3D-Printable Biopolymers for Socket Preservation Technique: Soft Tissues Response: A Pilot Randomised Clinical Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size Calculation
- n is the total size for all groups,
- Zα/2 is the critical value for the level of significance (5%) = 1.96,
- Zβ is the critical value related to the power (80%) = 0.84,
- σ is the standard deviation in every group = 0.5,
- Δ is the clinically minimal difference between the groups = 0,
- m is the number of planned treatments = 3,
- k is the correction of dropouts = 1.
2.2. Patients Enrolment
2.3. Surgical Treatment
- TEST 1: a 3D-printed disk of poli-D-lactic acid with 10% of hydroxyapatite had to be trimmed inside the gingival margin and ensured with a crossed mattress suture.
- TEST 2: a 3D-printed disk of poli-ε caprolactone with 20% of β-tricalcium phosphate had to be trimmed inside the gingival margin and ensured with a crossed mattress suture.
- CONTROL: extraction left to heal without any graft materials. Only a collagen sponge was used in case of excessive bleeding [17].
2.4. Follow-Up
- -
- T0: extraction and socket preservation in test 1 and test 2 groups
- -
- T1 (10 days after extraction): suture removal
- -
- T2 (45 days after extraction): check and picture
2.5. Data Extraction and Evaluation
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Angelis, N.; Benedicenti, S.; Zekiy, A.; Amaroli, A. Current Trends in Bone Augmentation Techniques and Dental Implantology: An Editorial Overview. J. Clin. Med. 2022, 11, 4348. [Google Scholar] [CrossRef]
- Sanz-Sánchez, I.; Sanz-Martín, I.; Ortiz-Vigón, A.; Molina, A.; Sanz, M. Complications in Bone-grafting Procedures: Classification and Management. Periodontology 2000 2022, 88, 86–102. [Google Scholar] [CrossRef]
- Hardwick, R.; Hayes, B.K.; Flynn, C. Devices for Dentoalveolar Regeneration: An Up-to-Date Literature Review. J. Periodontol. 1995, 66, 495–505. [Google Scholar] [CrossRef]
- Apaza-Bedoya, K.; Magrin, G.L.; Romandini, M.; Blanco-Carrión, J.; Benfatti, C.A.M. Efficacy of Alveolar Ridge Preservation with Xenografts and Resorbable Socket Sealing Materials in the Esthetic Region: A Systematic Review with Meta-Analyses. Clin. Implant Dent. Relat. Res. 2023, 26, 4–14. [Google Scholar] [CrossRef]
- Juodzbalys, G.; Stumbras, A.; Goyushov, S.; Duruel, O.; Tözüm, T.F. Morphological Classification of Extraction Sockets and Clinical Decision Tree for Socket Preservation/Augmentation after Tooth Extraction: A Systematic Review. J. Oral Maxillofac. Res. 2019, 10, e3. [Google Scholar] [CrossRef]
- Majzoub, J.; Ravida, A.; Starch-Jensen, T.; Tattan, M.; Suárez-López Del Amo, F. The Influence of Different Grafting Materials on Alveolar Ridge Preservation: A Systematic Review. J. Oral Maxillofac. Res. 2019, 10, e6. [Google Scholar] [CrossRef]
- Canellas, J.V.D.S.; Medeiros, P.J.D.; Figueredo, C.M.d.S.; Fischer, R.G.; Ritto, F.G. Which Is the Best Choice after Tooth Extraction, Immediate Implant Placement or Delayed Placement with Alveolar Ridge Preservation? A Systematic Review and Meta-Analysis. J. Craniomaxillofac. Surg. 2019, 47, 1793–1802. [Google Scholar] [CrossRef]
- Di Stefano, D.A.; Orlando, F.; Ottobelli, M.; Fiori, D.; Garagiola, U. A comparison between anorganic bone and collagen-preserving bone xenografts for alveolar ridge preservation: Systematic review and future perspectives. Maxillofac. Plast. Reconstr. Surg. 2022, 44, 24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Flores Fraile, J.; López-Valverde, N.; García de Castro Andews, A.; Santos Marino, J.A.; Ramírez, J.M.; Gómez de Diego, R.; Montero, J.; López-Valverde, A.; Blanco Antona, L.A. Safety and Efficacy of a New Synthetic Material Based on Monetite, Silica Gel, PS-Wallastonite, and a Hydroxyapatite Calcium Deficient: A Randomized Comparative Clinic Trial. Medicina 2020, 56, 46. [Google Scholar] [CrossRef]
- Jawed, S.F.; Rabadia, C.D.; Khan, M.A.; Khan, S.J. Effect of Alloying Elements on the Compressive Mechanical Properties of Biomedical Titanium Alloys: A Systematic Review. ACS Omega 2022, 7, 29526–29542. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hartmann, A.; Hildebrandt, H.; Younan, Z.; Al-Nawas, B.; Kämmerer, P.W. Long-Term Results in Three-Dimensional, Complex Bone Augmentation Procedures with Customized Titanium Meshes. Clin. Oral Implants Res. 2022, 33, 1171–1181. [Google Scholar] [CrossRef]
- Cunha, G.; Carvalho, P.H.A.; Quirino, L.C.; Torres, L.H.S.; Filho, V.A.P.; Gabrielli, M.F.R.; Gabrielli, M.A.C. Titanium Mesh Exposure after Bone Grafting: Treatment Approaches-A Systematic Review. Craniomaxillofac. Trauma Reconstr. 2022, 15, 397–405. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mateo-Sidrón Antón, M.C.; Pérez-González, F.; Meniz-García, C. Titanium mesh for guided bone regeneration: A systematic review. Br. J. Oral Maxillofac. Surg. 2024, 62, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; McBride, S.; Tellis, B.; Alvarez-Urena, P.; Song, Y.-H.; Dean, D.D.; Sylvia, V.L.; Elgendy, H.; Ong, J.; Hollinger, J.O. Rapid-Prototyped PLGA/β-TCP/Hydroxyapatite Nanocomposite Scaffolds in a Rabbit Femoral Defect Model. Biofabrication 2012, 4, 025003. [Google Scholar] [CrossRef]
- Moher, D.; Hopewell, S.; Schulz, K.F.; Montori, V.; Gøtzsche, P.C.; Devereaux, P.J.; Elbourne, D.; Egger, M.; Altman, D.G. CONSORT 2010 Explanation and Elaboration: Updated Guidelines for Reporting Parallel Group Randomised Trials. Int. J. Surg. 2012, 10, 28–55. [Google Scholar] [CrossRef]
- De Angelis, N.; Amaroli, A.; Sabbieti, M.G.; Cappelli, A.; Lagazzo, A.; Pasquale, C.; Barberis, F.; Agas, D. Tackling Inequalities in Oral Health: Bone Augmentation in Dental Surgery through the 3D Printing of Poly(ε-Caprolactone) Combined with 20% Tricalcium Phosphate. Biology 2023, 12, 536. [Google Scholar] [CrossRef]
- Natto, Z.S.; Parashis, A.O.; Jeong, Y.N. Soft-Tissue Changes after Using Collagen Matrix Seal or Collagen Sponge with Allograft in Ridge Preservation: A Randomized Controlled Volumetric Study. J. Oral Implantol. 2020, 46, 588–593. [Google Scholar] [CrossRef]
- Puppi, D.; Chiellini, F. Biodegradable Polymers for Biomedical Additive Manufacturing. Appl. Mater. Today 2020, 20, 100700. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—A Comprehensive Review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef]
- Song, X.; Guan, W.; Qin, H.; Han, X.; Wu, L.; Ye, Y. Properties of Poly(Lactic Acid)/Walnut Shell/Hydroxyapatite Composites Prepared with Fused Deposition Modeling. Sci. Rep. 2022, 12, 11563. [Google Scholar] [CrossRef]
- Ohura, K.; Bohner, M.; Hardouin, P.; Lemaître, J.; Pasquier, G.; Flautre, B. Resorption of, and Bone Formation from, New Beta-Tricalcium Phosphate-Monocalcium Phosphate Cements: An in Vivo Study. J. Biomed. Mater. Res. 1996, 30, 193–200. [Google Scholar] [CrossRef]
- Penel, G.; Leroy, N.; Van Landuyt, P.; Flautre, B.; Hardouin, P.; Lemaître, J.; Leroy, G. Raman Microspectrometry Studies of Brushite Cement: In Vivo Evolution in a Sheep Model. Bone 1999, 25, 81S–84S. [Google Scholar] [CrossRef]
- Tamimi, F.; Torres, J.; Bassett, D.; Barralet, J.; Cabarcos, E.L. Resorption of Monetite Granules in Alveolar Bone Defects in Human Patients. Biomaterials 2010, 31, 2762–2769. [Google Scholar] [CrossRef]
- Borkar, T.; Goenka, V.; Jaiswal, A.K. Application of Poly-ε-Caprolactone in Extrusion-Based Bioprinting. Bioprinting 2021, 21, e00111. [Google Scholar] [CrossRef]
- Azimi, B.; Nourpanah, P.; Rabiee, M.; Arbab, S. Poly (∊-Caprolactone) Fiber: An Overview. J. Eng. Fiber Fabr. 2014, 9, 155892501400900. [Google Scholar] [CrossRef]
- Koch, F.; Thaden, O.; Conrad, S.; Tröndle, K.; Finkenzeller, G.; Zengerle, R.; Kartmann, S.; Zimmermann, S.; Koltay, P. Mechanical Properties of Polycaprolactone (PCL) Scaffolds for Hybrid 3D-Bioprinting with Alginate-Gelatin Hydrogel. J. Mech. Behav. Biomed. Mater. 2022, 130, 105219. [Google Scholar] [CrossRef]
- De Angelis, N.; Kassim, Z.H.; Mohd Yusof, E.; Yumang, C.; Menini, M. Bone Augmentation Techniques with Customized Titanium Meshes: A Systematic Review of Randomized Clinical Trials. Open Dent. J. 2023, 17, e187421062302201. [Google Scholar] [CrossRef]
- Yu, X.; Teng, F.; Zhao, A.; Wu, Y.; Yu, D. Effects Of Post-Extraction Alveolar Ridge Preservation Versus Immediate Implant Placement: A Systematic Review and Meta-Analysis. J. Evid. Based Dent. Pract. 2022, 22, 101734. [Google Scholar] [CrossRef] [PubMed]
- García-Lamas, L.; Sánchez-Salcedo, S.; Jiménez-Díaz, V.; Bravo-Giménez, B.; Cabañas, M.V.; Peña, J.; Román, J.; Jiménez-Holguín, J.; Abella, M.; Desco, M.; et al. Desing and comparison of bone substitutes. Study of in vivo behavior in a rabbit model. Rev. Esp. Cir. Ortop. Traumatol. 2023, 67, 324–333. (In Spanish) [Google Scholar] [CrossRef] [PubMed]
Test 1 | Test 2 | Control | |
---|---|---|---|
Males | 7 | 7 | 6 |
Females | 6 | 6 | 7 |
Front teeth (inc, canines) | 3 | 3 | 3 |
Posterior teeth (premolars-molars) | 10 | 10 | 10 |
Initial Exposed Area (mm2) T0 | 46.5 ± 8.25 | 47.1 ± 8.67 | 45.6 ± 7.25 |
Final Exposed Area (mm2) T4 (6 weeks) | 0.6 ± 0.84 | 0.6 ± 0.7 | 1.2 ± 0.9 |
Difference in exposed area (mm2) (T0–T4) | 45.9 ± 9.09 | 46.5 ± 9.37 | 44.4 ± 8.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Angelis, N.; Pesce, P.; Poedjiastoeti, W.; Suwandi, T.; Tjandrawinata, R.; Bagnasco, F.; Menini, M. 3D-Printable Biopolymers for Socket Preservation Technique: Soft Tissues Response: A Pilot Randomised Clinical Study. Dent. J. 2024, 12, 321. https://doi.org/10.3390/dj12100321
De Angelis N, Pesce P, Poedjiastoeti W, Suwandi T, Tjandrawinata R, Bagnasco F, Menini M. 3D-Printable Biopolymers for Socket Preservation Technique: Soft Tissues Response: A Pilot Randomised Clinical Study. Dentistry Journal. 2024; 12(10):321. https://doi.org/10.3390/dj12100321
Chicago/Turabian StyleDe Angelis, Nicola, Paolo Pesce, Wiwiek Poedjiastoeti, Trijani Suwandi, Rosalina Tjandrawinata, Francesco Bagnasco, and Maria Menini. 2024. "3D-Printable Biopolymers for Socket Preservation Technique: Soft Tissues Response: A Pilot Randomised Clinical Study" Dentistry Journal 12, no. 10: 321. https://doi.org/10.3390/dj12100321
APA StyleDe Angelis, N., Pesce, P., Poedjiastoeti, W., Suwandi, T., Tjandrawinata, R., Bagnasco, F., & Menini, M. (2024). 3D-Printable Biopolymers for Socket Preservation Technique: Soft Tissues Response: A Pilot Randomised Clinical Study. Dentistry Journal, 12(10), 321. https://doi.org/10.3390/dj12100321