Modified Glass Ionomer Cement with “Remove on Demand” Properties: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Smart Capsules and Incorporation within the Cement
2.2. Mixing
2.3. Fabrication of Test Blocks
2.4. Compressive Test
2.5. SEM Observation
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gervais, M.J.; Wilson, P.R. A rationale for retrievability of fixed, implant-supported prostheses: A complication-based analysis. Int. J. Prosthodont. 2007, 20, 13–24. [Google Scholar] [PubMed]
- Harel, N.; Livne, S.; Piek, D.; Marku-Cohen, S.; Ormianer, Z. Current status of implant-abutment—Part 1: Abutments for cemented versus screw retained restorations. Refuat Hapeh Vehashinayim (1993) 2012, 29, 19–25. [Google Scholar]
- Hebel, K.S.; Gajjar, R.C. Cement-retained versus screw-retained implant restorations: Achieving optimal occlusion and esthetics in implant dentistry. J. Prosthet. Dent. 1997, 77, 28–35. [Google Scholar] [CrossRef]
- Lee, A.; Okayasu, K.; Wang, H.L. Screw- versus cement-retained implant restorations: Current concepts. Implant Dent. 2010, 19, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Misch, C.E. Screw-retained versus cement-retained implant-supported prostheses. Pract. Periodontics Aesthetic Dent. 1995, 7, 15–18. [Google Scholar]
- Ma, S.; Fenton, A. Screw- versus cement-retained implant prostheses: A systematic review of prosthodontic maintenance and complications. Int. J. Prosthodont. 2015, 28, 127–145. [Google Scholar] [CrossRef] [PubMed]
- Michalakis, K.X.; Hirayama, H.; Garefis, P.D. Cement-retained versus screw-retained implant restorations: A critical review. Int. J. Oral Maxillofac. Implants 2003, 18, 719–728. [Google Scholar] [PubMed]
- Sherif, S.; Susarla, H.K.; Kapos, T.; Munoz, D.; Chang, B.M.; Wright, R.F. A systematic review of screw- versus cement-retained implant-supported fixed restorations. J. Prosthodont. 2014, 23, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Shadid, R.; Sadaqa, N. A comparison between screw- and cement-retained implant prostheses. A literature review. J. Oral Implantol. 2012, 38, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Wittneben, J.G.; Millen, C.; Bragger, U. Clinical performance of screw- versus cement-retained fixed implant-supported reconstructions—A systematic review. Int. J. Oral Maxillofac. Implants 2014, 29, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Jung, R.E.; Zembic, A.; Pjetursson, B.E.; Zwahlen, M.; Thoma, D.S. Systematic review of the survival rate and the incidence of biological, technical, and aesthetic complications of single crowns on implants reported in longitudinal studies with a mean follow-up of 5 years. Clin. Oral Implants Res. 2012, 23 (Suppl. S6), 2–21. [Google Scholar] [CrossRef] [PubMed]
- Muddugangadhar, B.C.; Amarnath, G.S.; Sonika, R.; Chheda, P.S.; Garg, A. Meta-Analysis of Failure and Survival Rate of Implant-Supported Single Crowns, Fixed Partial Denture, and Implant Tooth-Supported Prostheses. J. Int. Oral Health 2015, 7, 11–17. [Google Scholar] [PubMed]
- Pjetursson, B.E.; Asgeirsson, A.G.; Zwahlen, M.; Sailer, I. Improvements in implant dentistry over the last decade: Comparison of survival and complication rates in older and newer publications. Int. J. Oral Maxillofac. Implants 2014, 29, 308–324. [Google Scholar] [CrossRef] [PubMed]
- Sailer, I.; Muhlemann, S.; Zwahlen, M.; Hammerle, C.H.; Schneider, D. Cemented and screw-retained implant reconstructions: A systematic review of the survival and complication rates. Clin. Oral Implants Res. 2012, 23 (Suppl. S6), 163–201. [Google Scholar] [CrossRef] [PubMed]
- Salinas, T.; Eckert, S. Implant-supported single crowns predictably survive to five years with limited complications. J. Evid. Based Dent. Pract. 2012, 12, 213–214. [Google Scholar] [CrossRef] [PubMed]
- Farzin, M.; Torabi, K.; Ahangari, A.H.; Derafshi, R. Effect of abutment modification and cement type on retention of cement-retained implant supported crowns. J. Dent. 2014, 11, 256–262. [Google Scholar]
- Mansour, A.; Ercoli, C.; Graser, G.; Tallents, R.; Moss, M. Comparative evaluation of casting retention using the ITI solid abutment with six cements. Clin. Oral Implants Res. 2002, 13, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Michalakis, K.X.; Pissiotis, A.L.; Hirayama, H. Cement failure loads of 4 provisional luting agents used for the cementation of implant-supported fixed partial dentures. Int. J. Oral Maxillofac. Implants 2000, 15, 545–549. [Google Scholar] [PubMed]
- Squier, R.S.; Agar, J.R.; Duncan, J.P.; Taylor, T.D. Retentiveness of dental cements used with metallic implant components. Int. J. Oral Maxillofac. Implants 2001, 16, 793–798. [Google Scholar] [PubMed]
- Garcia-Contreras, R.; Scougall-Vilchis, R.J.; Contreras-Bulnes, R.; Sakagami, H.; Morales-Luckie, R.A.; Nakajama, H. Mechanical, antibacterial and bond strength properties of nano-titanium-enriched glass ionomer cement. J. Appl. Oral Sci. 2015, 23, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Barandehfard, F.; Rad, M.K.; Hosseinnia, A.; Khoshroo, K.; Tahriri, M.; Jazayeri, H.E.; Moharamzadeh, K.; Tayebi, L. The addition of synthesized hydroxyapatite and fluorapatite nanoparticles to a glass-ionomer cement for dental restoration and its effects on mechanical properties. Ceram. Int. 2016, 42, 17866–17875. [Google Scholar] [CrossRef]
- Besinis, A.; De Peralta, T.; Tredwin, C.J.; Handy, R.D. Review of nanomaterials in dentistry: Interactions with the oral microenvironment, clinical applications, hazards, and benefits. ACS Nano 2015, 9, 2255–2289. [Google Scholar] [CrossRef] [PubMed]
- Tian, K.V.; Yang, B.; Yue, Y.; Bowron, D.T.; Mayers, J.; Donnan, R.S.; Dobó-Nagy, C.; Nicholson, J.W.; Fang, D.C.; Greer, A.L.; et al. Atomic and vibrational origins of mechanical toughness in bioactive cement during setting. Nat. Commun. 2015, 6, 8631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breeding, L.C.; Dixon, D.L.; Bogacki, M.T.; Tietge, J.D. Use of luting agents with an implant system: Part I. J. Prosthet. Dent. 1992, 68, 737–741. [Google Scholar] [CrossRef]
- Heinemann, F.; Mundt, T.; Biffar, R. Retrospective evaluation of temporary cemented, tooth and implant supported fixed partial dentures. J. Craniomaxillofac. Surg. 2006, 34 (Suppl. S2), 86–90. [Google Scholar] [CrossRef]
- Wolfart, M.; Wolfart, S.; Kern, M. Retention forces and seating discrepancies of implant-retained castings after cementation. Int. J. Oral Maxillofac. Implants 2006, 21, 519–525. [Google Scholar] [PubMed]
- Bresciano, M.; Schierano, G.; Manzella, C.; Screti, A.; Bignardi, C.; Preti, G. Retention of luting agents on implant abutments of different height and taper. Clin. Oral Implants Res. 2005, 16, 594–598. [Google Scholar] [CrossRef] [PubMed]
- Chee, W.W.; Torbati, A.; Albouy, J.P. Retrievable cemented implant restorations. J. Prosthodont. 1998, 7, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Clausen, G.F. The lingual locking screw for implant-retained restorations—Aesthetics and retrievability. Aust. Prosthodont. J. 1995, 9, 17–20. [Google Scholar] [PubMed]
- Doerr, J. Simplified technique for retrieving cemented implant restorations. J. Prosthet. Dent. 2002, 88, 352–353. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, G.; Ulpenich, A.; Zhu, X.; Möller, M.; Pich, A. Microgel-Based Adaptive Hybrid Capsules with Tunable Shell Permeability. Chem. Mater. 2014, 26, 5882–5891. [Google Scholar] [CrossRef]
- Mehl, C.; Harder, S.; Wolfart, M.; Kern, M.; Wolfart, S. Retrievability of implant-retained crowns following cementation. Clin. Oral Implants Res. 2008, 19, 1304–1311. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, G.; Wang, J.; Bruster, B.; Zhu, X.; Moller, M.; Pich, A. Degradable microgels synthesized using reactive polyvinylalkoxysiloxanes as crosslinkers. Soft Matter 2013, 9, 5380–5390. [Google Scholar] [CrossRef]
- Brackett, W.W.; Vickery, J.M. The influence of mixing temperature and powder/liquid ratio on the film thickness of three glass-ionomer cements. Int. J. Prosthodont. 1994, 7, 13–16. [Google Scholar] [PubMed]
- Fleming, G.J.; Farooq, A.A.; Barralet, J.E. Influence of powder/liquid mixing ratio on the performance of a restorative glass-ionomer dental cement. Biomaterials 2003, 24, 4173–4179. [Google Scholar] [CrossRef]
- Nomoto, R.; Komoriyama, M.; McCabe, J.F.; Hirano, S. Effect of mixing method on the porosity of encapsulated glass ionomer cement. Dent. Mater. 2004, 20, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Nomoto, R.; McCabe, J.F. Effect of mixing methods on the compressive strength of glass ionomer cements. J. Dent. 2001, 29, 205–210. [Google Scholar] [CrossRef]
- Barry, T.I.; Clinton, D.J.; Wilson, A.D. The structure of a glass-ionomer cement and its relationship to the setting process. J. Dent. Res. 1979, 58, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Brune, D.; Smith, D. Microstructure and strength properties of silicate and glass ionomer cements. Acta Odontol. Scand. 1982, 40, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.W. Chemistry of glass-ionomer cements: A review. Biomaterials 1998, 19, 485–494. [Google Scholar] [CrossRef]
- Kuter, B.; Eden, E.; Yildiz, H. The effect of heat on the mechanical properties of glass ionomer cements. Eur. J. Paediatr. Dent. 2013, 14, 90–94. [Google Scholar] [PubMed]
- Rafeek, R.N. The effects of heat treatment on selected properties of a conventional and a resin-modified glass ionomer cement. J. Mater. Sci. Mater. Med. 2008, 19, 1913–1920. [Google Scholar] [CrossRef] [PubMed]
- Kleverlaan, C.J.; van Duinen, R.N.; Feilzer, A.J. Mechanical properties of glass ionomer cements affected by curing methods. Dent. Mater. 2004, 20, 45–50. [Google Scholar] [CrossRef]
- Lee, H.-S.; Carstens, E.; O’Mahony, M. Drinking hot coffee. Why doesn’t it burn the mouth? J. Sens. Stud. 2003, 18, 19–32. [Google Scholar] [CrossRef]
Group | Temperature | Mean (MPa) ± Standard Deviation | Max. | Min. | Median | 25th Percentile | 75th Percentile |
---|---|---|---|---|---|---|---|
Control | 37 °C | 96.8 ± 11.8 | 115.9 | 78.4 | 101.7 | 84.7 | 103.3 |
50 °C | 94.3 ± 5.7 | 101.7 | 82.9 | 93.2 | 91.5 | 99.5 | |
60 °C | 72.5 ± 5.6 | 80 | 61.1 | 72.2 | 69.6 | 77.8 | |
Test | 37 °C | 64.8 ± 5.4 | 75.7 | 59.8 | 63.8 | 59.9 | 69.2 |
45 °C | 62.5 ± 2.8 | 70.6 | 39.7 | 66.9 | 59.1 | 67.2 | |
50 °C | 47.1 ± 5.4 | 53.5 | 35.2 | 47.3 | 44.7 | 51.6 | |
60 °C | 33.4 ± 3.6 | 41.9 | 29.9 | 36.9 | 33.0 | 38.7 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bishti, S.; Tuna, T.; Agrawal, G.; Pich, A.; Wolfart, S. Modified Glass Ionomer Cement with “Remove on Demand” Properties: An In Vitro Study. Dent. J. 2017, 5, 9. https://doi.org/10.3390/dj5010009
Bishti S, Tuna T, Agrawal G, Pich A, Wolfart S. Modified Glass Ionomer Cement with “Remove on Demand” Properties: An In Vitro Study. Dentistry Journal. 2017; 5(1):9. https://doi.org/10.3390/dj5010009
Chicago/Turabian StyleBishti, Shaza, Taskin Tuna, Garima Agrawal, Andrij Pich, and Stefan Wolfart. 2017. "Modified Glass Ionomer Cement with “Remove on Demand” Properties: An In Vitro Study" Dentistry Journal 5, no. 1: 9. https://doi.org/10.3390/dj5010009
APA StyleBishti, S., Tuna, T., Agrawal, G., Pich, A., & Wolfart, S. (2017). Modified Glass Ionomer Cement with “Remove on Demand” Properties: An In Vitro Study. Dentistry Journal, 5(1), 9. https://doi.org/10.3390/dj5010009