How to Deal with Pulpitis: An Overview of New Approaches
Abstract
:1. Introduction
1.1. Rationale
1.2. Objectives
2. Materials and Methods
3. Autogenic Dental Pulp Transplantation
4. Allogenic Dental Pulp Transplantation
5. Amniotic Membrane
6. Platelet-Rich Fibrin (PRF) and Platelet-Rich Plasma (PRP)
7. Cell Homing Strategy and Stem Cells
8. Nanofibrous Scaffolds
9. Bioceramic-Based Scaffolds
10. Injectable Scaffolds and Stem Cells
11. Dentin Matrix Proteins
12. Resolvin E1
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niazi, S.A.; Bakhsh, A. Association between Endodontic Infection, Its Treatment and Systemic Health: A Narrative Review. Medicina 2022, 58, 931. [Google Scholar] [CrossRef]
- Kharchi, A.S.; Tagiyeva-Milne, N.; Kanagasingam, S. Regenerative Endodontic Procedures, Disinfectants and Outcomes: A Systematic Review. Prim. Dent. J. 2020, 9, 65–84. [Google Scholar] [CrossRef]
- Noohi, P.; Abdekhodaie, M.J.; Nekoofar, M.H.; Galler, K.M.; Dummer, P.M.H. Advances in scaffolds used for pulp–dentine complex tissue engineering: A narrative review. Int. Endod. J. 2022, 55, 1277–1316. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiar, H.; Ashoori, A.; Rajabi, S.; Pezeshki-Modaress, M.; Ayati, A.; Mousavi, M.R.; Ellini, M.R.; Kamali, A.; Azarpazhooh, A.; Kishen, A. Human amniotic membrane extracellular matrix scaffold for dental pulp regeneration in vitro and in vivo. Int. Endod. J. 2022, 55, 374–390. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.; Zhang, C. Pulp Revascularization on Permanent Teeth with Open Apices in a Middle-aged Patient. J. Endod. 2015, 41, 1571–1575. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yuan, G.; Chen, Z. Pulp Regeneration: Current Approaches and Future Challenges. Front. Physiol. 2016, 7, 58. [Google Scholar] [CrossRef]
- Feitosa, V.P.; Mota, M.N.G.; Vieira, L.V.; de Paula, D.M.; Gomes, L.L.R.; Solheiro, L.K.R.; Aguiar Neto, M.A.; Carvalho, D.A.L.; Silvestre, F.A. Dental Pulp Autotransplantation: A New Modality of Endodontic Regenerative Therapy—Follow-Up of 3 Clinical Cases. J. Endod. 2021, 47, 1402–1408. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Tang, X.; Cehreli, Z.C.; Dai, X.; Xu, J.; Zhu, H. Autologous transplantation of deciduous tooth pulp into necrotic young permanent teeth for pulp regeneration in a dog model. J. Int. Med. Res. 2019, 47, 5094–5105. [Google Scholar] [CrossRef]
- Cehreli, Z.C.; Unverdi, G.E.; Ballikaya, E. Deciduous Tooth Pulp Autotransplantation for the Regenerative Endodontic Treatment of Permanent Teeth with Pulp Necrosis: A Case Series. J. Endod. 2022, 48, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Feitosa, V.P.; Mota, M.N.; Savoldi, R.; Rifane, T.; de Paula, D.; Borges, L.; Solheiro, L.K.; Aguiar Neto, M.; Vieira, L.; Moreira, A.C.; et al. The Allogenic Dental Pulp Transplantation from Son/Daughter to Mother/Father: A Follow-Up of Three Clinical Cases. Bioengineering 2022, 9, 699. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Sosa, J.F.; Diaz-Solano, D.; Wittig, O.; Cardier, J.E. Dental Pulp Regeneration Induced by Allogenic Mesenchymal Stromal Cell Transplantation in a Mature Tooth: A Case Report. J. Endod. 2022, 48, 736–740. [Google Scholar] [CrossRef]
- Hargreaves, K.; Law, A. Regenerative Endodontics. In Cohen’s Pathways of the Pulp, 10th ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 602–619. [Google Scholar]
- Johri, S.; Verma, P.; Bains, R.; Tikku, A.P. Human amniotic membrane as therapeutic agent in pulpotomy of permanent molars. BMJ Case Rep. 2021, 14, e243414. [Google Scholar] [CrossRef] [PubMed]
- Saaid, A.S.; Ensanya, A.A.N.; Suzina, S.A.H.; Nurul, A.A.; Samsudin, A.R.; Azlina, A. Odontogenic induction of human amniotic membrane scaffold for dental pulp regeneration. Mater. Chem. Phys. 2022, 280, 125780. [Google Scholar] [CrossRef]
- Dawiec, G.; Niemczyk, W.; Wiench, R.; Niemczyk, S.; Skaba, D. Introduction to Amniotic Membranes in Maxillofacial Surgery—A Scoping Review. Medicina 2024, 60, 663. [Google Scholar] [CrossRef] [PubMed]
- Joseph, E.; Karuna, M.; Rao, A.; Rao, A.; Nayak, A. A novel regenerative endodontic procedure in a traumatized immature tooth using amniotic membrane. Dent. Res. J. 2021, 18, 28. [Google Scholar] [CrossRef]
- Niemczyk, W.; Janik, K.; Żurek, J.; Skaba, D.; Wiench, R. Platelet-rich plasma and injectable platelet-rich fibrin (i-PRF) in the non-surgical treatment of periodontitis—A systematic review. Int. J. Mol. Sci. 2024, 25, 6319. [Google Scholar] [CrossRef]
- Prokurat, M.; Grudnik, K.; Niemczyk, W.; Niemczyk, S.; Migas, M.; Wągrowska, K.; Lau, K.; Kasperczyk, J. Platelet-rich plasma—A remedy present in every human being. History, functioning, and the benefits of therapy using it. Pol. Merkur. Lek. Organ Pol. Tow. Lek. 2024, 53, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Niemczyk, W.; Niemczyk, S.; Odrzywolska, O.; Doroz, P.; Hochuł, D.; Zawadzka, K. Application of i-PRF in dentistry. Wiad. Lek. 2024, 77, 2348–2352. [Google Scholar] [PubMed]
- Hosseini, S.; Chitsaz, N.; Hamrah, M.H.; Maleki, D.; Taghizadeh, E. Regenerative Endodontic Management of an Immature Necrotic Premolar Using Advanced Platelet-Rich Fibrin. Case Rep. Dent. 2023, 2023, 1135413. [Google Scholar] [CrossRef] [PubMed]
- Morotomi, T.; Washio, A.; Kitamura, C. Current and future options for dental pulp therapy. Jpn. Dent. Sci. Rev. 2019, 55, 5–11. [Google Scholar] [CrossRef]
- Tsutsui, T. Dental Pulp Stem Cells: Advances to Applications. Stem Cells Cloning Adv. Appl. (SCCAA) 2020, 13, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Ferro, F.; Spelat, R.; Baheney, C.S. Dental Pulp Stem Cell (DPSC) Isolation, Characterization, and Differentiation. In Stem Cells and Tissue Repair; Kioussi, C., Ed.; Springer: New York, NY, USA, 2014; Volume 1210, pp. 91–115. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Shimizu, E. Current and Future Views on Cell-Homing-Based Strategies for Regenerative Endodontics. In Clinical Approaches in Endodontic Regeneration; Duncan, H.F., Cooper, P.R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 139–159. [Google Scholar] [CrossRef]
- Ahmed, G.M.; Abouauf, E.A.; AbuBakr, N.; Fouad, A.M.; Dörfer, C.E.; Fawzy El-Sayed, K.M. Cell-Based Transplantation versus Cell Homing Approaches for Pulp-Dentin Complex Regeneration. Stem Cells Int. 2021, 2021, 8483668. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, M.; Iohara, K.; Murakami, M.; Nakamura, H.; Sato, Y.; Ariji, Y.; Matsushita, K. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: A pilot clinical study. Stem Cell Res. Ther. 2017, 8, 61. [Google Scholar] [CrossRef] [PubMed]
- Diedkova, K.; Pogrebnjak, A.D.; Kyrylenko, S.; Smyrnova, K.; Buranich, V.V.; Horodek, P.; Zukowski, P.; Koltunowicz, T.N.; Galaszkiewicz, P.; Makashina, K.; et al. Polycaprolactone–MXene Nanofibrous Scaffolds for Tissue Engineering. ACS Appl. Mater. Interfaces 2023, 15, 14033–14047. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.; Shafiei, S.S.; Sabouni, F. Electrospun Nanofibrous Scaffolds of Polycaprolactone/Gelatin Reinforced with Layered Double Hydroxide Nanoclay for Nerve Tissue Engineering Applications. ACS Omega 2022, 7, 28351–28360. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.C.; Haider, A.; Choi, Y.; Kang, I. Nanofibrous scaffolds in biomedical applications. Biomater. Res. 2014, 18, 5. [Google Scholar] [CrossRef]
- Chen, H.; Truckenmüller, R.; Van Blitterswijk, C.; Moroni, L. Fabrication of nanofibrous scaffolds for tissue engineering applications. In Nanomaterials in Tissue Engineering; Elsevier: Amsterdam, The Netherlands, 2013; pp. 158–183. [Google Scholar] [CrossRef]
- Palasuk, J.; Kamocki, K.; Hippenmeyer, L.; Platt, J.A.; Spolnik, K.J.; Gregory, R.L.; Bottino, M.C. Bimix Antimicrobial Scaffolds for Regenerative Endodontics. J. Endod. 2014, 40, 1879–1884. [Google Scholar] [CrossRef]
- Lovelace, T.W.; Henry, M.A.; Hargreaves, K.M.; Diogenes, A. Evaluation of the Delivery of Mesenchymal Stem Cells into the Root Canal Space of Necrotic Immature Teeth after Clinical Regenerative Endodontic Procedure. J. Endod. 2011, 37, 133–138. [Google Scholar] [CrossRef] [PubMed]
- BDong, X.; Xu, X. Bioceramics in Endodontics: Updates and Future Perspectives. Bioengineering 2023, 10, 354. [Google Scholar] [CrossRef]
- Goudouri, O.M.; Theodosoglou, E.; Kontonasaki, E.; Will, J.; Chrissafis, K.; Koidis, P.; Paraskevopoulos, K.M.; Boccaccini, A.R. Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering. Mater. Res. Bull. 2014, 49, 399–404. [Google Scholar] [CrossRef]
- Surya Raghavendra, S.; Jadhav, G.R.; Gathani, K.M.; Kotadia, P. Bioceramics in Endodontics—A Review. J. Istanbul Univ. Fac. Dent. 2017, 51, 128–137. [Google Scholar] [CrossRef] [PubMed]
- AbdulQader, S.T.; Kannan, T.P.; Rahman, I.A.; Ismail, H.; Mahmood, Z. Effect of different calcium phosphate scaffold ratios on odontogenic differentiation of human dental pulp cells. Mater. Sci. Eng. C 2015, 49, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Swarup, S.; Rao, A.; Boaz, K.; Srikant, N.; Shenoy, R. Pulpal Response to Nano Hydroxyapatite, Mineral Trioxide Aggregate and Calcium Hydroxide when Used as a Direct Pulp Capping Agent: An In Vivo study. J. Clin. Pediatr. Dent. 2014, 38, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, A.; Güldal, N.S.; Boccaccini, A.R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011, 32, 2757–2774. [Google Scholar] [CrossRef] [PubMed]
- Utneja, S.; Nawal, R.R.; Talwar, S.; Verma, M. Current perspectives of bio-ceramic technology in endodontics: Calcium enriched mixture cement—Review of its composition, properties and applications. Restor. Dent. Endod. 2015, 40, 1. [Google Scholar] [CrossRef] [PubMed]
- Prati, C.; Gandolfi, M.G. Calcium silicate bioactive cements: Biological perspectives and clinical applications. Dent. Mater. 2015, 31, 351–370. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Liu, J.; Yu, Z.; Chen, C.-A.; Aksel, H.; Azim, A.A.; Huang, G.T.J. A Miniature Swine Model for Stem Cell-Based De Novo Regeneration of Dental Pulp and Dentin-Like Tissue. Tissue Eng. Part C Methods 2018, 24, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Matsui, M.; Kobayashi, T.; Tsutsui, T.W. CD146 positive human dental pulp stem cells promote regeneration of dentin/pulp-like structures. Human. Cell 2018, 31, 127–138. [Google Scholar] [CrossRef]
- ImAl-Hezaimi, K.; Javed, F.; Al-Fouzan, K.; Tay, F. Efficacy of the enamel matrix derivative in direct pulp capping procedures: A systematic review. Aust. Endod. J. 2013, 39, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Shiehzadeh, V.; Aghmasheh, F.; Shiehzadeh, F.; Joulae, M.; Kosarieh, E.; Shiehzadeh, F. Healing of large periapical lesions following delivery of dental stem cells with an injectable scaffold: New method and three case reports. Indian J. Dent. Res. 2014, 25, 248. [Google Scholar] [CrossRef]
- Jones, T.D.; Kefi, A.; Sun, S.; Cho, M.; Alapati, S.B. An Optimized Injectable Hydrogel Scaffold Supports Human Dental Pulp Stem Cell Viability and Spreading. Adv. Med. 2016, 2016, 7363579. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, B.N.; Zeitlin, B.D.; Nör, J.E. A hydrogel scaffold that maintains viability and supports differentiation of dental pulp stem cells. Dent. Mater. 2013, 29, 97–102. [Google Scholar] [CrossRef]
- Bi, F.; Zhang, Z.; Guo, W. Treated Dentin Matrix in Tissue Regeneration: Recent Advances. Pharmaceutics 2022, 15, 91. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Huang, Y.; Qiu, T.; Huo, F.; Xie, L.; Liao, L.; Tian, W.; Guo, W. Reparative Dentin Formation by Dentin Matrix Proteins and Small Extracellular Vesicles. J. Endod. 2021, 47, 253–262. [Google Scholar] [CrossRef]
- Casagrande, L.; Demarco, F.F.; Zhang, Z.; Araujo, F.B.; Shi, S.; Nör, J.E. Dentin-derived BMP-2 and odontoblast differentiation. J. Dent. Res. 2010, 89, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Pei, F.; Zhang, W.; Guo, W.; Li, R.; He, W.; Tian, W. Bone marrow mesenchymal stem cells combine with Treated dentin matrix to build biological root. Sci. Rep. 2017, 7, 44635. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.; Kim, S.; Sun, T.; Cho, Y.-B.; Song, M. Pulp-dentin regeneration: Current approaches and challenges. J. Tissue Eng. 2019, 10, 204173141881926. [Google Scholar] [CrossRef]
- Ishida, T.; Yoshida, M.; Arita, M.; Nishitani, Y.; Nishiumi, S.; Masuda, A.; Mizuno, S.; Takagawa, T.; Morita, Y.; Kutsumi, H.; et al. Resolvin E1, an endogenous lipid mediator derived from eicosapentaenoic acid, prevents dextran sulfate sodium-induced colitis. Inflamm. Bowel Dis. 2010, 16, 87–95. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, X.; Wang, C.; Pang, L.; Pan, L.; Zhang, Q. Combination of resolvin E1 and lipoxin A4 promotes the resolution of pulpitis by inhibiting NF-κB activation through upregulating sirtuin 7 in dental pulp fibroblasts. Cell Prolif. 2022, 55, e13227. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, J.; Xu, H.; Xia, K.; Cheng, S.; Zhang, Q. Resolvin E1 accelerates pulp repair by regulating inflammation and stimulating dentin regeneration in dental pulp stem cells. Stem Cell Res. Ther. 2021, 12, 75. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ballikaya, E.; Çelebi-Saltik, B. Approaches to vital pulp therapies. Aust. Endod. J. 2023, 49, 735–749. [Google Scholar] [CrossRef] [PubMed]
Source | Search Term |
---|---|
PubMed/MEDLINE | (“Pulpitis”[Mesh] OR pulpitis[tiab] OR “diseased pulp”[tiab] OR “pulp inflammation”[tiab]) AND (“Regenerative Endodontics”[Mesh] OR “pulp regeneration”[tiab] OR “stem cell therapy”[tiab] OR “stem cells”[Mesh] OR “platelet-rich fibrin”[tiab] OR “amniotic membrane”[tiab] OR “specialized pro-resolving mediators”[tiab] OR “bioceramic scaffold”[tiab] OR “nanofibrous scaffold”[tiab] OR “dentin matrix proteins”[tiab] OR “dental pulp stem cells”[tiab]) AND (“Dental Pulp”[Mesh] OR “dental pulp”[tiab] OR “pulp tissue”[tiab]) |
Embase | (‘pulpitis’/exp OR pulpitis:ti,ab OR ‘diseased pulp’:ti,ab OR ‘pulp inflammation’:ti,ab) AND (‘regenerative endodontics’/exp OR ‘pulp regeneration’:ti,ab OR ‘stem cell therapy’:ti,ab OR ‘stem cells’/exp OR ‘platelet-rich fibrin’:ti,ab OR ‘amniotic membrane’:ti,ab OR ‘specialized pro-resolving mediators’:ti,ab OR ‘bioceramic scaffold’:ti,ab OR ‘nanofibrous scaffold’:ti,ab OR ‘dentin matrix proteins’:ti,ab OR ‘dental pulp stem cells’:ti,ab) AND (‘dental pulp’/exp OR ‘dental pulp’:ti,ab OR ‘pulp tissue’:ti,ab) |
Scopus | (TITLE-ABS-KEY (pulpitis) OR TITLE-ABS-KEY (“diseased pulp”) OR TITLE-ABS-KEY (“pulp inflammation”)) AND (TITLE-ABS-KEY (“regenerative endodontics”) OR TITLE-ABS-KEY (“pulp regeneration”) OR TITLE-ABS-KEY (“stem cell therapy”) OR TITLE-ABS-KEY (“stem cells”) OR TITLE-ABS-KEY (“platelet-rich fibrin”) OR TITLE-ABS-KEY (“amniotic membrane”) OR TITLE-ABS-KEY (“specialized pro-resolving mediators”) OR TITLE-ABS-KEY (“bioceramic scaffold”) OR TITLE-ABS-KEY (“nanofibrous scaffold”) OR TITLE-ABS-KEY (“dentin matrix proteins”) OR TITLE-ABS-KEY (“dental pulp stem cells”)) AND (TITLE-ABS-KEY (“dental pulp”) OR TITLE-ABS-KEY (“pulp tissue”)) |
Inclusion Criteria | Exclusion Criteria |
---|---|
- Preclinical studies - Clinical studies - Review articles and meta-analyses relevant to pulp regeneration - Recent and relevant studies about regeneration techniques for both pulpitis and necrotic teeth - Investigations of regenerative endodontic strategies - Outcomes related to pulp vitality restoration, healing success, cellular and molecular mechanisms, and tooth structural integrity improvements - Articles published in English within the last 15 years | - Studies not related to regenerative endodontics or pulpitis - Editorials, commentaries, opinion pieces, and gray literature - Studies without specific regenerative outcomes or biological mechanisms - Articles with incomplete or inaccessible data - Publications not available in full text - Articles in languages other than English without translation - Articles older than 15 years |
Method | Description | Advantages | Disadvantages | Clinical Outcomes |
---|---|---|---|---|
Autogenic Dental Pulp Transplantation [6,7,8,9] | Transplanting healthy pulp tissue from a patient’s own tooth into another. | No immune rejection, promotes revascularization and dentinogenesis. | Limited donor availability, risk of donor site morbidity. | Maintains pulp vitality, promotes dentin-like tissue formation. |
Allogenic Dental Pulp Transplantation [10,11,12] | Transferring pulp tissue between individuals of the same species. | Readily available donor pulp, rich in stem cells and growth factors. | Risk of immune rejection, stringent protocols needed. | Restored pulp vitality, revascularization, and healing observed. |
Amniotic Membrane [13,14,16] | Using a decellularized human placental membrane as a scaffold. | High biocompatibility, promotes cell adhesion and vascularization. | Mild inflammation, variable bioactivity, potential high cost. | Supports pulp regeneration, root growth, and apical closure. |
Platelet-Rich Fibrin (PRF) and Platelet-Rich Plasma (PRP) [17,18,19,20] | Using autologous platelet derivatives to promote regeneration and healing. | Autologous origin, promotes angiogenesis and tissue repair. | Lack of standard protocols, variability in outcomes. | Promotes pulp regeneration, root development, and healing. |
Cell Homing Strategy and Stem Cells [21,22,23,24,25,26] | Attracting endogenous stem cells to regenerate pulp tissue naturally. | Minimally invasive, avoids cell harvesting, uses natural scaffolds. | Depends on patient’s health, requires precise growth factor delivery. | Confirmed pulp vitality, pulp-like tissue regeneration. |
Nanofibrous Scaffolds [27,28,29,30,31,32] | Scaffolds made of nanoscale fibers mimicking the extracellular matrix. | Mimics natural tissue, supports cell growth, controlled degradation. | Limited mechanical strength, costly fabrication, variability in release. | Enhanced pulp regeneration, antimicrobial properties. |
Bioceramic-Based Scaffolds [33,34,35,36,37,38,39,40,41,42,43] | Biocompatible materials (e.g., calcium silicates) promoting tissue regeneration. | Excellent biocompatibility, promotes mineralization and healing. | Low resorption rate, limited mechanical strength, high cost. | Effective pulp capping, dentin-like tissue formation. |
Injectable Scaffolds and Stem Cells [43,44,45,46] | Injectable hydrogels for delivering cells and growth factors. | Non-invasive, conforms to pulp chamber shape, promotes regeneration. | Rapid degradation may cause inflammation, requires optimization. | Supports cell proliferation, differentiation, and tissue repair. |
Dentin Matrix Proteins [46,47,48,49,50,51] | Bioactive components derived from dentin’s extracellular matrix. | Stimulates dentin-like matrix regeneration, enhances cell growth. | Costly isolation, variability in activity, risk of ectopic mineralization. | Promotes reparative dentin formation, maintains pulp vitality. |
Resolvin E1 [52,53,54,55] | Omega-3-derived lipid mediator for inflammation resolution and pulp repair. | Resolves inflammation, promotes dentin formation, minimally invasive. | Short half-life, high cost, requires consistent delivery. | Inhibits inflammation, promotes pulp regeneration. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiegler-Rudol, J.; Niemczyk, W.; Janik, K.; Zawilska, A.; Kępa, M.; Tanasiewicz, M. How to Deal with Pulpitis: An Overview of New Approaches. Dent. J. 2025, 13, 25. https://doi.org/10.3390/dj13010025
Fiegler-Rudol J, Niemczyk W, Janik K, Zawilska A, Kępa M, Tanasiewicz M. How to Deal with Pulpitis: An Overview of New Approaches. Dentistry Journal. 2025; 13(1):25. https://doi.org/10.3390/dj13010025
Chicago/Turabian StyleFiegler-Rudol, Jakub, Wojciech Niemczyk, Katarzyna Janik, Anna Zawilska, Małgorzata Kępa, and Marta Tanasiewicz. 2025. "How to Deal with Pulpitis: An Overview of New Approaches" Dentistry Journal 13, no. 1: 25. https://doi.org/10.3390/dj13010025
APA StyleFiegler-Rudol, J., Niemczyk, W., Janik, K., Zawilska, A., Kępa, M., & Tanasiewicz, M. (2025). How to Deal with Pulpitis: An Overview of New Approaches. Dentistry Journal, 13(1), 25. https://doi.org/10.3390/dj13010025