Advanced Lasers and Their Applications in Dentistry
Abstract
:1. Introduction
2. Application of Lasers for Caries Management
3. Application of Lasers for Pulp-Involved Disease Management
4. Application of Lasers for Periodontal and Peri-Implant Disease Management
5. Application of Lasers for Oral Mucosal Disease and Oral Cancer Management
6. Application of Lasers for Orthodontics
7. Clinical Application and Protocol of Lasers in Dentistry
8. Limitations and Challenges
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peres, M.A.; Macpherson, L.M.; Weyant, R.J.; Daly, B.; Venturelli, R.; Mathur, M.R.; Listl, S.; Celeste, R.K.; Guarnizo-Herreño, C.C.; Kearns, C.; et al. Oral diseases: A global public health challenge. Lancet 2019, 394, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Bawaskar, H.S.; Bawaskar, P.H. Oral diseases: A global public health challenge. Lancet 2020, 395, 185–186. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.K.; Maheshwari, S.; Singh, R.K.; Chaudhari, P.K. Laser in dentistry: An innovative tool in modern dental practice. Natl. J. Maxillofac. Surg. 2012, 3, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Xue, V.W.; Zhao, I.S.; Yin, I.X.; Niu, J.Y.; Lo, E.C.M.; Chu, C.H. Effects of 9,300 nm Carbon Dioxide Laser on Dental Hard Tissue: A Concise Review. Clin. Cosmet. Investig. Dent. 2021, 13, 155–161. [Google Scholar] [CrossRef]
- Luk, K.; Zhao, I.S.; Yu, O.Y.; Zhang, J.; Gutknecht, N.; Chu, C.H. Effects of 10,600 nm Carbon Dioxide Laser on Remineralizing Caries: A Literature Review. Photobiomodulation Photomed. Laser Surg. 2020, 38, 59–65. [Google Scholar] [CrossRef]
- Xue, V.W.; Yin, I.X.; Niu, J.Y.; Lo, E.C.M.; Chu, C.H.; Zhao, I.S. Effects of a 445 nm diode laser and silver diamine fluoride in preventing enamel demineralisation and inhibiting cariogenic bacteria. J. Dent. 2022, 126, 104309. [Google Scholar] [CrossRef]
- Zhao, I.S.; Xue, V.W.; Yin, I.X.; Niu, J.Y.; Lo, E.C.M.; Chu, C.H. Use of a novel 9.3-mum carbon dioxide laser and silver diamine fluoride: Prevention of enamel demineralisation and inhibition of cariogenic bacteria. Dent. Mater. 2021, 37, 940–948. [Google Scholar] [CrossRef]
- Al-Maliky, M.A.; Frentzen, M.; Meister, J. Laser-assisted prevention of enamel caries: A 10-year review of the literature. Lasers Med. Sci. 2020, 35, 13–30. [Google Scholar] [CrossRef]
- Foros, P.; Oikonomou, E.; Koletsi, D.; Rahiotis, C. Detection Methods for Early Caries Diagnosis: A Systematic Review and Meta-Analysis. Caries Res. 2021, 55, 247–259. [Google Scholar] [CrossRef]
- Tasmara, F.A.; Widyaningrum, R.; Setiawan, A.; Mitrayana, M. Photoacoustic imaging of hidden dental caries using visible-light diode laser. J. Appl. Clin. Med. Phys. 2023, 24, e13935. [Google Scholar] [CrossRef]
- Chan, E.K.; Wah, Y.Y.; Lam, W.Y.; Chu, C.H.; Yu, O.Y. Use of Digital Diagnostic Aids for Initial Caries Detection: A Review. Dent. J. 2023, 11, 232. [Google Scholar] [CrossRef] [PubMed]
- Olivi, G.; Genovese, M.D. Laser restorative dentistry in children and adolescents. Eur. Arch. Paediatr. Dent. 2011, 12, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Merigo, E.; Rocca, J.P.; Pinheiro, A.L.B.; Fornaini, C. Photobiomodulation Therapy in Oral Medicine: A Guide for the Practitioner with Focus on New Possible Protocols. Photobiomodulation Photomed. Laser Surg. 2019, 37, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Dompe, C.; Moncrieff, L.; Matys, J.; Grzech-Lesniak, K.; Kocherova, I.; Bryja, A.; Bruska, M.; Dominiak, M.; Mozdziak, P.; Skiba, T.H.I.; et al. Photobiomodulation-Underlying Mechanism and Clinical Applications. J. Clin. Med. 2020, 9, 1724. [Google Scholar] [CrossRef]
- Santonocito, S.; Polizzi, A.; Cavalcanti, R.; Ronsivalle, V.; Chaurasia, A.; Spagnuolo, G.; Isola, G. Impact of Laser Therapy on Periodontal and Peri-Implant Diseases. Photobiomodulation Photomed. Laser Surg. 2022, 40, 454–462. [Google Scholar] [CrossRef]
- Stajer, A.; Kajari, S.; Gajdacs, M.; Musah-Eroje, A.; Barath, Z. Utility of Photodynamic Therapy in Dentistry: Current Concepts. Dent. J. 2020, 8, 43. [Google Scholar] [CrossRef]
- Parker, S. Lasers and soft tissue: ’loose’ soft tissue surgery. Br. Dent. J. 2007, 202, 185–191. [Google Scholar] [CrossRef]
- Luke, A.M.; Mathew, S.; Altawash, M.M.; Madan, B.M. Lasers: A Review With Their Applications in Oral Medicine. J. Lasers Med. Sci. 2019, 10, 324–329. [Google Scholar] [CrossRef]
- Saran, R.; Ginjupalli, K.; George, S.D.; Chidangil, S.; Unnikrishnan, V.K. LASER as a tool for surface modification of dental biomaterials: A review. Heliyon 2023, 9, e17457. [Google Scholar] [CrossRef]
- Han, J.; Zhang, F.; Van Meerbeek, B.; Vleugels, J.; Braem, A.; Castagne, S. Laser surface texturing of zirconia-based ceramics for dental applications: A review. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 123, 112034. [Google Scholar] [CrossRef]
- Selwitz, R.H.; Ismail, A.I.; Pitts, N.B. Dental caries. Lancet 2007, 369, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Daruich, P.M.; Brizuela, M. Remineralization of Initial Carious Lesions. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Niu, J.Y.; Yin, I.X.; Wu, W.K.K.; Li, Q.L.; Mei, M.L.; Chu, C.H. A novel dual-action antimicrobial peptide for caries management. J. Dent. 2021, 111, 103729. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.K.; Nobre dos Santos, M.; Pereira, D.; Assaf, A.V.; Pardi, V. Carbon dioxide laser in dental caries prevention. J. Dent. 2004, 32, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Luk, K.; Niu, J.Y.; Gutknecht, N.; Zhao, I.S.; Chu, C.H. Preventing Enamel Caries Using Carbon Dioxide Laser and Silver Diamine Fluoride. Photobiomodulation Photomed. Laser Surg. 2021, 39, 297–302. [Google Scholar] [CrossRef]
- Luk, K.; Zhao, I.S.; Yu, O.Y.; Mei, M.L.; Gutknecht, N.; Chu, C.H. Caries Prevention Effects of Silver Diamine Fluoride with 10,600 nm Carbon Dioxide Laser Irradiation on Dentin. Photobiomodulation Photomed. Laser Surg. 2020, 38, 295–300. [Google Scholar] [CrossRef]
- Rechmann, P.; Rechmann, B.M.; Groves, W.H., Jr.; Le, C.Q.; Rapozo-Hilo, M.L.; Kinsel, R.; Featherstone, J.D. Caries inhibition with a CO2 9.3 mum laser: An in vitro study. Lasers Surg. Med. 2016, 48, 546–554. [Google Scholar] [CrossRef]
- Lepri, C.P.; De Castro, D.T.; Geraldo-Martins, V.R.; Faraoni, J.J.; Palma-Dibb, R.G. Laser irradiation prevents root caries: Microhardness and scanning electron microscopy analysis. Indian. J. Dent. Res. 2022, 33, 198–202. [Google Scholar] [CrossRef]
- Rechmann, P.; Le, C.Q.; Kinsel, R.; Kerbage, C.; Rechmann, B.M.T. In vitro CO(2) 9.3-mum short-pulsed laser caries prevention-effects of a newly developed laser irradiation pattern. Lasers Med. Sci. 2020, 35, 979–989. [Google Scholar] [CrossRef]
- Zhang, O.L.; Niu, J.Y.; Yin, I.X.; Yu, O.Y.; Mei, M.L.; Chu, C.H. Bioactive Materials for Caries Management: A Literature Review. Dent. J. 2023, 11, 59. [Google Scholar] [CrossRef]
- Singh, K.; Jhingan, P.; Malik, M.; Mathur, S. In vitro comparative evaluation of physical and chemical properties of surface enamel after using APF and SDF with or without laser activation. Eur. Arch. Paediatr. Dent. 2023, 24, 461–472. [Google Scholar] [CrossRef]
- Liu, J.F.; Liu, Y.; Stephen, H.C. Optimal Er:YAG laser energy for preventing enamel demineralization. J. Dent. 2006, 34, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Mei, M.L.; Ito, L.; Chu, C.H.; Lo, E.C.; Zhang, C.F. Prevention of dentine caries using silver diamine fluoride application followed by Er:YAG laser irradiation: An in vitro study. Lasers Med. Sci. 2014, 29, 1785–1791. [Google Scholar] [CrossRef] [PubMed]
- Mei, M.L.; Ito, L.; Zhang, C.F.; Lo, E.C.; Chu, C.H. Effect of laser irradiation on the fluoride uptake of silver diamine fluoride treated dentine. Lasers Med. Sci. 2015, 30, 985–991. [Google Scholar] [CrossRef]
- El-Sharkawy, Y.H.; Elbasuney, S. Non-invasive caries detection and delineation via novel laser-induced fluorescence with hyperspectral imaging. Photodiagnosis Photodyn. Ther. 2022, 40, 103186. [Google Scholar] [CrossRef]
- Ghodasra, R.; Brizuela, M. Dental Caries Diagnostic Testing. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Koc-Vural, U.; Ergin, E.; Gurgan, S. Microhardness and shear bond-strength of carious dentin after fluorescence-aided or conventionally excavation: (An in-vitro comparison). J. Clin. Exp. Dent. 2018, 10, e668–e672. [Google Scholar] [CrossRef]
- Aksoy, M.; Sen, S.; Kaptan, A.; Buyukkok, C.; Tulga-Oz, F. Does the heat generated by fluorescence-aided caries excavation system effect the pulp temperature of primary teeth irreversibly? An in-vitro evaluation of the temperature changes in the pulp chamber. J. Clin. Exp. Dent. 2021, 13, e1096–e1103. [Google Scholar] [CrossRef]
- Trippe, L.H.; Ribeiro, A.A.; Azcarate-Peril, M.A.; Preisser, J.S.; Wang, R.; Zandona, A.F. Is Fluorescence Technology a Promising Tool for Detecting Infected Dentin in Deep Carious Lesions? Caries Res. 2020, 54, 205–217. [Google Scholar] [CrossRef]
- Kasakawa, A.; Sekine, S.; Tanaka, K.; Murakami, J.; Kondo, S.; Hazama, H.; Awazu, K.; Akiyama, S. Effect of Q-switched Er:YAG laser irradiation on bonding performance to dentin surface. Dent. Mater. J. 2022, 41, 616–623. [Google Scholar] [CrossRef]
- Abdrabuh, R.E.; Meligy, O.; Felemban, O.M.; Farsi, N.M. Evaluation of the Erbium-doped Yttrium Aluminum Garnet Laser and the Conventional Method on Pain Perception and Anxiety Level in Children during Caries Removal: A Randomized Split-mouth Study. Int. J. Clin. Pediatr. Dent. 2023, 16, S39–S44. [Google Scholar] [CrossRef]
- Khalighi, H.R.; Mojahedi, M.; Parandoosh, A. Efficacy of Er,Cr:YSGG laser-assisted delivery of topical anesthesia in the oral mucosa. Clin. Oral. Investig. 2021, 25, 1055–1058. [Google Scholar] [CrossRef]
- Li, T.; Zhang, X.; Shi, H.; Ma, Z.; Lv, B.; Xie, M. Er:YAG laser application in caries removal and cavity preparation in children: A meta-analysis. Lasers Med. Sci. 2019, 34, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Zhegova, G.; Rashkova, M.; Rocca, J.P. Minimally invasive treatment of dental caries in primary teeth using an Er:YAG Laser. Laser Ther. 2014, 23, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Rajabhandharaks, D.; Xuan, J.R.; Wang, H.; Chia, R.W.; Hasenberg, T.; Kang, H.W. Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy. J. Biomed. Opt. 2015, 20, 128001. [Google Scholar] [CrossRef]
- Ito, S.; Saito, T.; Tay, F.R.; Carvalho, R.M.; Yoshiyama, M.; Pashley, D.H. Water content and apparent stiffness of non-caries versus caries-affected human dentin. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 72, 109–116. [Google Scholar] [CrossRef]
- Luk, K.; Zhao, I.S.; Gutknecht, N.; Chu, C.H. Use of carbon dioxide lasers in dentistry. Lasers Dent. Sci. 2019, 3, 1–9. [Google Scholar] [CrossRef]
- Wang, J.H.; Yang, K.; Zhang, B.Z.; Zhou, Z.F.; Wang, Z.R.; Ge, X.; Wang, L.L.; Chen, Y.J.; Wang, X.J. Effects of Er:YAG laser pre-treatment on dentin structure and bonding strength of primary teeth: An in vitro study. BMC Oral. Health 2020, 20, 316. [Google Scholar] [CrossRef]
- Wei, D.; Nakamoto, A.; Hiraishi, N.; Nakane, A.; Abuna, G.; Otsuki, M.; Shimada, Y. Effect of Er: YAG laser irradiation with additional low energy on resin-dentin bonding and morphology of bonded interface. J. Mech. Behav. Biomed. Mater. 2023, 140, 105692. [Google Scholar] [CrossRef]
- Hashem, M. Antimicrobial capacity and physico-chemical characteristics of adhesive resin containing riboflavin after photodynamic therapy. Photodiagnosis Photodyn. Ther. 2021, 33, 102145. [Google Scholar] [CrossRef]
- Pourhajibagher, M.; Bahrami, R.; Bahador, A. Application of photosensitive dental materials as a novel antimicrobial option in dentistry: A literature review. J. Dent. Sci. 2024, 19, 762–772. [Google Scholar] [CrossRef]
- Clarkson, J.E.; Ramsay, C.R.; Mannocci, F.; Jarad, F.; Albadri, S.; Ricketts, D.; Tait, C.; Banerjee, A.; Deery, C.; Boyers, D.; et al. Pulpotomy for the Management of Irreversible Pulpitis in Mature Teeth (PIP): A feasibility study. Pilot. Feasibility Stud. 2022, 8, 77. [Google Scholar] [CrossRef]
- European Society of Endodontology developed, b.; Duncan, H.F.; Galler, K.M.; Tomson, P.L.; Simon, S.; El-Karim, I.; Kundzina, R.; Krastl, G.; Dammaschke, T.; Fransson, H.; et al. European Society of Endodontology position statement: Management of deep caries and the exposed pulp. Int. Endod. J. 2019, 52, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, Z. Laser applications in endodontics: An update review. Int. Dent. J. 2009, 59, 35–46. [Google Scholar] [PubMed]
- Mainkar, A.; Kim, S.G. Diagnostic Accuracy of 5 Dental Pulp Tests: A Systematic Review and Meta-analysis. J. Endod. 2018, 44, 694–702. [Google Scholar] [CrossRef]
- Lee, H.N.; Chen, P.H.; Huang, C.Y.; Chen, C.M.; Jeng, J.H.; Chen, Y.K.; Chuang, F.H. Efficacy assessment of laser Doppler imager in diagnosing the pulp vitality after dental trauma. J. Dent. Sci. 2023, 18, 618–625. [Google Scholar] [CrossRef]
- Yang, K.; Guo, F.; Zhou, Z.; Hui, Z.; Wang, Z.; Wang, J.; Chen, Y.; Ge, X.; Huang, R.; Wang, X. Laser doppler flowmetry to detect pulp vitality, clinical reference range and coincidence rate for pulpal blood flow in permanent maxillary incisors in Chinese children: A clinical study. BMC Oral. Health 2023, 23, 283. [Google Scholar] [CrossRef]
- Jafarzadeh, H. Laser Doppler flowmetry in endodontics: A review. Int. Endod. J. 2009, 42, 476–490. [Google Scholar] [CrossRef]
- Huang, Q.; Li, Z.; Lyu, P.; Zhou, X.; Fan, Y. Current Applications and Future Directions of Lasers in Endodontics: A Narrative Review. Bioengineering 2023, 10, 296. [Google Scholar] [CrossRef]
- Mahdian, M.; Behboodi, S.; Ogata, Y.; Natto, Z.S. Laser therapy for dentinal hypersensitivity. Cochrane Database Syst. Rev. 2021, 7, CD009434. [Google Scholar] [CrossRef]
- Biagi, R.; Cossellu, G.; Sarcina, M.; Pizzamiglio, I.T.; Farronato, G. Laser-assisted treatment of dentinal hypersensitivity: A literature review. Ann. Stomatol. 2015, 6, 75–80. [Google Scholar] [CrossRef]
- El Mobadder, M.; Namour, A.; Namour, M.; Dib, W.; El Mobadder, W.; Maalouf, E.; Geerts, S.; Zeinoun, T.; Nammour, S. Dentinal Hypersensitivity Treatment Using Diode Laser 980 nm: In Vivo Study. Dent. J. 2019, 7, 5. [Google Scholar] [CrossRef]
- Pandey, R.; Koppolu, P.; Kalakonda, B.; Lakshmi, B.V.; Mishra, A.; Reddy, P.K.; Bollepalli, A.C. Treatment of dentinal hypersensitivity using low-level laser therapy and 5% potassium nitrate: A randomized, controlled, three arm parallel clinical study. Int. J. Appl. Basic. Med. Res. 2017, 7, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Umana, M.; Heysselaer, D.; Tielemans, M.; Compere, P.; Zeinoun, T.; Nammour, S. Dentinal tubules sealing by means of diode lasers (810 and 980 nm): A preliminary in vitro study. Photomed. Laser Surg. 2013, 31, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Liang, K.; Liu, H.; Zhang, M.; Yang, H.; Guo, S.; Ding, Y. Effect of Water-Cooled Nd:YAG Laser on Dentinal Tubule Occlusion In Vitro. Photomed. Laser Surg. 2017, 35, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Nammour, S.; El Mobadder, M.; Namour, M.; Brugnera Junior, A.; Zanin, F.; Brugnera, A.P.; Geerts, S.; Namour, A. Twelve-Month Follow-Up of Different Dentinal Hypersensitivity Treatments by Photobiomodulation Therapy, Nd:YAG and Nd:YAP Lasers. Life 2022, 12, 1996. [Google Scholar] [CrossRef]
- Dhar, V.; Marghalani, A.A.; Crystal, Y.O.; Kumar, A.; Ritwik, P.; Tulunoglu, O.; Graham, L. Use of Vital Pulp Therapies in Primary Teeth with Deep Caries Lesions. Pediatr. Dent. 2017, 39, 146–159. [Google Scholar]
- Bordea, I.R.; Hanna, R.; Chiniforush, N.; Gradinaru, E.; Campian, R.S.; Sirbu, A.; Amaroli, A.; Benedicenti, S. Evaluation of the outcome of various laser therapy applications in root canal disinfection: A systematic review. Photodiagnosis Photodyn. Ther. 2020, 29, 101611. [Google Scholar] [CrossRef]
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal diseases. Nat. Rev. Dis. Primers 2017, 3, 17038. [Google Scholar] [CrossRef]
- Berglundh, T.; Armitage, G.; Araujo, M.G.; Avila-Ortiz, G.; Blanco, J.; Camargo, P.M.; Chen, S.; Cochran, D.; Derks, J.; Figuero, E.; et al. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 2018, 45 (Suppl. 20), S286–S291. [Google Scholar] [CrossRef]
- Theodoro, L.H.; Marcantonio, R.A.C.; Wainwright, M.; Garcia, V.G. LASER in periodontal treatment: Is it an effective treatment or science fiction? Braz. Oral. Res. 2021, 35, e099. [Google Scholar] [CrossRef]
- Laky, M.; Laky, B.; Arslan, M.; Lettner, S.; Muller, M.; Haririan, H.; Husejnagic, S.; Rausch-Fan, X.; Wimmer, G.; Moritz, A.; et al. Effectiveness of a 655-nm InGaAsP diode laser to detect subgingival calculus in patients with periodontal disease. J. Periodontol. 2021, 92, 547–552. [Google Scholar] [CrossRef]
- Rams, T.E.; Alwaqyan, A.Y. In vitro performance of DIAGNOdent laser fluorescence device for dental calculus detection on human tooth root surfaces. Saudi Dent. J. 2017, 29, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.J.; Chen, C.; Chang, J.; Koka, S.; Jokerst, J.V. A narrative review of imaging tools for imaging subgingival calculus. Front. Oral. Maxillofac. Med. 2023, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Aoki, A.; Mizutani, K.; Taniguchi, Y.; Lin, T.; Ohsugi, Y.; Mikami, R.; Katagiri, S.; Meinzer, W.; Iwata, T. Current status of Er:YAG laser in periodontal surgery. Jpn. Dent. Sci. Rev. 2024, 60, 1–14. [Google Scholar] [CrossRef]
- Ren, C.; McGrath, C.; Jin, L.; Zhang, C.; Yang, Y. The effectiveness of low-level laser therapy as an adjunct to non-surgical periodontal treatment: A meta-analysis. J. Periodontal Res. 2017, 52, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Corbella, S.; Calciolari, E.; Donos, N.; Alberti, A.; Ercal, P.; Francetti, L. Laser treatments as an adjunct to non-surgical periodontal therapy in subjects with periodontitis and type 2 diabetes mellitus: A systematic review and meta-analysis. Clin. Oral. Investig. 2023, 27, 1311–1327. [Google Scholar] [CrossRef]
- Salvi, G.E.; Stahli, A.; Schmidt, J.C.; Ramseier, C.A.; Sculean, A.; Walter, C. Adjunctive laser or antimicrobial photodynamic therapy to non-surgical mechanical instrumentation in patients with untreated periodontitis: A systematic review and meta-analysis. J. Clin. Periodontol. 2020, 47 (Suppl. 22), 176–198. [Google Scholar] [CrossRef]
- Chambrone, L.; Wang, H.L.; Romanos, G.E. Antimicrobial photodynamic therapy for the treatment of periodontitis and peri-implantitis: An American Academy of Periodontology best evidence review. J. Periodontol. 2018, 89, 783–803. [Google Scholar] [CrossRef]
- Al-Ani, A.J.; Taher, H.J.; Alalawi, A.S. Histological evaluation of the surgical margins of oral soft tissue incisions using a dual-wavelength diode laser and an Er, Cr:YSGG laser; an ex vivo study. J. Appl. Oral. Sci. 2024, 32, e20230419. [Google Scholar] [CrossRef]
- Slebioda, Z.; Dorocka-Bobkowska, B. Low-level laser therapy in the treatment of recurrent aphthous stomatitis and oral lichen planus: A literature review. Postepy Dermatol. Alergol. 2020, 37, 475–481. [Google Scholar] [CrossRef]
- Matos, A.L.; Silva, P.U.; Paranhos, L.R.; Santana, I.T.; Matos, F.R. Efficacy of the laser at low intensity on primary burning oral syndrome: A systematic review. Med. Oral. Patol. Oral. Cir. Bucal 2021, 26, e216–e225. [Google Scholar] [CrossRef]
- Kusiak, A.; Jereczek-Fossa, B.A.; Cichonska, D.; Alterio, D. Oncological-Therapy Related Oral Mucositis as an Interdisciplinary Problem-Literature Review. Int. J. Environ. Res. Public. Health 2020, 17, 2464. [Google Scholar] [CrossRef] [PubMed]
- Zadik, Y.; Arany, P.R.; Fregnani, E.R.; Bossi, P.; Antunes, H.S.; Bensadoun, R.J.; Gueiros, L.A.; Majorana, A.; Nair, R.G.; Ranna, V.; et al. Systematic review of photobiomodulation for the management of oral mucositis in cancer patients and clinical practice guidelines. Support. Care Cancer 2019, 27, 3969–3983. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Yang, D.; Lei, S.; Liu, J.; Song, Y.; Zhao, H.; Zeng, X.; Dan, H.; Chen, Q. Photodynamic therapy-a promising treatment of oral mucosal infections. Photodiagnosis Photodyn. Ther. 2022, 39, 103010. [Google Scholar] [CrossRef]
- Di Stasio, D.; Romano, A.; Gentile, C.; Maio, C.; Lucchese, A.; Serpico, R.; Paparella, R.; Minervini, G.; Candotto, V.; Laino, L. Systemic and topical photodynamic therapy (PDT) on oral mucosa lesions: An overview. J. Biol. Regul. Homeost. Agents 2018, 32, 123–126. [Google Scholar]
- Jerjes, W.; Hamdoon, Z.; Hopper, C. Photodynamic therapy in the management of potentially malignant and malignant oral disorders. Head. Neck Oncol. 2012, 4, 16. [Google Scholar] [CrossRef]
- Olek, M.; Kasperski, J.; Skaba, D.; Wiench, R.; Cieslar, G.; Kawczyk-Krupka, A. Photodynamic therapy for the treatment of oral squamous carcinoma-Clinical implications resulting from in vitro research. Photodiagnosis Photodyn. Ther. 2019, 27, 255–267. [Google Scholar] [CrossRef]
- Guo, Q.; Ji, X.; Zhang, L.; Liu, X.; Wang, Y.; Liu, Z.; Jin, J.; Han, Y.; Liu, H. Differences in the response of normal oral mucosa, oral leukoplakia, oral squamous cell carcinoma-derived mesenchymal stem cells, and epithelial cells to photodynamic therapy. J. Photochem. Photobiol. B 2024, 255, 112907. [Google Scholar] [CrossRef]
- Gkantidis, N.; Christou, P.; Topouzelis, N. The orthodontic-periodontic interrelationship in integrated treatment challenges: A systematic review. J. Oral. Rehabil. 2010, 37, 377–390. [Google Scholar] [CrossRef]
- Lai, P.S.; Fierro, C.; Bravo, L.; Perez-Flores, A. Benefits of Using Low-level Laser Therapy in the Rapid Maxillary Expansion: A Systematic Review. Int. J. Clin. Pediatr. Dent. 2021, 14, S101–S106. [Google Scholar] [CrossRef]
- Zheng, D.H.; Du, Y.Q.; Zhang, Q.Q.; Hou, F.C.; Niu, S.Q.; Zang, Y.J.; Li, B. Effect of low-level laser therapy on orthodontic dental alignment: A systematic review and meta-analysis. Lasers Med. Sci. 2023, 38, 184. [Google Scholar] [CrossRef]
- Pordel, E.; Ghasemi, T.; Afrasiabi, S.; Benedicenti, S.; Signore, A.; Chiniforush, N. The Effect of Different Output Powers of Blue Diode Laser along with Curcumin and Riboflavin against Streptococcus mutans around Orthodontic Brackets: An In Vitro Study. Biomedicines 2023, 11, 2248. [Google Scholar] [CrossRef] [PubMed]
- Sant’Anna, E.F.; Araujo, M.T.S.; Nojima, L.I.; Cunha, A.C.D.; Silveira, B.L.D.; Marquezan, M. High-intensity laser application in Orthodontics. Dental Press. J. Orthod. 2017, 22, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Kiryk, J.; Matys, J.; Nikodem, A.; Burzynska, K.; Grzech-Lesniak, K.; Dominiak, M.; Dobrzynski, M. The Effect of Er:YAG Laser on a Shear Bond Strength Value of Orthodontic Brackets to Enamel-A Preliminary Study. Materials 2021, 14, 2093. [Google Scholar] [CrossRef] [PubMed]
- Bagwan, A.A.; Abuaffan, A.H.; Alrahlah, A.; Hassan Al-Gunaid, T. Effects of Er, Cr: YSGG Laser on Shear Bond Strength of the Orthodontic Brackets for 5 and 10 Seconds: An In Vitro Study. Int. J. Dent. 2022, 2022, 9126699. [Google Scholar] [CrossRef]
- Oladzad, M.; Chiniforush, N.; Bahrami, R.; Mirhashemi, A. Evaluation of the Effect of Phosphoric Acid or Er: YAG Laser on the Shear Bond Strength of Orthodontic Brackets to Enamel Surfaces Followed by 980-Laser Assisted Bleaching: An In Vitro Study. J. Lasers Med. Sci. 2023, 14, e62. [Google Scholar] [CrossRef]
- Mundethu, A.R.; Gutknecht, N.; Franzen, R. Rapid debonding of polycrystalline ceramic orthodontic brackets with an Er:YAG laser: An in vitro study. Lasers Med. Sci. 2014, 29, 1551–1556. [Google Scholar] [CrossRef]
- Ajwa, N.; Alfayez, H.; Al-Oqab, H.; Melibary, R.; Alzamil, Y. The Effect of Erbium-Doped Yttrium Aluminum Garnet Laser in Debonding of Orthodontic Brackets: A Systematic Review of the Literature. Photobiomodulation Photomed. Laser Surg. 2021, 39, 725–733. [Google Scholar] [CrossRef]
- Matos, D.S.; Kuchler, E.C.; Borsatto, M.C.; Matsumoto, M.A.N.; Marques, F.V.; Romano, F.L. CO2 laser irradiation for debonding ceramic orthodontic brackets. Braz. Dent. J. 2021, 32, 45–52. [Google Scholar] [CrossRef]
- Smalley, P.J. Laser safety: Risks, hazards, and control measures. Laser Ther. 2011, 20, 95–106. [Google Scholar] [CrossRef]
Laser Application | Irradiation Effects | CO2 Laser | Diode Laser | Er,Cr:YSGG Laser | Er:YAG Laser | Nd:YAG Laser |
---|---|---|---|---|---|---|
Caries prevention |
| Yes | Yes | Yes | Yes | Yes |
Caries Detection |
| Yes | ||||
Caries treatment |
| Yes | Yes | Yes |
Laser Application | Irradiation Effects | CO2 Laser | Diode Laser | Er,Cr:YSGG Laser | Er:YAG Laser | Nd:YAG Laser |
---|---|---|---|---|---|---|
Pulp vitality test |
| Yes | ||||
Dentin hypersensitivity therapy |
| Yes | Yes | Yes | Yes | Yes |
Vital pulp therapy |
| Yes | Yes | Yes | Yes | |
Non-vital pulp therapy |
| Yes | Yes | Yes | Yes |
Laser Application | Irradiation Effects | CO2 Laser | Diode Laser | Er,Cr:YSGG Laser | Er:YAG Laser | Nd:YAG Laser |
---|---|---|---|---|---|---|
Subgingival calculus detection |
| Yes | ||||
Non-surgical therapy |
| Yes | Yes | Yes | Yes | |
Surgical therapy |
| Yes | Yes | Yes | Yes | Yes |
Laser Application | Irradiation Effects | CO2 Laser | Diode Laser | Er,Cr:YSGG Laser | Er:YAG Laser | Nd:YAG Laser |
---|---|---|---|---|---|---|
Mucosal disease therapy |
| Yes | Yes | Yes | Yes | Yes |
Oral mucositis prevention |
| Yes | ||||
Oral cancer therapy |
| Yes |
Laser Application | Irradiation Effects | CO2 Laser | Diode Laser | Er,Cr:YSGG Laser | Er:YAG Laser | Nd:YAG Laser |
---|---|---|---|---|---|---|
Alveolar bone remodeling |
| Yes | ||||
Bond strength improvement |
| Yes | Yes | |||
Ceramic brackets removal |
| Yes | Yes | Yes | Yes |
Protocol | Item | Description |
---|---|---|
Assessment and Selection | History Taking | Review the patient’s medical and dental history |
Initial Consultation | Conduct a thorough examination to assess suitability for laser treatment | |
Informed Consent | Explain the laser procedure, benefits, risks, and alternative treatments | |
Pre-Procedure Preparation | Equipment Selection | Choose the appropriate type of laser based on the specific dental procedure |
Area safety | Implement safety protocols like using warning signs and securing the treatment area | |
Personnel Safety | Ensure all personnel and the patient wear appropriate protective eyewear | |
Equipment Setup | Calibration | Calibrate the laser device according to the manufacturer’s instructions |
Testing | Perform a test fire to ensure the laser is functioning correctly | |
Sterilization | Sterilize all laser handpieces and accessories to prevent cross-contamination | |
Procedure Execution | Anesthesia | Administer local anesthesia if required for patient comfort |
Laser Settings | Adjust the laser settings, including power, pulse duration, and frequency | |
Mode selection | Use appropriate laser mode—continuous or pulsed mode | |
Technique | Maintain the correct distance and angle between the laser tip and the tissue | |
Cooling | Ensure tissue cooling to prevent thermal damage | |
Monitoring | Monitor the patient and tissue response during the procedure | |
Post-Procedure Care | Immediate Care | Assess signs of complications, such as bleeding or tissue damage |
Patient instructions | Provide instructions like pain management, oral hygiene, and activity restrictions | |
Follow-Up | Schedule follow-up appointments to monitor healing and treatment success | |
Documentation and Reporting | Record Keeping | Document procedure, laser settings, treatment details, and adverse events |
Evaluation | Evaluate the treatment outcomes and patient satisfaction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, O.L.; Yin, I.X.; Yu, O.Y.; Luk, K.; Niu, J.Y.; Chu, C.H. Advanced Lasers and Their Applications in Dentistry. Dent. J. 2025, 13, 37. https://doi.org/10.3390/dj13010037
Zhang OL, Yin IX, Yu OY, Luk K, Niu JY, Chu CH. Advanced Lasers and Their Applications in Dentistry. Dentistry Journal. 2025; 13(1):37. https://doi.org/10.3390/dj13010037
Chicago/Turabian StyleZhang, Olivia Lili, Iris Xiaoxue Yin, Ollie Yiru Yu, Kenneth Luk, John Yun Niu, and Chun Hung Chu. 2025. "Advanced Lasers and Their Applications in Dentistry" Dentistry Journal 13, no. 1: 37. https://doi.org/10.3390/dj13010037
APA StyleZhang, O. L., Yin, I. X., Yu, O. Y., Luk, K., Niu, J. Y., & Chu, C. H. (2025). Advanced Lasers and Their Applications in Dentistry. Dentistry Journal, 13(1), 37. https://doi.org/10.3390/dj13010037