Effects of Nisin A Combined with Antifungal Drug Against Growth of Candida Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Growth Conditions
2.2. Peptide and Antifungal Drugs
2.3. Checkerboard Assay
2.4. Cell Viability Assays
2.5. Biofilm Reduction Assay
2.6. Growth Inhibition Assay
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lubelski, J.; Rink, R.; Khusainov, R.; Moll, G.N.; Kuipers, O.P. Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell. Mol. Life Sci. 2008, 65, 455–476. [Google Scholar] [CrossRef] [PubMed]
- Luciana, J.A.; Jozala, A.; Mazzola, P.; Penna, T.C. Nisin biotechnological production and application: A review. Trends Food Sci. Technol. 2009, 20, 146–154. [Google Scholar]
- Smith, L.; Hillman, J. Therapeutic potential of type A (I) lantibiotics, a group of cationic peptide antibiotics. Curr. Opin. Microbiol. 2008, 11, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Campion, A.; Casey, P.G.; Field, D.; Cotter, P.D.; Hill, C.; Ross, R.P. In vivo activity of nisin A and nisin V against Listeria monocytogenes in mice. BMC Microbiol. 2013, 13, 23. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Nisin preparation: Affirmation of GRAS status as a direct human food ingredient. Fed. Regist. 1988, 53, 11247–11251. [Google Scholar]
- Shin, J.M.; Gwak, J.W.; Kamarajan, P.; Fenno, J.C.; Rickard, A.H.; Kapila, Y.L. Biomedical applications of nisin. J. Appl. Microbiol. 2016, 120, 1449–1465. [Google Scholar] [CrossRef]
- Rapala-Kozik, M.; Surowiec, M.; Juszczak, M.; Wronowska, E.; Kulig, K.; Bednarek, A.; Gonzalez-Gonzalez, M.; Karkowska-Kuleta, J.; Zawrotniak, M.; Satała, D.; et al. Living together: The role of Candida albicans in the formation of polymicrobial biofilms in the oral cavity. Yeast 2023, 40, 303–317. [Google Scholar] [CrossRef]
- Fangtham, M.; Magder, L.S.; Petri, M.A. Oral candidiasis in systemic lupus erythematosus. Lupus 2014, 23, 684–690. [Google Scholar] [CrossRef]
- Sivabalan, S.; Mahadevan, S.; Srinath, M.V. Recurrent oral thrush. Indian J. Pediatr. 2014, 81, 394–396. [Google Scholar] [CrossRef]
- Sievert, D.M.; Ricks, P.; Edwards, J.R.; Schneider, A.; Patel, J.; Srinivasan, A.; Kallen, A.; Limbago, B.; Fridkin, S. Antimicrobial-resistant pathogens associated with healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect. Control Hosp. Epidemiol. 2013, 34, 1–14. [Google Scholar] [CrossRef]
- Coronado-Castellote, L.; Jiménez-Soriano, Y. Clinical and microbiological diagnosis of oral candidiasis. J. Clin. Exp. Dent. 2013, 5, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Flevari, A.; Theodorakopoulou, M.; Velegraki, A.; Armaganidis, A.; Dimopoulos, G. Treatment of invasive candidiasis in the elderly: A review. Clin. Interv. Aging 2013, 8, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Hirano, R.; Sakamoto, Y.; Kudo, K.; Ohnishi, M. Retrospective analysis of mortality and Candida isolates of 75 patients with candidemia: A single hospital experience. Infect. Drug Resist. 2015, 8, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Fernández de, U.M.; Arbulu, S.; Garcia-Gutierrez, E.; Cotter, P.D. Antifungal Peptides as Therapeutic Agents. Front. Cell Infect. Microbiol. 2020, 10, 105. [Google Scholar] [CrossRef]
- Mhlongo, J.T.; Waddad, A.Y.; Albericio, F.; de la Torre, B.G. Antimicrobial Peptide Synergies for Fighting Infectious Diseases. Adv. Sci. 2023, 10, 2300472. [Google Scholar] [CrossRef]
- Wang, J.; Ma, X.; Li, J.; Shi, L.; Liu, L.; Hou, X.; Jiang, S.; Li, P.; Lv, J.; Han, L.; et al. The Synergistic Antimicrobial Effect and Mechanism of Nisin and Oxacillin against Methicillin-Resistant Staphylococcus aureus. Int. J. Mol. Sci. 2023, 24, 6697. [Google Scholar] [CrossRef] [PubMed]
- Naghmouchi, K.; Drider, D.; Baah, J.; Teather, R. Nisin A and Polymyxin B as Synergistic Inhibitors of Gram-positive and Gram-negative Bacteria. Probiotics Antimicrob. Proteins 2010, 2, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Field, D.; Seisling, N.; Cotter, P.D.; Ross, R.P.; Hill, C. Synergistic Nisin-Polymyxin Combinations for the Control of Pseudomonas Biofilm Formation. Front. Microbiol. 2016, 7, 1713. [Google Scholar] [CrossRef]
- Thomas, V.M.; Brown, R.M.; Ashcraft, D.S.; Pankey, G.A. Synergistic effect between nisin and polymyxin B against pandrug-resistant and extensively drug-resistant Acinetobacter baumannii. Int. J. Antimicrob. Agents 2019, 53, 663–668. [Google Scholar] [CrossRef]
- Le, L.C.; Akerey, B.; Fliss, I.; Subirade, M.; Rouabhia, M. Nisin Z inhibits the growth of Candida albicans and its transition from blastospore to hyphal form. J. Appl. Microbiol. 2008, 105, 1630–1639. [Google Scholar] [CrossRef]
- Gao, S.; Ji, Y.; Xu, S.; Jia, J.; Fan, B.; Zhang, Y.; Shen, H.; Zhou, W. Antifungal activity of nisin against clinical isolates of azole-resistant Candida tropicalis. Front. Microbiol. 2024, 15, 1383953. [Google Scholar] [CrossRef]
- Kadosh, D.; Mundodi, V. A Re-Evaluation of the Relationship between Morphology and Pathogenicity in Candida Species. J. Fungi 2020, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Ogasawara, A.; Mikami, T.; Matsumoto, T. Hyphal formation of Candida albicans is controlled by electron transfer system. Biochem. Biophys. Res. Commun. 2006, 348, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Tin, S.; Sakharkar, K.R.; Lim, C.S.; Sakharkar, M.K. Activity of Chitosans in combination with antibiotics in Pseudomonas aeruginosa. Int. J. Biol. Sci. 2009, 5, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Ohta, K.; Kajiya, M.; Zhu, T.; Nishi, H.; Mawardi, H.; Shin, J.; Elbadawi, L.; Kamata, N.; Komatsuzawa, H.; Kawai, T. Additive effects of orexin B and vasoactive intestinal polypeptide on LL-37-mediated antimicrobial activities. J. Neuroimmunol. 2011, 233, 37–45. [Google Scholar] [CrossRef]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 3rd ed.; CLSI standard M27-A; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Midorikawa, K.; Ouhara, K. Staphylococcus aureus Susceptibility to Innate Antimicrobial Peptides, beta-Defensins and CAP18, Expressed by Human Keratinocytes. Infect. Immun. 2003, 71, 3730–3739. [Google Scholar] [CrossRef]
- Midorikawa, K.; Ouhara, K.; Komatsuzawa, H.; Kawai, T.; Yamada, S.; Fujiwara, T.; Yamazaki, K.; Sayama, K.; Taubman, M.A.; Kurihara, H.; et al. CX3CL1 expression induced by Candida albicans in oral fibroblasts. FEMS Immunol. Med. Microbiol. 2010, 60, 179–185. [Google Scholar] [CrossRef]
- Sakuma, M.; Ohta, K.; Fukada, S.; Kato, H.; Naruse, T.; Nakagawa, T.; Shigeishi, H.; Nishi, H.; Takechi, M. Expression of anti-fungal peptide, β-defensin 118 in oral fibroblasts induced by C. albicans β-glucan-containing particles. J. Appl. Oral Sci. 2022, 30, e20210321. [Google Scholar] [CrossRef] [PubMed]
- Helmerhorst, E.J.; Murphy, M.P.; Troxler, R.F.; Oppenheim, F.G. Characterization of the mitochondrial respiratory pathways in Candida albicans. Biochim. Biophys. Acta (BBA)-Bioenerg. 2002, 1556, 73–83. [Google Scholar]
- Kamikawa, Y.; Mori, Y.; Nagayama, T.; Fujisaki, J.; Hirabayashi, D.; Sakamoto, R.; Hamada, T.; Sugihara, K. Frequency of clinically isolated strains of oral Candida species at Kagoshima University Hospital, Japan, and their susceptibility to antifungal drugs in 2006-2007 and 2012-2013. BMC Oral Health 2014, 14, 14. [Google Scholar] [CrossRef]
- Tobudic, S.; Kratzer, C.; Lassnigg, A.; Presterl, E. Antifungal susceptibility of Candida albicans in biofilms. Mycoses 2012, 55, 199–204. [Google Scholar] [PubMed]
- Hawser, S.P.; Douglas, L.J. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect. Immun. 1994, 62, 915–921. [Google Scholar] [PubMed]
- Field, D.; Fernandez de, U.M.; Ross, R.P.; Hill, C. After a century of nisin research—Where are we now? FEMS Microbiol. Rev. 2023, 47, 1–18. [Google Scholar] [CrossRef]
- Akerey, B.; Le-Lay, C.; Fliss, I.; Subirade, M.; Rouabhia, M. In vitro efficacy of nisin Z against Candida albicans adhesion and transition following contact with normal human gingival cells. Appl. Microbiol. 2009, 107, 1298–1307. [Google Scholar] [CrossRef]
- Singh, A.P.; Prabha, V.; Rishi, P. Value addition in the efficacy of conventional antibiotics by nisin against Salmonella. PLoS ONE 2013, 8, e76844. [Google Scholar] [CrossRef]
- Wiedemann, I.; Breukink, E.; van Kraaij, C.; Kuipers, O.P.; Bierbaum, G.; de Kruijff, B.; Sahl, H.G. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J. Biol. Chem. 2001, 276, 1772–1779. [Google Scholar] [CrossRef]
- Mesa-Arango, A.C.; Scorzoni, L.; Zaragoza, O. It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Front. Microbiol. 2012, 3, 286. [Google Scholar] [CrossRef]
- Georgopapadakou, N.H.; Walsh, T.J. Antifungal agents: Chemotherapeutic targets and immunologic strategies. Antimicrob. Agents Chemother. 1996, 40, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Cross, S.A.; Scott, L.J. Micafungin: A review of its use in adults for the treatment of invasive and oesophageal candidiasis, and as prophylaxis against Candida infections. Drugs 2008, 68, 2225–2255. [Google Scholar] [CrossRef]
- Cavalheiro, M.; Teixeira, M.C. Candida Biofilms: Threats, Challenges, and Promising Strategies. Front. Med. 2018, 5, 28. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, X.; Ren, B.; Cheng, L. The regulation of hyphae growth in Candida albicans. Virulence 2020, 11, 337–348. [Google Scholar] [PubMed]
- Hawser, S.; Islam, K. Comparisons of the effects of fungicidal and fungistatic antifungal agents on the morphogenetic transformation of Candida albicans. Antimicrob. Chemother. 1999, 43, 411–413. [Google Scholar]
- Whaley, S.G.; Berkow, E.L.; Rybak, J.M.; Nishimoto, A.T.; Barker, K.S.; Rogers, P.D. Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species. Front. Microbiol. 2017, 7, 2173. [Google Scholar] [CrossRef]
- Rabaan, A.A.; Sulaiman, T.; Al-Ahmed, S.H.; Buhaliqah, Z.A.; Buhaliqah, A.A.; AlYuosof, B.; Alfaresi, M.; Al, F.M.A.; Alwarthan, S.; Alkathlan, M.S.; et al. Potential Strategies to Control the Risk of Antifungal Resistance in Humans: A Comprehensive Review. Antibiotics 2023, 12, 608. [Google Scholar] [CrossRef]
- Cui, X.; Wang, L.; Lü, Y.; Yue, C. Development and research progress of anti-drug resistant fungal drugs. J. Infect. Public Health 2022, 15, 986–1000. [Google Scholar]
- Yang, Y.L.; Xiang, Z.J.; Yang, J.H.; Wang, W.J.; Xu, Z.C.; Xiang, R.L. Adverse Effects Associated with Currently Commonly Used Antifungal Agents: A Network Meta-Analysis and Systematic Review. Front. Pharmacol. 2021, 12, 697330. [Google Scholar] [CrossRef]
- Jesus, C.; Soares, R.; Cunha, E.; Grilo, M.; Tavares, L.; Oliveira, M. Influence of Nisin-Biogel at Subinhibitory Concentrations on Virulence Expression in Staphylococcus aureus Isolates from Diabetic Foot Infections. Antibiotics 2021, 10, 1501. [Google Scholar] [CrossRef]
- Kawada-Matsuo, M.; Watanabe, A.; Arii, K.; Oogai, Y.; Noguchi, K.; Miyawaki, S.; Hayashi, T.; Komatsuzawa, H. Staphylococcus aureus Virulence Affected by an Alternative Nisin A Resistance Mechanism. Appl. Environ. Microbiol. 2020, 86, e02923-19. [Google Scholar] [CrossRef] [PubMed]
- Kawada-Matsuo, M.; Yoshida, Y.; Zendo, T.; Nagao, J.; Oogai, Y.; Nakamura, Y.; Sonomoto, K.; Nakamura, N.; Komatsuzawa, H. Three distinct two-component systems are involved in resistance to the class I bacteriocins, Nukacin ISK-1 and nisin A, in Staphylococcus aureus. PLoS ONE 2013, 86, e69455. [Google Scholar] [CrossRef]
- Deegan, L.H.; Cotter, P.D.; Hill, C.; Ross, P. Bacteriocins: Biological tools for bio-preservation and shelf-life extension. Int. Dairy J. 2006, 16, 1058–1071. [Google Scholar]
Candida Species | Antifungal Drug | MIC (g/mL) | * Modified FIC | # Effect | ||
---|---|---|---|---|---|---|
Antifungal Alone | Antifungal (with Nisin A) | Nisin A (with Antifungal) | ||||
C. albicans IFO1385 | AMPH | 0.5 | 0.062 | 64 | 0.155 | Synergy |
MCZ | 0.5 | 0.125 | 32 | 0.265 | Synergy | |
MCFG | 0.062 | 0.031 | 32 | 0.515 | Additive | |
C. albicans IFM40009 | AMPH | 0.5 | 0.031 | 64 | 0.093 | Synergy |
MCZ | 1 | 0.25 | 32 | 0.265 | Synergy | |
MCFG | 0.25 | 0.062 | 128 | 0.310 | Synergy | |
C. albicans | AMPH | 2 | 0.5 | 64 | 0.281 | Synergy |
Ca Clinical strain #1 | MCZ | 0.25 | 0.062 | 256 | 0.373 | Synergy |
MCFG | 0.125 | 0.062 | 32 | 0.511 | Additive |
Candida Species | Antifungal Drug | MIC (g/mL) | * Modified FIC | # Effect | ||
---|---|---|---|---|---|---|
Antifungal Alone | Antifungal (with Nisin A) | Nisin A (with Antifungal) | ||||
C. glabrata IFM54350 | AMPH | 1 | 0.25 | 256 | 0.265 | Synergy |
MCZ | 1 | 0.5 | 32 | 0.515 | Additive | |
MCFG | 0.125 | 0.062 | 256 | 0.621 | Additive | |
C. glabrata | AMPH | 1 | 0.25 | 32 | 0.265 | Synergy |
Cg Clinical strain #1 | MCZ | 1 | 0.125 | 256 | 0.250 | Synergy |
MCFG | 0.062 | 0.031 | 512 | 0.750 | Additive | |
C. tropicalis IFM46821 | AMPH | 0.25 | 0.062 | 32 | 0.263 | Synergy |
MCZ | 2 | 1 | 128 | 0.562 | Additive | |
MCFG | 1 | 0.5 | 32 | 0.515 | Additive | |
C. parapsilosis IFM5774 | AMPH | 0.25 | 0.062 | 32 | 0.263 | Synergy |
MCZ | 2 | 1 | 512 | 0.750 | Additive | |
MCFG | 1 | 0.5 | 32 | 0.515 | Additive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niitani, Y.; Ohta, K.; Yano, K.; Kaneyasu, Y.; Maehara, T.; Kitasaki, H.; Shigeishi, H.; Nishi, H.; Nishimura, R.; Naito, M.; et al. Effects of Nisin A Combined with Antifungal Drug Against Growth of Candida Species. Dent. J. 2025, 13, 160. https://doi.org/10.3390/dj13040160
Niitani Y, Ohta K, Yano K, Kaneyasu Y, Maehara T, Kitasaki H, Shigeishi H, Nishi H, Nishimura R, Naito M, et al. Effects of Nisin A Combined with Antifungal Drug Against Growth of Candida Species. Dentistry Journal. 2025; 13(4):160. https://doi.org/10.3390/dj13040160
Chicago/Turabian StyleNiitani, Yoshie, Kouji Ohta, Kanako Yano, Yoshino Kaneyasu, Tomoko Maehara, Honami Kitasaki, Hideo Shigeishi, Hiromi Nishi, Rumi Nishimura, Mariko Naito, and et al. 2025. "Effects of Nisin A Combined with Antifungal Drug Against Growth of Candida Species" Dentistry Journal 13, no. 4: 160. https://doi.org/10.3390/dj13040160
APA StyleNiitani, Y., Ohta, K., Yano, K., Kaneyasu, Y., Maehara, T., Kitasaki, H., Shigeishi, H., Nishi, H., Nishimura, R., Naito, M., Shiba, F., Kawada-Matsuo, M., Komatsuzawa, H., & Takemoto, T. (2025). Effects of Nisin A Combined with Antifungal Drug Against Growth of Candida Species. Dentistry Journal, 13(4), 160. https://doi.org/10.3390/dj13040160