Bacteriophages in Dentistry—State of the Art and Perspectives
Abstract
:1. Introduction
2. Bacteriophages: Mode of Action and Types
- Head: where the capsid contains the double-strand DNA, together with internal proteins.
- Neck: connects head and tail.
- Tail: tubular structure that allows passage of DNA when in contact with bacterial surface.
- Tail fibers: proteins that attach to bacterial surface.
- End plate: contains pins that penetrate the membrane to allow phage DNA release into the host [11].
3. Bacteriophages and Oral Health
- Actinomyces bacteriophages: They probably use surface structures that mediate the physical contact with streptococci as receptors. The interaction between streptococci and Actinomyces contributes to biofilm development [18]. Therefore, blocking co-aggregation with bacteriophages may reduce biofilm formation without eliminating health-associated Actinomyces, which may be used to control plaque development.
- Aggregatibacter bacteriophages: Aggregatibacter is implicated in localized aggressive periodontitis [19]. In vitro studies suggest that Aggregatibacter bacteriophages can transfer antibiotic resistance cassettes [20] and potentially increase release of leukotoxin [21]. The clinical impact of these findings remains uncertain.
- Enterococcus bacteriophages: Lysogeny has been observed in E. faecalis strains of oral origin [22]. Enterococci, occasionally involved in oral infections, may be controlled with a wide range of available bacteriophages, which may be especially helpful in cases of persistent endodontic lesions.
- Streptococcus bacteriophages: A diverse group of almost fifty bacteriophages of various morphotypes and both lifestyles may infect S. mitis, S. mutans, S. oralis, S. salivarius and S. sobrinus [23,24]. As streptococci are the primary colonizers in the formation of dental plaque, their use might prevent caries and periodontal disease.
- Fusobacterium bacteriophages: Fusobacterium nucleatum bacteriophages have been isolated from saliva samples [25]. However, lysis was slow.
- Porphyromonas, Prevotella and Tannerella: To date, only Prevotella bacteriophages have been detected in vivo [26]. More studies about these important anaerobic periodontopathogens should be conducted to define their possible clinical use.
- Treponema: To date, only one T. denticola bacteriophage has been detected [27].
- Veillonella: Only functional bacteriophages targeting Veillonella spp. have been described [28].
- Lactobacillus: Phages for the caries-associated Lactobacillus casei and six additional Lactobacillus species have been isolated [29].
- Lysins: Responsible for the safe, stable and easy production of phage enzymes that digest bacterial cell walls to liberate assembled phage particles. Recombinant lysins are often species-specific, and most are active against gram-positive bacteria. Lipopolysaccharides (LPS) protect gram-negative bacteria from lysins. Some lysins have been successfully tested against A. naeslundii and a broad range of Streptococcus species [30,31,32] and are, therefore, a novel type of antimicrobials that may be used to target oral bacteria.
4. Possible Uses of Bacteriophages in Dentistry
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Twort, F.W. An investigation on the nature of ultra-microscopic viruses. Lancet 1915, 186, 1241–1243. [Google Scholar] [CrossRef]
- D’Herelle, F. Surun microbe invisible antagoniste des bacilles dysenteriques. Les Comptes Rendus del’Académie Des Sciences 1917, 165, 373–375. [Google Scholar]
- Abedon, S.T. Phages. In Bacteriophages in Health and Disease, 1st ed.; Hyman, P., Abedon, S., Eds.; Advances in Molecular and Cellular Microbiology; CAB International: Cambridge, MA, USA, 2012; pp. 1–5. [Google Scholar]
- Nicastro, J.; Wong, S.; Khazaei, Z.; Lam, P.; Blay, J.; Slavcev, R.A. Bacteriophage Applications—Historical Perspective and Future Potential; Springer: Cham, Switzerland, 2016; 80p, ISBN 978-3-319-45789. [Google Scholar]
- Georgadze, I.A. Fifty years of the Tbilisi Scientific-Research Institute of Vaccine and Sera of the Ministry of Health of the USSR. In Selected Articles of the Jubilee Dedicated to 50th Anniversary of the Tbilisi Institute of Vaccine and Sera; TIVS: Tbilisi, GA, USA, 1974. [Google Scholar]
- Chanishvili, C. Phage Therapy—History from Twort and d’Herelle Through Soviet Experience to Current Approaches. In Advances in Virus Research—Part B: Bacteriophages; Łobocka, M., Szybalski, W., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 3–40. [Google Scholar]
- Shan, J.; Ramachandran, A.; Thanki, A.M.; Vukusic, F.B.I.; Barylski, J.; Clokie, M.R.J. Bacteriophages are more virulent to bacteria with human cells than they are in bacterial culture; insights from HT-29 cells. Sci. Rep. 2018, 8, 5091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abedon, S.T.; Kuhl, S.J.; Blasdel, B.G.; Kutter, E.M. Phage treatment of human infections. Bacteriophage 2011, 1, 66–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Resch, G.; Meyer, J. Bacteriophages, a new perspective in the treatment of infectious diseases? Schweizer Monatsschrift fur Zahnmedizin 2002, 112, 643–645. [Google Scholar] [PubMed]
- Shlezinger, M.; Khalifa, L.; Houri-Haddad, Y.; Coppenhagen-Glazer, S.; Resch, G.; Que, Y.-A.; Beyth, S.; Dorfman, E.; Hazan, R.; Beyth, N. Phage Therapy: A New Horizon in the Antibacterial Treatment of Oral Pathogens. Curr. Top. Med. Chem. 2017, 17, 1199–1211. [Google Scholar] [CrossRef] [PubMed]
- Novik, G.; Ladutska, A.; Rakhuba, D. Bacteriophage taxonomy and classification. In Antimicrobial Research: Novel Bioknowledge and Educational Programs; Microbiology Book Series Nº 6; Formatex: Badajoz, Spain, 2017; pp. 251–259. [Google Scholar]
- Heilmann, S.; Sneppen, K.; Krishna, S. Coexistence of phage and bacteria on the boundary of self-organized refuges. Proc. Natl. Acad. Sci. USA 2012, 109, 12828–12833. [Google Scholar] [CrossRef] [Green Version]
- Pires, D.P.; Oliveira, H.; Melo, L.D.; Sillankorva, S.; Azeredo, J. Bacteriophage-encoded depolymerases: Their diversity and biotechnological applications. Appl. Microbiol. Biotechnol. 2016, 100, 2141–2151. [Google Scholar] [CrossRef]
- Edlund, A.; Santiago-Rodriguez, T.M.; Boehm, T.K.; Pride, D.T. Bacteriophage and their potential roles in the human oral cavity. J. Oral Microbiol. 2015, 7, 27423. [Google Scholar] [CrossRef] [Green Version]
- Naidu, M.; Robles-Sikisaka, R.; Abeles, S.R.; Boehm, T.K.; Pride, D.T. Characterization of bacteriophage communities and CRISPR profiles from dental plaque. BMC Microbiol. 2014, 14, 175. [Google Scholar] [CrossRef]
- Pride, D.T.; Salzman, J.; Haynes, M.; Rohwer, F.; Davis-Long, C.; White, R.A., 3rd; Loomer, P.; Armitage, G.C.; Relman, D.A. Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. ISME J. 2012, 6, 915–926. [Google Scholar] [CrossRef] [PubMed]
- Szafranski, S.P.; Winkel, A.; Stiesch, M. The use of bacteriophages to biocontrol oral biofilms. J. Biotechnol. 2017, 250, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Kolenbrander, P.E.; Palmer, R.J., Jr.; Periasamy, S.; Jakubovics, N.S. Oral multispecies biofilm development and the key role of cell–cell distance. Nat. Rev. Microbiol. 2010, 8, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Henderson, B.; Ward, J.M.; Ready, D. Aggregatibacter (Actinobacillus) actinomycetemcomitans: A triple A* periodontopathogen? Periodontology 2000 2010, 54, 78–105. [Google Scholar] [CrossRef] [PubMed]
- Willi, K.; Sandmeier, H.; Kulik, E.M.; Meyer, J. Transduction of antibiotic resistance markers among Actinobacillus actinomycetemcomitans strains by temperate bacteriophages Aa phi 23. Cell. Mol. Life Sci. 1997, 53, 904–910. [Google Scholar] [CrossRef]
- Stevens, R.H.; de Moura Martins Lobo Dos Santos, C.; Zuanazzi, D.; de Accioly Mattos, M.B.; Ferreira, D.F.; Kachlany, S.C.; Tinoco, E.M. Prophage induction in lysogenic Aggregatibacter actinomycetemcomitans cells co-cultured with human gingival fibroblasts, and its effect on leukotoxin release. Microbiol. Pathog. 2013, 54, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Paisano, A.F.B.; Spiera, S.C.; Bombana, A.C. In vitro antimicrobial effect of bacteriophages on human dentin infected with Enterococcus faecalis ATCC 29212. Oral Microbiol. Immunol. 2004, 19, 327–330. [Google Scholar] [CrossRef] [PubMed]
- Armau, E.; Bousque, J.L.; Boue, D.; Tiraby, G. Isolation of lytic bacteriophages for Streptococcus mutans and Streptococcus sobrinus. J. Dent. Res. 1988, 67 (Suppl. 1), 121 (Abstr. 169). [Google Scholar]
- Delisle, A. Bacteriophage-Encoded Enzymes for the Treatment and Prevention of Dental Caries and Periodontal Disease. U.S. Patent 20040234461 A1, 25 November 2004. [Google Scholar]
- Machuca, P.; Daille, L.; Vines, E.; Berrocal, L.; Bittner, M. Isolation of a novel bacteriophage specific for the periodontal pathogen Fusobacterium nucleatum. Appl. Environ. Microbiol. 2010, 76, 7243–7250. [Google Scholar] [CrossRef]
- Pride, D.T.; Salzman, J.; Relman, D.A. Comparisons of clustered regularly interspaced short palindromic repeats and viromes in human saliva reveal bacterial adaptations to salivary viruses. Environ. Microbiol. 2012, 14, 2564–2576. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, H.L.; Dashper, S.G.; Catmull, D.V.; Paolini, R.A.; Cleal, S.M.; Slakeski, N.; Tan, K.H.; Reynolds, E.C. Treponema denticola biofilm-induced expression of a bacteriophage, toxin-antitoxin systems and transposases. Microbiology 2010, 156, 774–788. [Google Scholar] [CrossRef] [PubMed]
- Totsuka, M. Studies on veillonella phages isolated from washings of human oral cavity. Bull. Tokyo Med. Dent. Univ. 1976, 23, 261–273. [Google Scholar] [PubMed]
- Meyers, C.E.; Walter, E.L.; Green, L.B. Isolation of a bacteriophage specific for a Lactobacillus casei from human oral material. J. Dent. Res. 1958, 37, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Delisle, A.L.; Barcak, G.J.; Guo, M. Isolation and expression of the lysis genes of Actinomyces naeslundii phage Av-1. Appl. Environ. Microbiol. 2006, 72, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Van der Ploeg, J.R. Genome sequence of Streptococcus mutans bacteriophage M102. FEMS Microbiol. Lett. 2007, 275, 130–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Ploeg, J.R. Genome sequence of the temperate bacteriophage PH10 from Streptococcus oralis. Virus Genes 2010, 41, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Tinoco, J.M.; Buttaro, B.; Zhang, H.; Liss, N.; Sassone, L.; Stevens, R. Effect of a genetically engineered bacteriophage on Enterococcus faecalis biofilms. Arch. Oral Biol. 2016, 71, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Santiago-Rodriguez, T.M.; Naidu, M.; Abeles, S.R.; Bopehm, T.K.; Ly, M.; Pride, D.T. Transcriptome analysis of bacteriophage communities in periodontal health and disease. BMC Genom. 2015, 16, 549. [Google Scholar] [CrossRef]
- Hashimoto, K.; Yoshinari, M.; Matsuzaka, K.; Shiba, K.; Inoue, T. Identification of peptide motif that binds to the surface of zirconia. Dent. Mater. J. 2011, 30, 935–940. [Google Scholar] [CrossRef] [Green Version]
- Li, G.-J.; Jiang, D.-Y.; Zong, X.; Xu, X. Keratinocyte growth factor phage model peptides can promote human oral mucosal epithelial cell proliferation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 116, e92–e97. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steier, L.; De Oliveira, S.D.; De Figueiredo, J.A.P. Bacteriophages in Dentistry—State of the Art and Perspectives. Dent. J. 2019, 7, 6. https://doi.org/10.3390/dj7010006
Steier L, De Oliveira SD, De Figueiredo JAP. Bacteriophages in Dentistry—State of the Art and Perspectives. Dentistry Journal. 2019; 7(1):6. https://doi.org/10.3390/dj7010006
Chicago/Turabian StyleSteier, Liviu, Silvia Dias De Oliveira, and José Antonio Poli De Figueiredo. 2019. "Bacteriophages in Dentistry—State of the Art and Perspectives" Dentistry Journal 7, no. 1: 6. https://doi.org/10.3390/dj7010006
APA StyleSteier, L., De Oliveira, S. D., & De Figueiredo, J. A. P. (2019). Bacteriophages in Dentistry—State of the Art and Perspectives. Dentistry Journal, 7(1), 6. https://doi.org/10.3390/dj7010006