The Reevaluation of Subgingival Calculus: A Narrative Review
Abstract
:1. Introduction
2. Review
2.1. Microscopic Calculus
2.2. In Vitro Experimental Studies
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Löe, H.; Theilade, E.; Jensen, S.B. Experimental gingivitis in man. J. Periodontol. 1965, 36, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Theilade, E.; Wright, W.H.; Jensen, S.B.; Löe, H. Experimental gingivitis in man. II. A longitudinal clinical and bacteriological investigation. J. Periodontal Res. 1966, 1, 1–13. [Google Scholar] [CrossRef]
- Rosier, B.T.; De Jager, M.; Zaura, E.; Krom, B.P. Historical and contemporary hypotheses on the development of oral diseases: Are we there yet? Front. Cell. Infect. Microbiol. 2014, 4, 92. [Google Scholar] [CrossRef] [PubMed]
- Harrel, S.K.; Cobb, C.M.; Zhao, D.; Nunn, M.E. Laser and SEM evaluation of residual microislands of calculus. J. Periodontol. 2025, 96, 268–278. [Google Scholar] [CrossRef]
- Harrel, S.K.; Cobb, C.M. Calculus: A risk factor for failed periodontal therapy. J. Am. Dent. Assoc. 2024, 155, 470–472. [Google Scholar] [CrossRef] [PubMed]
- Cobb, C.M.; Harrel, S.K.; Zhao, D.; Spencer, P. The effect of EDTA gel on residual subgingival calculus and biofilm: An in vitro pilot study. Dent. J. 2023, 11, 22. [Google Scholar] [CrossRef]
- Harrel, S.K.; Wilson, T.G.; Tunnell, J.C.; Stenberg, W.V. Laser identification of residual micro-islands of calculus and their removal with chelation. J. Periodontol. 2020, 91, 1562–1568. [Google Scholar] [CrossRef]
- Harrel, S.K.; Cobb, C.M.; Rethman, M.P.; Sheldon, L.N.; Sottosanti, J.S. Calculus as a risk factor for periodontal disease: Narrative review on treatment indications when the response to scaling and root planing is inadequate. Dent. J. 2022, 10, 195. [Google Scholar] [CrossRef]
- Cobb, C.M.; Sottosanti, J.S. A re-evaluation of scaling and root planing. J. Periodontol. 2021, 92, 1370–1378. [Google Scholar] [CrossRef]
- Rohanizadeh, R.; Legeros, R.Z. Ultrastructural study of calculus enamel and calculus-root interfaces. Arch. Oral Biol. 2005, 50, 89–96. [Google Scholar] [CrossRef]
- Aspriello, S.D.; Piemontese, M.; Levrini, L.; Sauro, S. Ultramorphology of the root surface subsequent to hand-ultrasonic simultaneous instrumentation during non-surgical periodontal treatments. An in vitro study. J. Appl. Oral Sci. 2011, 19, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Montenegro Raudales, J.L.; Yoshimura, A.; Ziauddin, S.M.; Takashi, K.; Ozaki, Y.; Takashi, U.; Miyazaki, T.; Latz, E.; Har, Y.a. Dental calculus stimulates interleukin-1beta secretion by activating NLRP3 inflammasome in human and mouse phagocytes. PLoS ONE 2016, 11, e0162865. [Google Scholar] [CrossRef] [PubMed]
- Lebre, F.; Sridharan, R.; Sawkins, M.J.; Kelly, D.J.; O’Brien, F.J.; Lavelle, E.C. The shape and size of hydroxyapatite particles dictate inflammatory responses following implantation. Sci. Rep. 2017, 7, 2922. [Google Scholar] [CrossRef]
- Ziauddin, S.M.; Yoshimura, A.; Montenegro Raudales, J.L.; Ozaki, Y.; Higuchi, K.; Ukai, T.; Kaneko, T.; Miyazaki, T.; Latz, E.; Hara, Y. Crystalline structure of pulverized dental calculus induces cell death in oral epithelial cells. J. Periodont. Res. 2018, 53, 353–361. [Google Scholar] [CrossRef]
- Mae, M.; Alam, M.I.; Yamashita, Y.; Ozaki, Y.; Higuchi, K.; Ziauddin, S.M.; Montenegro Raudales, J.L.; Sakai, E.; Tsukuba, T.; Yoshimura, A. The role of cytokines produced via the NLRP3 inflammasome in mouse macrophages stimulated with dental calculus in osteoclastogenesis. Int. J. Mol. Sci. 2021, 22, 12434. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Y.; Cai, Q.; Li, B.-S.; Qiao, S.-W.; Jiang, J.-Y.; Wang, D.; Du, X.; Meng, W. The effect of Porphyromonas gingivalis Lipopolysaccharide on the pyroptosis of gingival fibroblasts. Inflammation 2021, 44, 846–858. [Google Scholar] [CrossRef]
- Li, Y.; Ling, J.; Jiang, Q. Inflammasomes in alveolar bone loss. Front. Immunol. 2021, 12, 691013. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, T.; Xia, X.; Yen, Y.; Yang, S.; Ai, D.; Qin, H.; Zhou, M.; Song, J. Pyroptosis in periodontitis: From the intricate interaction with apoptosis, NETosis, and necroptosis to the therapeutic prospects. Front. Cell. Infect. Microbiol. 2022, 12, 953277. [Google Scholar] [CrossRef]
- Ziauddin, S.M.; Alam, M.I.; Mae, M.; Oohira, M.; Higuchi, K.; Yamashita, Y.; Ozaki, Y.; Yoshimura, A. Cytotoxic effects of dental calculus particles and freeze-dried Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum on HSC-2 oral epithelial cells and THP-1 macrophages. J. Periodontol. 2022, 93, e92–e103. [Google Scholar] [CrossRef]
- Wilson, T.G.; Harrel, S.K.; Nunn, M.E.; Francis, B.; Webb, K. The relationship between the presence of tooth-borne subgingival deposits and inflammation found with a dental endoscope. J. Periodontol. 2008, 79, 2029–2035. [Google Scholar] [CrossRef]
- Anerud, A.; Löe, H.; Boysen, H. The natural history and clinical course of calculus formation in man. J. Clin. Periodontol. 1991, 18, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Nyman, S.; Westfelt, E.; Sarhead, G.; Karring, T. Role of “diseased” cementum in healing following treatment of periodontal disease. A clinical study. J. Clin. Periodontol. 1988, 15, 464–478. [Google Scholar] [CrossRef]
- Nyman, S.; Sarhed, G.; Ericsson, I.; Gottlow, J.; Karring, T. Role of “disease” root cementum in healing following treatment of periodontal disease. An experimental study in the dog. J. Periodontal Res. 1986, 21, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Corbet, E.F.; Vaughan, A.J.; Kieser, J.B. The periodontally-involved root surface. J. Clin. Periodontol. 1993, 20, 402–410. [Google Scholar] [CrossRef]
- Ramseier, C.A.; Anerud, A.; Dulac, M.; Lulic, M.; Cullinan, M.P.; Seymour, G.J.; Faddy, M.J.; Bürgin, W.; Schätzle, M.; Lang, N.P. Natural history of periodontitis: Disease progression and tooth loss over 40 years. J. Clin. Periodontol. 2017, 44, 1182–1191. [Google Scholar] [CrossRef] [PubMed]
- White, D.J. Dental calculus: Recent insights into occurrence, formation, prevention, removal and oral health effects of supragingival and subgingival deposits. Eur. J. Oral Sci. 2007, 105, 508–522. [Google Scholar] [CrossRef]
- Robertson, P.B. The residual calculus paradox. J. Periodontol. 1990, 61, 65–66. [Google Scholar]
- Abt, E.; Kumar, S.; Weyant, R.J. Periodontal disease and medical maladies. What do we really know? J. Am. Dent. Assoc. 2022, 153, 9–12. [Google Scholar] [CrossRef]
- Chawla, T.N.; Nanda, R.S.; Kapoor, K.K. Dental prophylaxis procedures in control of periodontal disease in Lucknow (rural) India. J. Periodontol. 1975, 46, 498–503. [Google Scholar] [CrossRef]
- Rabbani, G.M.; Ash, M.M., Jr.; Caffesse, R.G. Effectiveness of subgingival scaling and root planing in calculus removal. J. Periodontol. 1981, 52, 119–123. [Google Scholar] [CrossRef]
- Sculean, A.; Berakdar, M.; Willerhausen, B.; Arweiler, N.B.; Becker, J.; Schwarz, F. Effect of EDTA root conditioning on the healing of intrabony defects treated with an enamel matrix protein derivative. J. Periodontol. 2006, 77, 1167–1172. [Google Scholar] [CrossRef] [PubMed]
- Geisinger, M.L.; Mealey, B.L.; Schoolfield, J.; Mellonig, J.T. The effectiveness of subgingival scaling and root planing: An evaluation of therapy with and without the use of the periodontal endoscope. J. Periodontol. 2007, 78, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Roberts-Harry, E.A.; Clerehugh, V. Subgingival calculus: Where are we now? A comparative review. J. Dent. 2000, 28, 93–102. [Google Scholar] [CrossRef]
- Akcali, A.; Lang, N.P. Dental calculus: The calcified biofilm and its role in disease development. Periodontol. 2000 2018, 76, 109–115. [Google Scholar] [CrossRef]
- Qin, W.; Wang, C.-Y.; Ma, Y.-X.; Shen, M.-J.; Li, J.; Jiao, K.; Tay, F.R.; Niu, L.-N. Microbe-mediated extracellular and intracellular mineralization: Environmental, industrial, and biotechnological applications. Adv. Mater. 2020, 32, 1907833. [Google Scholar] [CrossRef]
- Schultze-Lam, S.; Fortin, D.; Davis, B.S.; Beveridge, T.J. Mineralization of bacterial surfaces. Chem. Geol. 1996, 132, 171–181. [Google Scholar] [CrossRef]
- Yoshikuni, Y.; Iijima, M.; Takahaski, G.; Okumura, T.; Kogure, T.; Suzuki, M. Effect of phosphoproteins on intracellular calcification of bacteria. Eur. J. Oral Sci. 2023, 131, e12929. [Google Scholar] [CrossRef]
- Sutterwala, F.S.; Haasken, S.; Cassel, S.L. Mechanism of NLRP3 inflammasome activation. Ann. N. Y. Acad. Sci. 2014, 1319, 82–95. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, A.S.; Guarda, G.; Riteau, N.; Tschopp, J. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc. Natl. Acad. Sci. USA 2010, 107, 19449–19454. [Google Scholar] [CrossRef]
- Latz, E.; Xiao, T.S.; Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 2013, 13, 397–411. [Google Scholar] [CrossRef]
- Oh, H.; Hirano, J.; Takai, H.; Ogata, Y. Effects of initial periodontal therapy on interleukin-1β level in gingival crevicular fluid and clinical periodontal parameters. J. Oral Sci. 2015, 57, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Delaleu, N.; Bickel, M. Interleukin-1β and interleukin-18: Regulation and activity in local inflammation. Periodontol. 2000 2004, 35, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Ono, M.; Kantoh, K.; Ueki, J.; Shimada, A.; Wakabayashi, H.; Matsuta, T.; Sakagami, H.; Kumada, H.; Hamada, N.; Kitajima, M.; et al. Quest for anti-inflammatory substances using IL-1β-stimulated gingival fibroblasts. Vivo 2011, 25, 763–768. [Google Scholar]
- Eskan, M.A.; Benakanakere, M.R.; Rose, B.G.; Zhang, P.; Zhao, J.; Stathopoulou, P.; Fujioka, D.; Kinane, D.F. Interleukin-1β modulates proinflammatory cytokine production in human epithelial cells. Infect. Immun. 2008, 76, 2080–2089. [Google Scholar] [CrossRef]
- Man, S.M.; Karki, R.; Kanneganti, T.D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol. Rev. 2017, 277, 61–75. [Google Scholar] [CrossRef]
- Du, G.; Healy, L.B.; David, L.; Walker, C.; El-Baba, T.J.; Lutomski, C.A.; Goh, B.; Gu, B.; Pi, X.; Devant, P.; et al. ROS-dependent S-palmitoylation activates cleaved and intact gasdermin D. Nature 2024, 630, 437–446. [Google Scholar] [CrossRef]
- Schroeder, H.E.; Lindhe, J. Conversion of stable established gingivitis in the dog into destructive periodontitis. Arch. Oral Biol. 1975, 20, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Stambaugh, R.V.; Dragoo, M.; Smith, D.M.; Carasali, L. The limits of subgingival scaling. Int. J. Periodontics Restor. Dent. 1981, 1, 30–41. [Google Scholar]
- Bumm, C.V.; Schwendicke, F.; Pitchika, V.; Heck, K.; Walter, E.; Ern, C.; Heym, R.; Werner, N.; Folwaczny, M. Effectiveness of nonsurgical re-instrumentation: Tooth-related factors. J. Periodontol. 2024. online ahead of print. [Google Scholar] [CrossRef]
- Badersten, A.; Nilveus, R.; Egelberg, J. Effect of nonsurgical periodontal therapy. I. Moderately advanced periodontitis. J. Clin. Periodontol. 1981, 8, 57–72. [Google Scholar] [CrossRef]
- Badersten, A.; Nilveus, R.; Egelberg, J. Effect of nonsurgical periodontal therapy. II. Severely advanced periodontitis. J. Clin. Periodontol. 1984, 11, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Satheesh, K.; MacNeill, S.R.; Rapley, J.W.; Cobb, C.M. The CEJ: A biofilm and calculus trap. Compend. Contin. Educ. Dent. 2011, 22, 32–37. [Google Scholar]
- Yukna, R.A.; Vastardis, S.; Mayer, E.T. Calculus removal with diamond-coated ultrasonic inserts in vitro. J. Periodntol. 2007, 78, 122–126. [Google Scholar] [CrossRef]
- Wei, Y.; Dang, G.-P.; Ren, Z.-Y.; Wan, M.-C.; Wang, C.-Y.; Li, H.-B.; Zhang, T.; Tay, F.R.; Niu, L. Recent advances in the pathogenesis and prevention strategies of dental calculus. NPJ Biofilms Microbiomes 2024, 10, 56. [Google Scholar] [CrossRef] [PubMed]
- Zipkin, I. The chemical composition of bones, teeth, calculus, saliva and the periodontium of the human. In The Science of Nutrition and Its Application to Clinical Dentistry; Nizel, A.E., Ed.; Saunders: Philadelphia, PA, USA, 1966; pp. 281–295. [Google Scholar]
- Friskopp, J.; Isacsson, C. A quantitative microradiographic study of mineral content of supragingival and subgingival dental calculus. Scand. J. Dent. Res. 1984, 92, 25–32. [Google Scholar] [CrossRef]
- Jin, Y.; Yip, H.-K. Supragingival Calculus: Formation and Control. Curr. Rev. Oral Biol. Med. 2002, 13, 426–441. [Google Scholar] [CrossRef] [PubMed]
- Rowles, S.L. Biophysical studies on dental calculus in relation to periodontal disease. Dent. Pract. Dent. Res. 1964, 15, 2–7. [Google Scholar]
- Tannenbaum, P.J.; Posner, A.S.; Mandel, I.D. Formation of calcium phosphates in saliva and dental plaque. J. Dent. Res. 1976, 55, 997–1000. [Google Scholar] [CrossRef]
- Schroeder, H.E.; Bambauer, H.U. Stages of calcium phosphate crystallization during calculus formation. Arch. Oral Biol. 1966, 11, 1–8. [Google Scholar] [CrossRef]
- Grøn, P.; van Campen, G.J.; Lindstrom, L. Human dental calculus inorganic chemical and crystallographic composition. Arch. Oral Bioi. 1967, 12, 829–837. [Google Scholar] [CrossRef]
- Osuoji, C.I.; Rowles, S.L. Studies on the organic composition of dental calculus and related calculi. Calcif. Tissue Res. 1974, 16, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Stanford, J.W. Analysis of the organic portion of dental calculus. J. Dent. Res. 1966, 45, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Peng, J.; Xu, Y.; Chang, J.; Li, H. Bioglass activated skin tissue engineering constructs for wound healing. ACS Appl. Mater. Interfaces 2016, 8, 703–715. [Google Scholar] [CrossRef]
- Gorustovich, A.A.; Roether, J.A.; Boccaccini, A.R. Effect of bioactive glasses on angiogenesis: A review of in vitro and in vivo evidence. Tissue Eng. 2010, 16, 199–207. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Nandi, S.K.; Kundu, B.; Datta, S.; De, D.K.; Roy, S.K.; Basu, D. In vivo response of porous hydroxyapatite and beta-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds. J. Biomed. Mater. Res. 2008, 86, 217–227. [Google Scholar] [CrossRef]
- Malakpour-Permlid, A.; Oredsson, S. Two-dimensional cell culturing on glass and plastic: The past, the present, and the future. In 3D Lung Models for Regenerating Lung Tissue; Westergren-Thorsson, G., Enes, S.R., Eds.; Academic Press (Elsevier): New York, NY, USA, 2022; pp. 21–35. [Google Scholar]
- Jansen, J.A.; de Wijn, J.R.; Wolters-Lutgerhorst, J.M.; van Mullem, P.J. Ultrastructural study of epithelial cell attachment to implant materials. J. Dent. Res. 1985, 64, 891–896. [Google Scholar] [CrossRef]
- Bartle, E.I.; Rao, T.C.; Urner, T.M.; Mattheyes, A.L. Bridging the gap: Super-resolution microscopy of epithelial cell junctions. Tissue Barriers 2018, 6, e1404189. [Google Scholar] [CrossRef]
- Listgarten, M.A.; Ellegaard, B. Electron microscopic evidence of a cellular attachment between junctional epithelium and dental calculus. J. Periodontal. Res. 1973, 8, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Bosshardt, D.D.; Brodbeck, U.R.; Rathe, F.; Stumpf, T.; Imber, J.-C.; Weigl, P.; Weigl, P. Evidence of re-osseointegration after electrolytic cleaning and regenerative therapy of peri-implantitis in humans: A case report with four implants. Clin. Oral Investig. 2022, 26, 3735–3746. [Google Scholar] [CrossRef]
- Bercy, P.; Frank, R.M. Scanning electron microscopy of dental plaque and tartar on the surface of human cementum. J. Biol. Buccale 1980, 8, 299–313. [Google Scholar]
- Wang, S.; Yang, L.; Bai, G.; Gu, Y.; Fan, Q.; Guan, X.; Yuan, J.; Liu, J. A preliminary study on calcifying nanoparticles in dental plaque: Isolation, characterization, and potential mineralization mechanism. Clin. Exp. Dent. Res. 2024, 10, e885. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.M.; Tian, F.; Jiang, X.Q.; Li, J.; Xu, C.; Guo, X.K.; Zhang, F.Q. Evidence for calcifying nanoparticles in gingival crevicular fluid and dental calculus in periodontitis. J. Periodontol. 2009, 80, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Sakai, Y.; Nemoto, E.; Kanaya, S.; Shimonishi, M.; Shimauchi, H. Calcium phosphate particles induce interleukin-8 expression in a human gingival epithelial cell line via the nuclear factor-ĸB signaling pathway. J. Periodontol. 2014, 85, 1464–1473. [Google Scholar] [CrossRef] [PubMed]
- Hajishengallis, G. The inflammophilic character of the periodontitis associated microbiota. Mol. Oral Microbiol. 2014, 29, 248–257. [Google Scholar] [CrossRef]
- Bartold, P.M.; Van Dyke, T.E. Periodontitis: A host-mediated disruption of microbial homeostasis. Unlearning learned concepts. Periodontol. 2000 2013, 62, 203–217. [Google Scholar] [CrossRef]
- Cekici, A.; Kantarci, A.; Hasturk, H.; Van Dyke, T.E. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol. 2000 2014, 64, 57–80. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harrel, S.K.; Yoshimura, A.; Cobb, C.M. The Reevaluation of Subgingival Calculus: A Narrative Review. Dent. J. 2025, 13, 257. https://doi.org/10.3390/dj13060257
Harrel SK, Yoshimura A, Cobb CM. The Reevaluation of Subgingival Calculus: A Narrative Review. Dentistry Journal. 2025; 13(6):257. https://doi.org/10.3390/dj13060257
Chicago/Turabian StyleHarrel, Stephen K., Atsutoshi Yoshimura, and Charles M. Cobb. 2025. "The Reevaluation of Subgingival Calculus: A Narrative Review" Dentistry Journal 13, no. 6: 257. https://doi.org/10.3390/dj13060257
APA StyleHarrel, S. K., Yoshimura, A., & Cobb, C. M. (2025). The Reevaluation of Subgingival Calculus: A Narrative Review. Dentistry Journal, 13(6), 257. https://doi.org/10.3390/dj13060257