The Efficacy of Er:YAG Laser in the Extraction of Impacted Third Molars: A Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patient Treatment Characteristics
- (1)
- Age of patients from 21 to 70 years;
- (2)
- Indications for extraction of impacted lower third molars;
- (3)
- Presence of the mandibular second molar in the dental arch;
- (4)
- Absence of concomitant pathologies or concomitant pathologies in the stage of compensation;
- (5)
- Therapeutic and surgical sanitation of the oral cavity;
- (6)
- Satisfactory oral hygiene;
- (1)
- Non-compliance by age group;
- (2)
- Presence of concomitant pathologies in the stage of exacerbation and decompensation;
- (3)
- Pregnancy, lactation period;
- (4)
- Mental illnesses;
- (5)
- Malignant neoplasms;
- (6)
- Alcohol and drug abuse in the anamnesis;
- (7)
- Poor oral hygiene;
- (8)
- Absence of the second molars in the dental arch;
- (9)
- Inflammatory periodontal diseases;
- (1)
- Exacerbation of concomitant pathology during the study;
- (2)
- Violation of doctor’s recommendations, deviation from the study protocol;
- (3)
- Patient’s unwillingness to continue participation in the study.
2.2.1. Method of Third Molar Extraction Using Erbium Laser with Wavelength 2940 nm
2.2.2. Traditional Method of Third Molar Extraction
2.2.3. Clinical Parameters of the Postoperative Period After Extraction of Third Molars
Postoperative Pain
Collateral Swelling
Mouth Opening
Hyperesthesia
2.2.4. Radiology Parameters
2.3. Ethical Considerations
2.4. Statistics
3. Results
4. Discussion
- -
- Small number of patients;
- -
- We did not take into account the different types of retention and tooth position;
- -
- We did not divide patients by age and gender;
- -
- A wide age range of patients (from 21 to 70 years);
- -
- We included different numbers of men and women, and previous studies have shown different pain tolerance levels between men and women;
- -
- We used the subjective method of swelling assessment in our study.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alberto, P.L. Surgical Exposure of Impacted Teeth. Oral. Maxillofac. Surg. Clin. N. Am. 2020, 32, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Renton, T.; Smeeton, Y.; McGurk, M. Factors Predictive of Difficulty of Mandibular Third Molar Surgery. Br. Dent. J. 2001, 190, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Varghese, G. Management of Impacted Third Molars. In Oral and Maxillofacial Surgery for the Clinician; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Kiencało, A.; Jamka-Kasprzyk, M.; Panaś, M.; Wyszyńska-Pawelec, G. Analysis of Complications after the Removal of 339 Third Molars. Dent. Med. Probl. 2021, 58, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Sayed, N.; Bakathir, A.; Pasha, M.; Al-Sudairy, S. Complications of Third Molar Extraction: A Retrospective Study from a Tertiary Healthcare Centre in Oman. Sultan Qaboos Univ. Med. J. 2019, 19, e230. [Google Scholar] [CrossRef]
- Lodi, G.; Azzi, L.; Varoni, E.M.; Pentenero, M.; Del Fabbro, M.; Carrassi, A.; Sardella, A.; Manfredi, M. Antibiotics to Prevent Complications Following Tooth Extractions: A Cochrane Review. Dent. Cadmos 2021, 89, 416–427. [Google Scholar] [CrossRef]
- Buonavoglia, A.; Leone, P.; Solimando, A.G.; Fasano, R.; Malerba, E.; Prete, M.; Corrente, M.; Prati, C.; Vacca, A.; Racanelli, V. Antibiotics or No Antibiotics, That Is the Question: An Update on Efficient and Effective Use of Antibiotics in Dental Practice. Antibiotics 2021, 10, 550. [Google Scholar] [CrossRef]
- Jacques, E.; Ebogo, M.; Eng, Y.C.; Donald, N.; Odile, Z. Radiographic Evaluation of Impacted Third Mandibular Molar According to the Classification of Winter, Pell and Gregory in a Sample of Cameroonian Population. Ethiop. J. Health Sci. 2023, 33, 851–858. [Google Scholar] [CrossRef]
- Chun, S.Y.; Kang, Y.H.; Yang, S.; Kang, S.R.; Lee, S.J.; Kim, J.M.; Kim, J.E.; Huh, K.H.; Lee, S.S.; Heo, M.S.; et al. Automatic Classification of 3D Positional Relationship between Mandibular Third Molar and Inferior Alveolar Canal Using a Distance-Aware Network. BMC Oral Health 2023, 23, 794. [Google Scholar] [CrossRef]
- Asanami, S.; Kasazaki, Y.; Ward, T.R. Expert Third Molar Extractions; Quintessence Publishing Company: Batavia, IL, USA, 1991. [Google Scholar]
- Winter, G.B. Principles of Exodontia as Applied to the Impacted Mandibular Third Molar; American Medical Book Company: Valley Stream, NY, USA, 1926. [Google Scholar]
- Pell, G.J.; Gregory, B.T. Impacted Mandibular Third Molars: Classification and Modified Techniques for Removal. Available online: https://www.scienceopen.com/document?vid=faf9b57f-bd09-44f6-88e3-b9ac4e34859e (accessed on 29 September 2022).
- Tetsch, P.; Wagner, W. Operative Extraction of Wisdom Teeth; Wolfe Medical Publications: London, UK, 1990. [Google Scholar]
- Spiotto, M.T.; Juodzbalys, G.; Daugela, P. Mandibular Third Molar Impaction: Review of Literature and a Proposal of a Classification. J. Oral Maxillofac. Res. 2013, 4, e1. [Google Scholar] [CrossRef]
- García, A.G.; Sampedro, F.G.; Rey, J.G.; Vila, P.G.; Martin, M.S. Pell-Gregory Classification Is Unreliable as a Predictor of Difficulty in Extracting Impacted Lower Third Molars. British J. Oral Maxillofac. Surg. 2000, 38, 585–587. [Google Scholar] [CrossRef]
- Jaroń, A.; Trybek, G. The Pattern of Mandibular Third Molar Impaction and Assessment of Surgery Difficulty: A Retrospective Study of Radiographs in East Baltic Population. Int. J. Environ. Res. Public Health 2021, 18, 6016. [Google Scholar] [CrossRef] [PubMed]
- Kharma, M.Y.; Sakka, S.; Aws, G.; Tarakji, B.; Nassani, M.Z. Reliability of Pederson Scale in Surgical Extraction of Impacted Lower Third Molars: Proposal of New Scale. J. Oral Dis. 2014, 2014, 157523. [Google Scholar] [CrossRef]
- Gümrükçü, Z. The Effects of Piezosurgery and Submucosal Dexamethasone Injection on Post-Operative Complications after Third Molar Surgery. J. Stomatol. Oral Maxillofac. Surg. 2019, 120, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Erdil, A.; Akbulut, N.; Altan, A.; Demirsoy, M.S. Comparison of the Effect of Therapeutic Elastic Bandage, Submucosal Dexamethasone, or Dexketoprofen Trometamol on Inflammatory Symptoms and Quality of Life Following Third Molar Surgery: A Randomized Clinical Trial. Clin. Oral Investig. 2021, 25, 1849–1857. [Google Scholar] [CrossRef]
- Antonelli, A.; Barone, S.; Bennardo, F.; Giudice, A. Three-Dimensional Facial Swelling Evaluation of Pre-Operative Single-Dose of Prednisone in Third Molar Surgery: A Split-Mouth Randomized Controlled Trial. BMC Oral Health 2023, 23, 614. [Google Scholar] [CrossRef]
- Giovannacci, I.; Giunta, G.; Pedrazzi, G.; Meleti, M.; Manfredi, M.; Migliario, M.; Brucoli, M.; Lucchina, A.G.; Mortellaro, C.; Vescovi, P. Erbium Yttrium-Aluminum-Garnet Laser Versus Traditional Bur in the Extraction of Impacted Mandibular Third Molars: Analysis of Intra- and Postoperative Differences. J. Craniofacial Surg. 2018, 29, 2282–2286. [Google Scholar] [CrossRef]
- Strakas, D.; Gutknecht, N. Erbium Lasers in Operative Dentistry—A Literature Review. Lasers Dent. Sci. 2018, 2, 125–136. [Google Scholar] [CrossRef]
- Garipov, R.; Elena, M.; Diachkova, E.; Davtyan, A.; Me-Likhova, D.; Kazimzade, A.; Tarasenko, S. Analysis of the Effect of Nd:YAG Laser Irradiation on Soft Tissues of the Oral Cavity in Different Modes in an In Vivo Experiment. Biointerface Res. Appl. Chem. 2022, 12, 2881–2888. [Google Scholar] [CrossRef]
- Romanenko, N.V.; Tarasenko, S.V.; Serezhnikova, N.B.; Shekhter, A.B.; Suvorov, A.Y.; Djidjavadze, S.V.; Derevyankin, A.A. A Comparative Assessment of the Results of the Biological Response of the Oral Mucosa on the Effect of Laser Radiation with a Wavelength of 445 Nm and 810 Nm. Clin. Dent. (Russ.) 2022, 25, 137–143. [Google Scholar] [CrossRef]
- Romanenko, N.; Tarasenko, S.; Davtyan, A.; Serezhnikova, N.; Djidjavadze, S.; Derevyankin, A.; Shchetinina, E.; Deryugin, A.; Burlak, A. The Features of the Reparative Regeneration of an Oral Mucosa Wound Created under the Exposure of a Laser at a Wavelength of 445 Nm (a Pilot Study). Lasers Med. Sci. 2024, 39, 152. [Google Scholar] [CrossRef]
- Aoki, A.; Mizutani, K.; Schwarz, F.; Sculean, A.; Yukna, R.A.; Takasaki, A.A.; Romanos, G.E.; Taniguchi, Y.; Sasaki, K.M.; Zeredo, J.L.; et al. Periodontal and Peri-Implant Wound Healing Following Laser Therapy. Periodontology 2000 2015, 68, 217–269. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, K.; Aoki, A.; Coluzzi, D.; Yukna, R.; Wang, C.; Pavlic, V.; Izumi, Y. Lasers in Minimally Invasive Periodontal and Peri-Implant Therapy. Periodontology 2000 2016, 71, 185–212. [Google Scholar] [CrossRef] [PubMed]
- Caldeira, J.; Paula, A.; Faloni, S.; Macedo, P.D.; Borges Nakata, P.; Adriana, R.; Marcantonio, C.; Intini, G.; Marcantonio, E. Effects on Bone Repair of Osteotomy With Drills or With Erbium, Chromium: Yttrium-Scandium-Gallium-Garnet Laser: Histomorphometric and Immunohistochemical Study. J. Periodontol. 2016, 87, 452–460. [Google Scholar] [CrossRef]
- Sandhu, R.; Kumar, H.; Dubey, R.; Vyas, D.; Shahi, A.K. Comparative Study of the Surgical Excision of Impacted Mandibular Third Molars Using Surgical Burs and an Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) Laser. Cureus 2023, 15, e49816. [Google Scholar] [CrossRef]
- Sales, P.H.d.H.; Barros, A.W.P.; Silva, P.G.d.B.; Vescovi, P.; Leão, J.C. Is the Er: YAG Laser Effective in Reducing Pain, Edema, and Trismus After Removal of Impacted Mandibular Third Molars? A Meta-Analysis. J. Oral Maxillofac. Surg. 2021, 80, 501–516. [Google Scholar] [CrossRef]
- Lin, T.; Yu, C.C.; Liu, C.M.; Hsieh, P.L.; Liao, Y.W.; Yu, C.H.; Chen, C.J. Er:YAG Laser Promotes Proliferation and Wound Healing Capacity of Human Periodontal Ligament Fibroblasts through Galectin-7 Induction. J. Formos. Med. Assoc. 2021, 120, 388–394. [Google Scholar] [CrossRef]
- Panduric, D.G.; Juric, I.B.; Music, S.; Molčanov, K.; Sušic, M.; Anic, I. Morphological and Ultrastructural Comparative Analysis of Bone Tissue after Er:YAG Laser and Surgical Drill Osteotomy. Photomed. Laser Surg. 2014, 32, 401–408. [Google Scholar] [CrossRef]
- Kim, E.; Eo, M.Y.; Nguyen, T.T.H.; Yang, H.J.; Myoung, H.; Kim, S.M. Spontaneous Bone Regeneration after Surgical Extraction of a Horizontally Impacted Mandibular Third Molar: A Retrospective Panoramic Radiograph Analysis. Maxillofac. Plast. Reconstr. Surg. 2019, 41, 4. [Google Scholar] [CrossRef]
- Civak, T.; Ustun, T.; Yilmaz, H.N.; Gursoy, B. Postoperative Evaluation of Er:YAG Laser, Piezosurgery, and Rotary Systems Used for Osteotomy in Mandibular Third-Molar Extractions. J. Cranio-Maxillofac. Surg. 2021, 49, 64–69. [Google Scholar] [CrossRef]
- Costa, D.L.; Thomé de Azevedo, E.; Przysiezny, P.E.; Kluppel, L.E. Use of Lasers and Piezoelectric in Intraoral Surgery. Oral Maxillofac. Surg. Clin. N. Am. 2021, 33, 275–285. [Google Scholar] [CrossRef]
- Mikami, R.; Mizutani, K.; Sasaki, Y.; Iwata, T.; Aoki, A. Patient-Reported Outcomes of Laser-Assisted Pain Control Following Non-Surgical and Surgical Periodontal Therapy: A Systematic Review and Meta-Analysis. PLoS ONE 2020, 15, e0238659. [Google Scholar] [CrossRef] [PubMed]
- Maiti, N.; Sharma, P.; Jadon, S.; Qadri, F.; Pamidi, V.; Ganvir, S.; Tiwari, R. Efficiency of Laser versus Bur in Impacted Mandibular Third Molar Surgery: An Original Research. J. Pharm. Bioallied Sci. 2021, 13, S1501. [Google Scholar] [CrossRef] [PubMed]
- Pavlic, V.; Brkic, Z.; Marin, S.; Cicmil, S.; Gojkov-Vukelic, M.; Aoki, A. Gingival Melanin Depigmentation by Er:YAG Laser: A Literature Review. J. Cosmet. Laser Ther. 2018, 20, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Amaroli, A.; Colombo, E.; Zekiy, A.; Aicardi, S.; Benedicenti, S.; De Angelis, N. Interaction between Laser Light and Osteoblasts: Photobiomodulation as a Trend in the Management of Socket Bone Preservation—A Review. Biology 2020, 9, 409. [Google Scholar] [CrossRef]
- CHERNEGOV, V.V.; VASILIEVA, L.V.; MITROFANOV, A.A.; MITROFANOVA, O.V. Laser Prospects in Dentistry and Maxillofacial Surgery. Avicenna Bull. 2020, 22, 478–483. [Google Scholar] [CrossRef]
- Stübinger, S.; Von Rechenberg, V.B.; Zeilhofer, H.F.; Sader, R.; Landes, C. Er:YAG Laser Osteotomy for Removal of Impacted Teeth: Clinical Comparison of Two Techniques. Lasers Surg. Med. 2007, 39, 583–588. [Google Scholar] [CrossRef]
- Passi, D.; Pal, U.S.; Mohammad, S.; Singh, R.K.; Mehrotra, D.; Singh, G.; Kumar, M.; Chellappa, A.A.L.; Gupta, C. Laser vs Bur for Bone Cutting in Impacted Mandibular Third Molar Surgery: A Randomized Controlled Trial. J. Oral Biol. Craniofacial Res. 2013, 3, 57. [Google Scholar] [CrossRef]
- Keyhan, S.O.; Fallahi, H.R.; Cheshmi, B.; Mokhtari, S.; Zandian, D.; Yousefi, P. Use of Piezoelectric Surgery and Er:YAG Laser:Which One Is More Effective during Impacted Third Molar Surgery? Maxillofac. Plast. Reconstr. Surg. 2019, 41, 29. [Google Scholar] [CrossRef]
- Faria, A.I.; Gallas-Torreira, M.; López-Ratón, M. Mandibular Second Molar Periodontal Healing after Impacted Third Molar Extraction in Young Adults. J. Oral Maxillofac. Surg. 2012, 70, 2732–2741. [Google Scholar] [CrossRef]
- Kirli Topcu, S.I.; Palancioglu, A.; Yaltirik, M.; Koray, M. Piezoelectric Surgery Versus Conventional Osteotomy in Impacted Lower Third Molar Extraction: Evaluation of Perioperative Anxiety, Pain, and Paresthesia. J. Oral Maxillofac. Surg. 2019, 77, 471–477. [Google Scholar] [CrossRef]
- Lemes, C.H.J.; da Rosa, W.L.d.O.; Sonego, C.L.; Lemes, B.J.; Moraes, R.R.; da Silva, A.F. Does Laser Therapy Improve the Wound Healing Process after Tooth Extraction? A Systematic Review. Wound Repair Regen. 2019, 27, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Basheer, S.A.; Jay Govind, R.; Daniel, A.; Sam, G.; Adarsh, V.J.; Rao, A. Comparative Study of Piezoelectric and Rotary Osteotomy Technique for Third Molar Impaction. J. Contemp. Dent. Pract. 2017, 18, 60–64. [Google Scholar] [CrossRef] [PubMed]
- De Abreu, P.T.R.; de Arruda, J.A.A.; Mesquita, R.A.; Abreu, L.G.; Diniz, I.M.A.; Silva, T.A. Photobiomodulation Effects on Keratinocytes Cultured in Vitro: A Critical Review. Lasers Med. Sci. 2019, 34, 1725–1734. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, M.; Migliario, M.; Tonello, S.; Rocchetti, V.; Renò, F. Photobiomodulation Induces in Vitro Re-Epithelialization via Nitric Oxide Production. Lasers Med. Sci. 2018, 33, 1003–1008. [Google Scholar] [CrossRef]
- Avci, P.; Gupta, A.; Sadasivam, M.; Vecchio, D.; Pam, Z.; Pam, N.; Hamblin, M.R. Low-Level Laser (Light) Therapy (LLLT) in Skin: Stimulating, Healing, Restoring. Semin. Cutan. Med. Surg. 2013, 32, 41. [Google Scholar]
- Migliario, M.; Yerra, P.; Gino, S.; Sabbatini, M.; Renò, F. Laser Biostimulation Induces Wound Healing-Promoter Β2-Defensin Expression in Human Keratinocytes via Oxidative Stress. Antioxidants 2023, 12, 1550. [Google Scholar] [CrossRef]
- Tang, E.; Khan, I.; Andreana, S.; Arany, P.R. Laser-Activated Transforming Growth Factor-Β1 Induces Human β-Defensin 2: Implications for Laser Therapies for Periodontitis and Peri-Implantitis. J. Periodontal Res. 2016, 52, 360–367. [Google Scholar] [CrossRef]
- Seo, S.J.; Ahn, S.W.; Hong, C.K.; Ro, B.I. Expressions of β-Defensins in Human Keratinocyte Cell Lines. J. Dermatol. Sci. 2001, 27, 183–191. [Google Scholar] [CrossRef]
- Yang, D.; Chertov, O.; Bykovskaia, S.N.; Chen, Q.; Buffo, M.J.; Shogan, J.; Anderson, M.; Schröder, J.M.; Wang, J.M.; Howard, O.M.Z.; et al. β-Defensins: Linking Innate and Adaptive Immunity through Dendritic and T Cell CCR6. Science 1999, 286, 525–528. [Google Scholar] [CrossRef]
- Taylor, K.; Barran, P.E.; Dorin, J.R. Structure–Activity Relationships in β-Defensin Peptides. Pept. Sci. 2008, 90, 1–7. [Google Scholar] [CrossRef]
Variables | Control Group | Test Group |
---|---|---|
Age, years (mean ± SD) | 33.4 ± 5.62 | 37.1 ± 11.6 |
Median | 33.5 | 34.0 |
Minimum | 25 | 24 |
Maximum | 40 | 56 |
Sex (n %) | ||
men | 56.6% | 60% |
women | 43.4% | 40% |
Day | Er:YAG Group Mean ± SD Median IQR (Q3–Q1) | Control Group Mean ± SD Median IQR (Q3–Q1) | p Value (Mann–Whitney) |
---|---|---|---|
1 | 1.50 ± 0.78 | 5.03 ± 0.93 | <0.001 |
1.00 | 5.00 | ||
1.00 (2.00–1.00) | 2.00 (6.00–4.00) | ||
3 | 0.93 ± 0.87 | 5.10 ± 0.96 | <0.001 |
1.00 | 5.00 | ||
1.00 (1.00–0.00) | 2.00 (6.00–4.00) | ||
5 | 0.23 ± 0.57 | 3.33 ± 1.09 | <0.001 |
0.00 | 3.00 | ||
0.00 (0.00–0.00) | 1.00 (4.00–3.00) | ||
7 | 0.10 ± 0.31 | 2.03 ± 0.89 | <0.001 |
0.00 | 2.00 | ||
0.00 (0.00–0.00) | 1.75 (2.75–1.00) | ||
10 | 0.00 ± 0.00 | 0.37 ± 0.49 | <0.001 |
0.00 | 0.00 | ||
0.00 (0.00–0.00) | 1.00 (1.00–0.00) | ||
p value (Kruskal–Wallis) | <0.001 | <0.001 |
Group | Day | 0 Points | 1–3 Points | 4–5 Points | 6–7 Points | 8–9 Points | 10 Points |
---|---|---|---|---|---|---|---|
Er:YAG group n (%) | 1 | - | 29 (96.7%) | 1 (3.3%) | - | - | - |
3 | 10 (33.3%) | 20 (66.7%) | - | - | - | - | |
5 | 25 (83.3%) | 5 (16.7%) | - | - | - | - | |
7 | 27 (90%) | 3 (10%) | - | - | - | - | |
10 | 30 (100%) | - | - | - | - | - | |
Control group n (%) | 1 | - | 1 (3.3%) | 19 (63.3%) | 10 (33.3%) | - | - |
3 | - | - | 20 (66.7%) | 9 (30%) | 1 (3.3%) | - | |
5 | - | 18 (60%) | 11 (36.7%) | 1 (3.3%) | - | - | |
7 | - | 28 (93.3%) | 2 (6.7%) | - | - | - | |
10 | 19 (63.3%) | 11 (36.7%) | - | - | - | - |
Day | Laser Group (Mean ± SD) Median IQR (Q3–Q1) | Control Group (Mean ± SD) Median IQR (Q3–Q1) | p-Value (Mann–Whitney) |
---|---|---|---|
1 | 1.40 ± 0.72 | 3.41 ± 0.83 | <0.001 |
1.00 | 4.00 | ||
1.00 (2.00–1.00) | 1.0 (4.00–3.00) | ||
3 | 0.97 ± 1.10 | 4.41 ± 0.91 | <0.001 |
1.00 | 4 | ||
1.00 (1.00–0.00) | 1.00 (5.00–4.00) | ||
5 | 0.367 ± 0.81 | 2.52 ± 0.99 | <0.001 |
0.00 | 3.00 | ||
0.00 (0.00–0.00) | 1.00 (3.00–2.00) | ||
7 | 0.13 ± 0.43 | 1.21 ± 0.77 | <0.001 |
0.00 | 1.00 | ||
0.00 (0.00–0.00) | 1.00 (2.00–1.00) | ||
10 | 0.00 ± 0.00 | 0.38 ± 0.49 | <0.001 |
0.00 | 0.00 | ||
0.00 (0.00–0.00) | 1.00 (1.00–0.00) | ||
p value (Kruskal–Wallis) | <0.001 | <0.001 |
Group | Day | 0 Points | 1–2 Points | 3–4 Points | 5 Points |
---|---|---|---|---|---|
Laser group n (%) | 1 | _ | 28 (93%) | 2 (7%) | _ |
3 | 12 (40%) | 16 (53.33%) | 2 (6.66%) | _ | |
5 | 23 (76.67%) | 5 (16.67%) | 2 (6.67%) | ||
7 | 27 (90%) | 3 (10%) | _ | _ | |
10 | 30 (100%) | _ | _ | _ | |
Scalpel group n (%) | 1 | _ | 5 (16.67%) | 23 (76.67%) | 2 (6.67%) |
3 | _ | 1 (3.33%) | 16 (53.33%) | 13 (43.33%) | |
5 | _ | 14 (46.67%) | 15 (50%) | 1 (3.33%) | |
7 | 4 (13.33%) | 24 (80%) | 2 (6.67%) | _ | |
10 | 19 (63.33%) | 11 (36.67%) | _ | _ |
Mouth Opening | ||||||
---|---|---|---|---|---|---|
Day | Er:YAG Group (Mean ± SD) Median IQR (Q3–Q1) | Control Group (Mean ± SD) Median IQR (Q3–Q1) | p-Value (Mann–Whitney) Between 1st and 2nd Groups | Δ Difference (Before and After Extraction) 1st Group | Δ Difference (Before and After Extraction) 2nd Group | p-Value (Mann–Whitney) Between Δ Difference 1st and 2nd Groups |
Before Extraction | 46.3 ± 4.69 | 45.0 ± 4.05 | <0.435 | |||
47.0 | 45.0 | |||||
6.25 (49.0–42.8) | 5.75 (48.8–43.0) | |||||
1 | 43.8 ± 4.34 | 37.7 ± 4.98 | <0.001 | 2.57 ± 2.47 | 7.33 ± 4.09 | <0.001 |
44.5 | 37.0 | 2.00 | 6.00 | |||
5.25 (46.8–41.5) | 7.00 (42.0–35.0) | 1.00 (2.00–1.00) | 2.75 (7.75–5.00) | |||
3 | 42.7 ± 5.07 | 33.4 ± 6.40 | <0.001 | 3.60 ± 4.38 | 11.6 ± 5.88 | <0.001 |
44.0 | 34.0 | 2.00 | 10.0 | |||
8.25 (46.8–38.5) | 9.00 (39.0–30.0) | 2.00 (3.00–1.00) | 3.75 (12.0–8.25) | |||
5 | 44.6 ± 4.61 | 35.1 ± 4.99 | <0.001 | 1.73 ± 3.60 | 9.90 ± 4.48 | <0.001 |
46.0 | 35.0 | 0.00 | 10.5 | |||
7.50 (48.0–40.5) | 8.50 (38.8–30.3) | 1.00 (1.00–0.00) | 2.00 (11.0–9.00) | |||
7 | 45.2 ± 4.46 | 41.0 ± 4.00 | <0.001 | 1.10 ± 2.50 | 4.03 ± 3.51 | <0.001 |
46.5 | 41.5 | 0.00 | 2.00 | |||
6.25 (48.8–42.5) | 6.75 (44.0–37.3) | 0.750 (0.750–0.00) | 2.75 (4.75–2.00) | |||
10 | 46.3 ± 4.63 | 42.3 ± 3.77 | <0.001 | 0.0333 ± 0.183 | 2.73 ± 2.79 | <0.001 |
47.0 | 42.5 | 0.00 | 2.00 | |||
6.25 (49.0–42.8) | 4.75 (44.8–40.0) | 0.00 (0.00–0.00) | 2.75 (3.75–1.00) | |||
p value (Kruskal-Wallis) | <0.009 | <0.001 | <0.001 | <0.001 |
Laser Group Pearson (R); Spearman (RHO) | p-Value | Control Group Pearson (R); Spearman (RHO) | p-Value | |
---|---|---|---|---|
day 1 | R = 0.674 | p < 0.001 | R = 0.282 | p = 0.065 |
RHO = 0.472 | p < 0.004 | RHO = 0.238 | p = 0.103 | |
day 3 | R = 0.576 | p < 0.001 | R = 0.032 | p = 0.433 |
RHO = 0.322 | p < 0.041 | RHO = −0.035 | p = 0.574 | |
day 5 | R = 0.933 | p < 0.001 | R = −0.130 | p = 0.752 |
RHO = 0.839 | p < 0.001 | RHO = −0.149 | p = 0.784 | |
day 7 | R = 0.937 | p < 0.001 | R = −0.061 | p = 0.626 |
RHO = 0.999 | p < 0.001 | RHO = −0.176 | p = 0.824 | |
day 10 | _ | _ | R = −0.148 | p = 0.783 |
_ | _ | RHO = −0.148 | p = 0.783 |
Laser Group Pearson (R); Spearman (RHO) | p-Value | Control Group Pearson (R); Spearman (RHO) | p-Value | |
---|---|---|---|---|
day 1 | R = 0.582 | p < 0.001 | R = 0.258 | p = 0.084 |
RHO = 0.580 | p < 0.001 | RHO = 0.217 | p = 0.125 | |
day 2 | R = 0.751 | p < 0.001 | R = −0.214 | p = 0.872 |
RHO = 0.641 | p < 0.001 | RHO = −0.038 | p = 0.580 | |
day 5 | R = 0.876 | p < 0.001 | R = −0.107 | p = 0.713 |
RHO = 0.776 | p < 0.001 | RHO = −0.163 | p = 0.805 | |
day 7 | R = 0.528 | p < 0.003 | R = −0.093 | p = 0.687 |
RHO = 0.569 | p < 0.001 | RHO = −0.017 | p = 0.535 | |
day 10 | - | - | R = 0.477 | p = 0.004 |
- | - | RHO = 0.527 | p = 0.001 |
Radiographic Infrabony Defect (RID) | |||
---|---|---|---|
Weeks | (Er:YAG) Laser Group (Mean ± SD) Median IQR (Q3–Q1) | Control Group (Mean ± SD) Median IQR (Q3–Q1) | p Value (Mann–Whitney) |
0 weeks | 8.10 ± 2.04 | 7.07 ± 2.30 | 0.067 |
8.50 | 6.00 | ||
3.75 (10.0–6.25) | 3.50 (8.75–5.25) | ||
12 weeks | 3.03 ± 1.13 | 5.27 ± 2.00 | <0.001 |
3.00 | 5.00 | ||
2.00 (4.00–2.00) | 2.00 (6.00–4.00) | ||
24 weeks | 0.533 ± 0.629 | 3.17 ± 0.913 | <0.001 |
0.00 | 3.00 | ||
1.00 (1.00–0.00) | 1.00 (4.00–3.00) | ||
p value (Kruskal–Wallis) | <0.001 | <0.001 |
Radiographic Bone Height (RBH) | |||
---|---|---|---|
Weeks | (Er:YAG) Laser Group (Mean ± SD) Median IQR (Q3–Q1) | Control Group (Mean ± SD) Median IQR (Q3–Q1) | p Value (Mann–Whitney) |
0 weeks | 7.03 ± 1.27 | 7.03 ± 1.27 | 1.000 |
7.00 | 7.00 | ||
2.00 (8.00–6.00) | 2.00 (8.00–6.00) | ||
12 weeks | 12.2 ± 1.81 | 9.27 ± 1.34 | <0.001 |
12.5 | 9.00 | ||
2.75 (13.8–11.00) | 1.75 (10.0–8.25) | ||
24 weeks | 14.8 ± 1.32 | 11.1 ± 1.37 | <0.001 |
15.0 | 11.0 | ||
2.00 (16.0–14.0) | 1.75 (12.0–10.3) | ||
p value (Kruskal–Wallis) | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sologova, D.; Diachkova, E.; Sologova, S.; Smolyarchuk, E.; Margaryan, A.; Grigorevskikh, E.; Petruk, P.; Tumanova, E.; Svitich, O.; Tarasenko, S. The Efficacy of Er:YAG Laser in the Extraction of Impacted Third Molars: A Randomized Clinical Trial. Dent. J. 2024, 12, 388. https://doi.org/10.3390/dj12120388
Sologova D, Diachkova E, Sologova S, Smolyarchuk E, Margaryan A, Grigorevskikh E, Petruk P, Tumanova E, Svitich O, Tarasenko S. The Efficacy of Er:YAG Laser in the Extraction of Impacted Third Molars: A Randomized Clinical Trial. Dentistry Journal. 2024; 12(12):388. https://doi.org/10.3390/dj12120388
Chicago/Turabian StyleSologova, Diana, Ekaterina Diachkova, Susanna Sologova, Elena Smolyarchuk, Arus Margaryan, Ekaterina Grigorevskikh, Pavel Petruk, Elizaveta Tumanova, Oxana Svitich, and Svetlana Tarasenko. 2024. "The Efficacy of Er:YAG Laser in the Extraction of Impacted Third Molars: A Randomized Clinical Trial" Dentistry Journal 12, no. 12: 388. https://doi.org/10.3390/dj12120388
APA StyleSologova, D., Diachkova, E., Sologova, S., Smolyarchuk, E., Margaryan, A., Grigorevskikh, E., Petruk, P., Tumanova, E., Svitich, O., & Tarasenko, S. (2024). The Efficacy of Er:YAG Laser in the Extraction of Impacted Third Molars: A Randomized Clinical Trial. Dentistry Journal, 12(12), 388. https://doi.org/10.3390/dj12120388