The Effect of Laser Irradiation to Surfaces of Computer-Aided Design/Computer-Aided Fabrication Resin Blocks Coated with a Silane Coupling Agent on Bond Strength between the Resin Blocks and Composite Resin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Plate Preparation
2.3. Specimen Preparation
2.4. Shear Bond Strength (SBS) Test
2.5. SBS Test after the Thermal Cycling Load Test
2.6. Failure Mode Analysis
2.7. Scanning Electron Microscopy (SEM) Observation
2.8. Measurement of Plate Surface Temperatures after Laser Irradiation
3. Results
3.1. SBS
3.2. Results of the Analysis of Failure Modes
3.3. SEM Images of Specimens Representing Each Failure Mode
3.4. Surface Temperature of the Plates Estimated Immediately after Laser Irradiation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fasbinder, D.J.; Dennison, J.B.; Heys, D.R.; Lampe, K. The clinical performance of CAD/CAM-generated composite inlays. J. Am. Dent. Assoc. 2005, 136, 1714–1723. [Google Scholar] [CrossRef]
- Tunac, A.T.; Celik, E.U.; Yasa, B. Two-year performance of CAD/CAM fabricated resin composite inlay restorations: A randomized controlled clinical trial. J. Esthet. Restor. Dent. 2019, 31, 627–638. [Google Scholar] [CrossRef]
- Fathy, H.; Hamama, H.H.; El-Wassefy, N.; Mahmoud, S.H. Clinical performance of resin-matrix ceramic partial coverage restorations: A systematic. review. Clin. Oral Investig. 2022, 26, 3807–3822. [Google Scholar] [CrossRef]
- Ling, L.; Lai, T.; Malyala, R. Fracture toughness and brittleness of novel CAD/CAM resin composite block. Dent. Mater. 2022, 38, e308–e317. [Google Scholar] [CrossRef]
- Hampe, R.; Theelke, B.; Lümkemann, N.; Eichberger, M.; Stawarczyk, B. Fracture Toughness Analysis of Ceramic and Resin Composite CAD/CAM Material. Oper. Dent. 2019, 44, E190–E201. [Google Scholar] [CrossRef]
- Spitznagel, F.A.; Scholz, K.J.; Strub, J.R.; Vach, K.; Gierthmuehlen, P.C. Polymer-infiltrated ceramic CAD/CAM inlays and partial coverage restorations: 3-year results of a prospective clinical study over 5 years. Clin. Oral Investig. 2018, 22, 1973–1983. [Google Scholar] [CrossRef]
- McKee, D.; Achilleas, T.; Bailey, K.; Fish, J. A review of hydrofluoric acid burn management. Plast. Surg. 2014, 22, 95–98. [Google Scholar] [CrossRef]
- Nagasawa, Y.; Hibino, Y.; Eda, Y.; Nakajima, H. Effect of surface treatment of CAD/CAM resin composites on the shear bond strength of self-adhesive resin cement. Dent. Mater. J. 2021, 40, 364–378. [Google Scholar] [CrossRef]
- Bayraktar, Y.; Arslan, M.; Demirtag, Z. Repair bond strength and surface topography of resin-ceramic and ceramic restorative blocks treated by laser and con 8 ventional surface treatments. Microsc. Res. Tech. 2021, 84, 1145–1154. [Google Scholar] [CrossRef]
- Samil Akyil, M.; Yilmaz, A.; Karaalioğlu, O.F.; Duymus, Z.Y. Shear bond strength of repair composite resin to an acid-etched and a laser-irradiated feldspathic ceramic surface. Photomed. Laser Surg. 2010, 28, 539–545. [Google Scholar] [CrossRef]
- Yavuz, T.; Dilber, E.; Kara, H.B.; Tuncdemir, A.R.; Nilgun Ozturk, A. Effects of different surface treatments on shear bond strength in two different ceramic systems. Lasers Med. Sci. 2013, 28, 1233–1239. [Google Scholar] [CrossRef]
- Moretto, S.G.; de Freitas, P.M.; Inca, H.E.C.; Cesar, P.F.; Bello-Silva, M.S.; de Paula Eduardo, C. Influence of Er:YAG laser surface treatment on flexural and bond strengths to glass-infiltrated zirconia-reinforced ceramic. Lasers Med. Sci. 2021, 36, 1487–1495. [Google Scholar] [CrossRef]
- El-Damanhoury, H.M.; Elsahn, N.A.; Sheela, S.; Gaintantzopoulou, M.D. Adhesive luting to hybrid ceramic and resin composite CAD/CAM Blocks: Er:YAG Laser versus chemical etching and micro-abrasion pretreatment. J. Prosthodont. Res. 2021, 65, 225–234. [Google Scholar] [CrossRef]
- Matinlinna, J.P.; Lung, C.Y.K.; Tsoi, J.K.H. Silane adhesion mechanism in dental applications and surface treatments: A review. Dent. Mater. 2018, 34, 13–28. [Google Scholar] [CrossRef]
- Shen, C.; Oh, W.S.; Williams, J.R. Effect of post-silanization drying on the bond strength of composite to ceramic. J. Prosthet. Dent. 2004, 91, 453–458. [Google Scholar] [CrossRef]
- Monticelli, F.; Toledano, M.; Osorio, R.; Ferrari, M. Effect of temperature on the silane coupling agents when bonding core resin to quartz fiber posts. Dent. Mater. 2006, 22, 1024–1028. [Google Scholar] [CrossRef]
- Shafiei, F.; Saadat, M.; Jowkar, Z. Effect of laser heat treatment on pull-out bond strength of fiber posts treated with different silanes. J. Clin. Exp. Dent. 2018, 10, e413–e418. [Google Scholar]
- Ergun-Kunt, G.; Sasany, R.; Koca, M.F.; Özcan, M. Comparison of Silane heat treatment by laser and various surface treatments on microtensile bond strength of composite resin/lithium disilicate. Materials 2021, 14, 7808. [Google Scholar] [CrossRef]
- Hakimaneh, S.M.R.; Shayegh, S.S.; Ghavami-Lahiji, M.; Chokr, A.; Moraditalab, A. Effect of Silane heat treatment by laser on the bond strength of a repair composite to feldspathic porcelain. J. Prosthodont. 2020, 29, 49–55. [Google Scholar] [CrossRef]
- Deger, C.; Oglakci, B.; Ozduman, Z.C.; Eliguzeloglu Dalkilic, E. Repair bond strength to hybrid CAD/CAM materials after Silane heat treatment with laser. J. Adhes. Dent. 2023, 25, 63–70. [Google Scholar]
- Hooshmand, T.; van Noort, R.; Keshvad, A. Bond durability of the resin-bonded and silane treated ceramic surface. Dent. Mater. 2002, 18, 179–188. [Google Scholar] [CrossRef]
- Khan, A.A.; Kheraif, A.A.; Jamaluddin, S.; Elsharawy, M.; Divakar, D.D. Recent trends in surface treatment methods for bonding composite cement to zirconia: A review. J. Adhes. Dent. 2017, 19, 7–19. [Google Scholar]
- Khan, A.A.; Fareed, M.A.; Alshehri, A.H.; Aldegheishem, A.; Alharthi, R.; Saadaldin, S.A.; Zafar, M.S. Mechanical properties of the modified denture base materials and polymerization methods: A systematic review. Int. Mol. Sci. 2022, 23, 5737. [Google Scholar] [CrossRef]
- Kiomarsi, N.; Saburian, P.; Chiniforush, N.; Karazifard, M.J.; Hashemikamangar, S.S. Effect of thermocycling and surface treatment on repair bond strength of composite. J. Clin. Exp. Dent. 2017, 9, e945–e951. [Google Scholar] [CrossRef]
- Zach, L.; Cohen, G. Pulp response to externally applied heat. Oral Surg. Oral Med. Oral Pathol. 1965, 19, 515–530. [Google Scholar] [CrossRef]
- Nyborg, H.; Brännström, M. Pulp reaction to heat. J. Prosthet. Dent. 1968, 19, 605–612. [Google Scholar] [CrossRef]
- Carrara de Oliveira, C.R.A.; Zanin, F.; Cassoni, A.; Rodrigues, J.A.; Silveira, L., Jr.; Pacheco, M.T.; Brugnera, A., Jr. Analysis of human tooth pulp chamber temperature after 670-nm laser irradiation: In vitro study. Photomed. Laser Surg. 2017, 35, 515–519. [Google Scholar] [CrossRef]
- González-Rodríguez, A.; de Dios López-González, J.; de Dios Luna del Castillo, J.; Villalba-Moreno, J. Comparison of effects of diode laser and CO2 laser on human teeth and their usefulness in topical fluoridation. Lasers Med. Sci. 2011, 26, 317–324. [Google Scholar] [CrossRef]
- Sari, T.; Celik, G.; Usumez, A. Temperature rise in pulp and gel during laser-activated bleaching: In vitro. Lasers Med. Sci. 2015, 30, 577–582. [Google Scholar] [CrossRef]
- de Alencar Mollo, M.; Frigo, L.; Favero, G.M.; Lopes-Martins, R.A.B.; Brugnera, A., Jr. In vitro analysis of human tooth pulp chamber temperature after low-intensity laser therapy at different power outputs. Lasers Med. Sci. 2011, 26, 143–147. [Google Scholar] [CrossRef]
- Fouquet, V.; Lachard, F.; Abdel-Gawad, S.; Dursun, E.; Attal, J.-P.; François, P. Shear bond strength of a direct resin composite to CAD-CAM composite blocks: Relative contribution of micromechanical and chemical block surface treatment. Materials 2022, 15, 5018. [Google Scholar] [CrossRef]
- Sarahneh, O.; Günal-Abduljalil, B. The effect of silane and universal adhesives on the micro-shear bond strength of current resin-matrix ceramics. J. Adv. Prosthodont. 2021, 13, 292–303. [Google Scholar] [CrossRef]
- Asakura, M.; Aimu, K.; Hayashi, T.; Matsubara, M.; Mieki, A.; Ban, S.; Kawai, T. Bonding characteristics of Silane coupling agent and MMA-containing primer to various composite CAD/CAM blocks. Polymers 2023, 15, 3396. [Google Scholar] [CrossRef]
- Takahashi, N.; Yabuki, C.; Kurokawa, H.; Takamizawa, T.; Kasahara, Y.; Saegusa, M.; Suzuki, M.; Miyazaki, M. Influence of surface treatment on bonding of resin luting cement to CAD/CAM composite blocks. Dent. Mater. J. 2020, 39, 834–843. [Google Scholar] [CrossRef]
- Ghavam, M.; Naeemi, M.; Hashemikamangar, S.-S.; Ebrahimi, H.; Kharazifard, M.-J. Repair bond strength of composite: Effect of surface treatment and type of composite. J. Clin. Exp. Dent. 2018, 10, e520–e527. [Google Scholar] [CrossRef]
- Oglakci, B.; Arhun, N. The shear bond strength of repaired high-viscosity bulk-fill resin composites with different adhesive systems and resin composite types. J. Adhes. Sci. Technol. 2019, 33, 1584–1597. [Google Scholar] [CrossRef]
Material | Code | Lot#No. | Composition | Manufacturer |
---|---|---|---|---|
Cerasmart 300 | CS | 2302206 | Bis-MEPP, UDMA, DMA (29 wt%), SiO2 and B2O3 glass nanofillers (71 wt%) | GC |
Vita Enamic | EN | 97110 | Bis-GMA, UDMA, Bis-EMA, TEGDMA, polymer network (14 wt%), SiO2, Al2O3, Na2O, K2O, B2O3, ZrO2, CaO ceramic network (86 wt%) | Vita |
Clearfil Majesty ES Flow | – | A30347 | Surface-treated barium glass, surface-treated silica fillers, monomer (TEGDMA and methacrylic acid monomer), photopolymerization catalyst, stabilizing agent, coloring agent | Kuraray Noritake Dental |
Clearfil Ceramic Primer Plus | – | B10087 | Silane coupling agents, monomer (MDP), and ethanol | Kuraray Noritake Dental |
Clearfil Universal Bond Quick ER | – | 4J0349 | Monomer (Bis-GMA, phosphate ester monomer: MDP, HEMA, hydrophilic amide monomer), filler (silica-based micro filler), ethanol, photopolymerization catalyst, scientific polymerization accelerators, purified water, and NaF | Kuraray Noritake Dental |
Group Code | Laser Irradiation Power | n | Thermal Cycling Load Test |
---|---|---|---|
CSC | without irradiation | 10 | Without loading |
CS3 | 3 W | ||
CS5 | 5 W | ||
CS7 | 7 W | ||
ENC | without irradiation | ||
EN3 | 3 W | ||
EN5 | 5 W | ||
EN7 | 7 W | ||
sCSC | without irradiation | 10 | With loading of 10,000 cycles |
sCS7 | 7 W | ||
sENC | without irradiation | ||
sEN7 | 7 W |
Factor | Type III Sum of Squares | Degrees of Freedom | Mean Square | F Value | p Value |
---|---|---|---|---|---|
Material Type | 1.044 | 1 | 1.04 | 0.12 | 0.72 |
Laser Power | 128.44 | 3 | 42.81 | 5.19 | 0.003 |
Material Type * Laser Power | 19.04 | 3 | 6.34 | 0.77 | 0.51 |
Error | 592.91 | 72 | 8.23 | ||
Overall | 741.44 | 79 |
Factor | Type III Sum of Squares | Degrees of Freedom | Mean Square | F Value | p Value |
---|---|---|---|---|---|
Material Type | 440.10 | 1 | 440.10 | 1279.44 | <0.001 |
Laser Power | 1069.43 | 2 | 534.71 | 1554.49 | <0.001 |
Material Type * Laser Power | 57.63 | 2 | 28.81 | 83.77 | <0.001 |
Error | 18.57 | 54 | 0.34 | ||
Overall | 1585.74 | 59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohno, H.; Suzuki, M.; Shinkai, K. The Effect of Laser Irradiation to Surfaces of Computer-Aided Design/Computer-Aided Fabrication Resin Blocks Coated with a Silane Coupling Agent on Bond Strength between the Resin Blocks and Composite Resin. Dent. J. 2023, 11, 290. https://doi.org/10.3390/dj11120290
Ohno H, Suzuki M, Shinkai K. The Effect of Laser Irradiation to Surfaces of Computer-Aided Design/Computer-Aided Fabrication Resin Blocks Coated with a Silane Coupling Agent on Bond Strength between the Resin Blocks and Composite Resin. Dentistry Journal. 2023; 11(12):290. https://doi.org/10.3390/dj11120290
Chicago/Turabian StyleOhno, Hiroshi, Masaya Suzuki, and Koichi Shinkai. 2023. "The Effect of Laser Irradiation to Surfaces of Computer-Aided Design/Computer-Aided Fabrication Resin Blocks Coated with a Silane Coupling Agent on Bond Strength between the Resin Blocks and Composite Resin" Dentistry Journal 11, no. 12: 290. https://doi.org/10.3390/dj11120290
APA StyleOhno, H., Suzuki, M., & Shinkai, K. (2023). The Effect of Laser Irradiation to Surfaces of Computer-Aided Design/Computer-Aided Fabrication Resin Blocks Coated with a Silane Coupling Agent on Bond Strength between the Resin Blocks and Composite Resin. Dentistry Journal, 11(12), 290. https://doi.org/10.3390/dj11120290