Validation of Quantitative Light-Induced Fluorescence Digital Analysis for Assessing Early Dental Caries Depth: A Micro-Computed Tomography-Based In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Fabrication of Specimens
2.2. Micro-Computed Tomography (µCT) Analysis
2.3. Quantitative Light-Induced Fluorescence Digital (QLFD) Analysis
2.4. The Generation of a Standardized Grayscale Intensity Profile
2.5. Statistical Analysis
3. Results
3.1. Comparison of Enamel Lesion Depth at 90% and 95% Grayscale Intensity Thresholds
3.2. Correlation Between LDµCT and LDQLFD
3.3. Linear Regression Analysis
3.4. Bland–Altman Plot
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EDC | Early dental caries |
TMR | Transverse microradiography |
QLF | Quantitative light-induced fluorescence |
QLFD | Quantitative light-induced fluorescence-digital |
µCT | Micro-computed tomography |
LD | Lesion depth |
90% LDµCT | Lesion depth at 90% grayscale intensity values obtained from µCT |
90% LDQLFD | Lesion depth at 90% grayscale intensity values obtained from QLFD |
95% LDµCT | Lesion depth at 95% grayscale intensity values obtained from µCT |
95% LDQLFD | Lesion depth at 95% grayscale intensity values obtained from QLFD |
References
- Silverstone, L.M. Remineralization phenomena. Caries Res. 1977, 11, 59–84. [Google Scholar] [CrossRef] [PubMed]
- Lippert, F.; Lynch, R.J.M. Comparison of knoop and vickers surface microhardness and transverse microradiography for the study of early caries lesion formation in human and bovine enamel. Arch. Oral Biol. 2014, 59, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Braga, A.S.; Meißner, T.; Schulz-Kornas, E.; Haak, R.; Magalhães, A.C.; Esteves-Oliveira, M. Enamel caries lesion depth obtained by optical coherence tomography and transverse microradiography: A comparative study. Caries Res. 2024, 58, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Hamba, H.; Nikaido, T.; Sadr, A.; Nakashima, S.; Tagami, J. Enamel lesion parameter correlations between polychromatic micro-CT and TMR. J. Dent. Res. 2012, 91, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, M. Detection, diagnosis, and monitoring of early caries: The future of individualized dental care. Diagnostics 2023, 13, 3649. [Google Scholar] [CrossRef] [PubMed]
- Gomez, J. Detection and diagnosis of the early caries lesion. BMC Oral Health 2015, 15 (Suppl. S1), S3. [Google Scholar] [CrossRef] [PubMed]
- Min, J.H. Assessment of early dental caries by using optical coherence tomography. J. Dent. Hyg. Sci. 2016, 16, 257–262. [Google Scholar] [CrossRef]
- Orsini, G.; Orilisi, G.; Notarstefano, V.; Monterubbianesi, R.; Vitiello, F.; Tosco, V.; Belloni, A.; Putignano, A.; Giorgini, E. Vibrational Imaging Techniques for the Characterization of Hard Dental Tissues: From Bench-Top to Chair-Side. Appl. Sci. 2021, 11, 11953. [Google Scholar] [CrossRef]
- Amaechi, B.T.; Higham, S.M. Quantitative light-induced fluorescence: A potential tool for general dental assessment. J. Biomed. Opt. 2002, 7, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Ando, M.; Ferreira-Zandoná, A.G.; Eckert, G.J.; Zero, D.T.; Stookey, G.K. Pilot clinical study to assess caries lesion activity using quantitative light-induced fluorescence during dehydration. J. Biomed. Opt. 2017, 22, 35005. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.H.; Lee, S.R.; Choi, J.Y.; Choi, Y.S.; Kim, S.H.; Yoon, H.C.; Nelson, G. Detection of dental caries and cracks with quantitative light-induced fluorescence in comparison to radiographic and visual examination: A retrospective case study. Sensors 2021, 21, 1741. [Google Scholar] [CrossRef] [PubMed]
- Angmar-Månsson, B.; Ten Bosch, J.J. Quantitative light-induced fluorescence (QLF): A method for assessment of incipient caries lesions. Dentomaxillofac. Radiol. 2001, 30, 298–307. [Google Scholar] [CrossRef] [PubMed]
- PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/?term=Quantitative+Light-+induced+Fluorescence (accessed on 10 January 2025).
- La Rosa, G.R.M.; Pedullà, E.; Chapple, I.; Pacino, S.A.; Polosa, R. The use of quantitative light-induced fluorescence in carious lesions research: A bibliometric review. J. Dent. 2024, 148, 105220. [Google Scholar] [CrossRef] [PubMed]
- White, D.J. Use of synthetic polymer gels for artificial carious lesion preparation. Caries Res. 1987, 21, 228–242. [Google Scholar] [CrossRef] [PubMed]
- Min, J.H.; Inaba, D.; Kwon, H.K.; Chung, J.H.; Kim, B.I. Evaluation of penetration effect of resin infiltrant using optical coherence tomography. J. Dent. 2015, 43, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Nakata, K.; Nikaido, T.; Nakashima, S.; Nango, N.; Tagami, J. An approach to normalizing micro-CT depth profiles of mineral density for monitoring enamel remineralization progress. Dent. Mater. J. 2012, 31, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Kielbassa, A.M.; Wrbas, K.T.; Schulte-Mönting, J.; Hellwig, E. Correlation of transversal microradiography and microhardness on in situ-induced demineralization in irradiated and nonirradiated human dental enamel. Arch. Oral Biol. 1999, 44, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, S.; Lee, N. Diagnosis of early dental caries with dye-enhancing quantitative light-induced fluorescence (QLF). J. Korean Acad. Pediatr. Dent. 2015, 42, 218–225. [Google Scholar] [CrossRef]
- Kim, Y.S. Evaluation of detection ability of a quantitative light-induced fluorescence digital device for initial secondary caries lesion. J. Dent. Hyg. Sci. 2017, 17, 116–122. [Google Scholar] [CrossRef]
- Cho, K.H.; Kang, C.; Jung, H.; Lee, T.Y.; Song, J.S. Assessment of the caries detection ability of quantitative light-induced fluorescence (QLF) in primary teeth in vitro. J. Korean Acad. Pediatr. Dent. 2022, 49, 65–75. [Google Scholar] [CrossRef]
Demineralization Period | N | Mean ± S.D. | p-Value 2 | |
---|---|---|---|---|
90% LDµCT 1 | 90% LDQLFD 1 | |||
10 days | 28 | 175.98 ± 52.20 a | 248.57 ± 53.72 a | <0.001 |
20 days | 28 | 226.26 ± 66.21 ab | 302.71 ± 74.81 ab | <0.001 |
30 days | 28 | 275.11 ± 69.91 bc | 357.75 ± 72.27 bc | <0.001 |
40 days | 28 | 283.96 ± 75.56 de | 361.71 ± 76.54 d | <0.001 |
50 days | 28 | 291.96 ± 41.62 de | 393.86 ± 47.54 de | <0.001 |
60 days | 28 | 332.53 ± 78.81 e | 425.18 ± 78.93 e | <0.001 |
70 days | 28 | 336.53 ± 72.07 e | 443.18 ± 86.87 e | <0.001 |
p-value 3 | <0.001 | <0.001 |
Demineralization Period | N | Mean ± S.D. | p-Value 2 | |
---|---|---|---|---|
95% LDµCT 1 | 95% LDQLFD 1 | |||
10 days | 28 | 202.55 ± 52.88 a | 280.00 ± 57.46 a | <0.001 |
20 days | 28 | 255.68 ± 67.82 ab | 333.75 ± 77.80 a | <0.001 |
30 days | 28 | 309.46 ± 78.14 bc | 396.46 ± 85.66 b | <0.001 |
40 days | 28 | 321.10 ± 73.14 c | 397.79 ± 66.85 b | <0.001 |
50 days | 28 | 330.24 ± 46.43 cd | 431.04 ± 51.21 bc | <0.001 |
60 days | 28 | 362.81 ± 75.11 cd | 463.39 ± 81.07 c | <0.001 |
70 days | 28 | 377.67 ± 80.12 d | 473.18 ± 86.47 c | <0.001 |
p-value 3 | <0.001 | <0.001 |
90% LDµCT | 90% LDQLFD | 95% LDµCT | |
---|---|---|---|
90% LDQLFD | 0.920 (p <0.001) | ||
95% LDµCT | 0.946 (p <0.001) | 0.911 (p <0.001) | |
95% LDQLFD | 0.898 (p <0.001) | 0.977 (p <0.001) | 0.901 (p <0.001) |
Grayscale Intensity Threshold | Constant (Intercept) | Coefficient (B) | Standardized Beta Coefficient | R2 Value | F | p-Value |
---|---|---|---|---|---|---|
0.90 | −21.857 | 0.819 | 0.920 | 0.7970.847 | 1075.323 | <0.001 |
0.95 | −16.447 | 0.820 | 0.901 | 0.7200.811 | 833.050 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, J.-H. Validation of Quantitative Light-Induced Fluorescence Digital Analysis for Assessing Early Dental Caries Depth: A Micro-Computed Tomography-Based In Vitro Study. Dent. J. 2025, 13, 90. https://doi.org/10.3390/dj13030090
Min J-H. Validation of Quantitative Light-Induced Fluorescence Digital Analysis for Assessing Early Dental Caries Depth: A Micro-Computed Tomography-Based In Vitro Study. Dentistry Journal. 2025; 13(3):90. https://doi.org/10.3390/dj13030090
Chicago/Turabian StyleMin, Ji-Hyun. 2025. "Validation of Quantitative Light-Induced Fluorescence Digital Analysis for Assessing Early Dental Caries Depth: A Micro-Computed Tomography-Based In Vitro Study" Dentistry Journal 13, no. 3: 90. https://doi.org/10.3390/dj13030090
APA StyleMin, J.-H. (2025). Validation of Quantitative Light-Induced Fluorescence Digital Analysis for Assessing Early Dental Caries Depth: A Micro-Computed Tomography-Based In Vitro Study. Dentistry Journal, 13(3), 90. https://doi.org/10.3390/dj13030090