lactobacillus species present in advanced dental caries. J. Clin. Microbiol. 2004, 42, 3128–3136. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.-H.; Son, H.-H.; Yi, K.; Chang, J. Elemental analysis of caries-affected root dentin and artificially demineralized dentin. Restor. Dent. Endod. 2016, 41, 255–261. [Google Scholar] [CrossRef]
- Selwitz, R.H.; Ismail, A.I.; Pitts, N.B. Dental caries. Lancet 2007, 369, 51–59. [Google Scholar] [CrossRef]
- Matos, A.B.; Palma, R.G.; Saraceni, C.; Matson, E. Effects of acid etching on dentin surface: SEM morphological study. Braz. Dent. J. 1997, 8, 35–41. [Google Scholar] [PubMed]
- Huang, B.; Stewart, C.A.; McCulloch, C.A.; Santerre, J.P.; Cvitkovitch, D.G.; Finer, Y. Streptococcus mutans Proteases Degrade Dentinal Collagen. Dent. J. 2022, 10, 223. [Google Scholar] [CrossRef]
- Arthur, R.A.; Martins, V.B.; de Oliveira, C.L.; Leitune, V.C.B.; Collares, F.M.; Magalhães, A.C.; Maltz, M. Effect of over-the-counter fluoridated products regimens on root caries inhibition. Arch. Oral Biol. 2015, 60, 1588–1594. [Google Scholar] [CrossRef]
- Fernández, C.E.; Tenuta, L.M.; Cury, J.A. Validation of a cariogenic biofilm model to evaluate the effect of fluoride on enamel and root dentine demineralization. PLoS ONE 2016, 11, e0146478. [Google Scholar] [CrossRef] [PubMed]
- Love, R.; McMillan, M.; Jenkinson, H. Invasion of dentinal tubules by oral streptococci is associated with collagen recognition mediated by the antigen I/II family of polypeptides. Infect. Immun. 1997, 65, 5157–5164. [Google Scholar] [CrossRef] [PubMed]
- Beighton, D.; Lynch, E. Comparison of selected microflora of plaque and underlying carious dentine associated with primary root caries lesions. Caries Res. 1995, 29, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Shu, M.; Wong, L.; Miller, J.; Sissons, C. Development of multi-species consortia biofilms of oral bacteria as an enamel and root caries model system. Arch. Oral Biol. 2000, 45, 27–40. [Google Scholar] [CrossRef]
- Zheng, C.Y.; Wang, Z.H. Effects of chlorhexidine, listerine and fluoride listerine mouthrinses on four putative root-caries pathogens in the biofilm. Chin. J. Dent. Res. 2011, 14, 135–140. [Google Scholar] [PubMed]
- De Campos, P.H.; Sanabe, M.E.; Rodrigues, J.A.; Duarte, D.A.; Santos, M.T.B.R.; Guaré, R.O.; Duque, C.; Lussi, A.; Diniz, M.B. Different bacterial models for in vitro induction of non-cavitated enamel caries-like lesions: Microhardness and polarized light miscroscopy analyses. Microsc. Res. Tech. 2015, 78, 444–451. [Google Scholar] [CrossRef]
- Rudney, J.; Chen, R.; Lenton, P.; Li, J.; Li, Y.; Jones, R.; Reilly, C.; Fok, A.; Aparicio, C. A reproducible oral microcosm biofilm model for testing dental materials. J. Appl. Microbiol. 2012, 113, 1540–1553. [Google Scholar] [CrossRef]
- Yin, I.X.; Yu, O.Y.; Zhao, I.S.; Mei, M.L.; Li, Q.L.; Tang, J.; Lo, E.C.M.; Chu, C.H. Inhibition of dentine caries using fluoride solution with silver nanoparticles: An in vitro study. J. Dent. 2020, 103, 103512. [Google Scholar] [CrossRef]
- Sleibi, A.; Tappuni, A.R.; Baysan, A. Reversal of root caries with casein phosphopeptide-amorphous calcium phosphate and fluoride varnish in xerostomia. Caries Res. 2021, 55, 475–484. [Google Scholar] [CrossRef]
- Baysan, A.; Lynch, E.; Ellwood, R.; Davies, R.; Petersson, L.; Borsboom, P. Reversal of primary root caries using dentifrices containing 5000 and 1100 ppm fluoride. Caries Res. 2001, 35, 41–46. [Google Scholar]
(a) | |
---|---|
Acid Type | Number of Articles n = 35 (Percentage) |
Solution | 29 (83%) |
Acetic Acid | 28 (80%) |
Lactic Acid | 2 (6%) |
Gel | 7 (20%) |
Acetic Acid | 1 (3%) |
Lactic Acid | 5 (14%) |
Phosphoric Acid | 1 (3%) |
(b) | |
pH of Acids | Number of Articles n = 35 (Percentage) |
≤4.4 | 3 (8%) |
4.5 | 10 (26%) |
4.6 | 5 (13%) |
4.7 | 2 (5%) |
4.8 | 2 (5%) |
4.9 | 2 (5%) |
≥5.0 | 14 (37%) |
(c) | |
Days to Induce Root Caries | Number of Articles n = 35 (Percentage) |
≤1 | 4 (8%) |
2 | 4 (8%) |
3 | 7 (13%) |
4 | 8 (15%) |
5 | 9 (17%) |
6 | 1 (2%) |
7 | 8 (15%) |
14 | 4 (8%) |
21 | 5 (9%) |
≥28 | 3 (6%) |
(a) | |
---|---|
Microbiological Biofilm Used | Number of Articles n = 15 (Percentage) |
Mono-Species | 11 (73%) |
Co-Culture | 2 (13%) |
Tri-Species | 3 (20%) |
Multi-Species | 3 (20%) |
(b) | |
Bacterial Strain Used in Biofilm | Number of Articles n = 15 (Percentage) |
Streptococcus mutans | 12 (80%) |
Streptococcus sobrinus | 1 (6%) |
Lactobacillus rhamnosus | 4 (26%) |
Lactobacillus acidophilus | 3 (20%) |
Actinomyces israeli | 2 (13%) |
Actinomyces naeslundi | 2 (13%) |
Actinomyces viscosus | 1 (6%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dohan, Z.; Friedlander, L.T.; Cooper, P.R.; Li, K.-C.; Ratnayake, J.T.; Mei, M.L. In Vitro Models Used in the Formation of Root Caries Lesions—A Review of the Literature. Dent. J. 2023, 11, 269. https://doi.org/10.3390/dj11120269
Dohan Z, Friedlander LT, Cooper PR, Li K-C, Ratnayake JT, Mei ML. In Vitro Models Used in the Formation of Root Caries Lesions—A Review of the Literature. Dentistry Journal. 2023; 11(12):269. https://doi.org/10.3390/dj11120269
Chicago/Turabian StyleDohan, Zaid, Lara T. Friedlander, Paul R. Cooper, Kai-Chun Li, Jithendra T. Ratnayake, and May L. Mei. 2023. "In Vitro Models Used in the Formation of Root Caries Lesions—A Review of the Literature" Dentistry Journal 11, no. 12: 269. https://doi.org/10.3390/dj11120269
APA StyleDohan, Z., Friedlander, L. T., Cooper, P. R., Li, K.-C., Ratnayake, J. T., & Mei, M. L. (2023). In Vitro Models Used in the Formation of Root Caries Lesions—A Review of the Literature. Dentistry Journal, 11(12), 269. https://doi.org/10.3390/dj11120269