Development and Characterization of a Nutritionally Rich Spray-Dried Honey Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation and Spray Drying
2.2.1. Viscosity
2.2.2. Water Activity
2.2.3. Powder Recovery
2.2.4. Bulk Density
2.2.5. Absolute Density
2.2.6. Porosity
2.2.7. Dispersibility
2.2.8. Solubility
2.2.9. Hygroscopicity
2.2.10. Total Phenolic Content (TPC), Antioxidant Activity (AOA), and Vitamin C Content
2.2.11. Particle Size Distribution
2.2.12. Colour
2.2.13. Glass Transition Temperature (Tg)
2.2.14. X-ray Diffraction (XRD)
2.2.15. FTIR Spectroscopy
2.2.16. Dynamic Rheological Measurement
2.2.17. Microbiological Analysis
2.2.18. Sensory Evaluation
2.3. Statistical Analysis
3. Results and Discussion
3.1. Viscosity
3.2. Water Activity
3.3. Powder Recovery
3.4. Absolute Density
3.5. Porosity
3.6. Solubility
3.7. Dispersibility
3.8. Hygroscopicity
3.9. Particle Size
3.10. Colour
3.11. Total Phenolic Content (TPC), Antioxidant Activity (AOA), and Vitamin C Content
3.12. Glass Transition Temperature (Tg)
3.13. XRD Analysis
3.14. FTIR Spectroscopy
3.15. Rheological Characteristics of Optimized Nutritionally Rich Honey Powders
3.16. Microbiological Analysis
3.17. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nayik, G.A.; Nanda, V. Physico-chemical enzymatic mineral and colour characterization of three different varieties of honeys from Kashmir valley of India with a multivariate approach. Pol. J. Food Nutr. Sci. 2015, 65, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Samborska, K.; Gajek, P.; Kaminska, D.A. Spray drying of honey, the effect of drying aids on powder properties. Pol. J. Food Nutr. Sci. 2015, 65, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Samborska, K.; Langa, E.; Kaminska, D.A.; Witrowa, R.D. The influence of sodium caseinate on the physical properties of spray-dried honey. Int. J. Food Sci. Technol. 2015, 50, 256–262. [Google Scholar] [CrossRef]
- Saavedra, L.M.Z.; Grajales, L.A.; Gonzalez, G.R.; Toxqui, T.A.; Perez, G.S.A.; Abud, A.M.; Ruiz, C.M.A. Glass transition study in model food systems prepared with mixtures of fructose, glucose and sucrose. J. Food Sci. 2012, 77, 118–126. [Google Scholar] [CrossRef]
- Osorio, J.; Monjes, J.; Pinto, M.; Ramirez, C.; Simpson, R.; Vega, O. Effects of spray drying conditions and the addition of surfactants on the foaming properties of a whey protein concentrate. LWT-Food Sci. Technol. 2014, 58, 109–115. [Google Scholar] [CrossRef]
- Tong, Q.; Zhang, X.; Wub, F.; Tong, J.; Zhang, P.; Zhang, J. Effect of honey powder on dough rheology and bread quality. Food Res. Int. 2010, 43, 2284–2288. [Google Scholar] [CrossRef]
- Shi, Q.; Fang, Z.; Bhandari, B. Effect of addition of whey protein isolate on spray-drying behaviour of honey with maltodextrin as a carrier material. Dry. Technol. 2013, 31, 1681–1692. [Google Scholar] [CrossRef] [Green Version]
- Muzaffar, K.; Kumar, P. Effect of soya protein isolate as a complementary drying aid of maltodextrin on spray drying of tamarind pulp. Dry. Technol. 2015, 34, 142–148. [Google Scholar] [CrossRef]
- Popov, V.L.; Heb, M.; Willert, E. Viscoelastic Materials. In Handbook of Contact Mechanics; Springer: Berlin/Heidelberg, Germany, 2019; pp. 213–249. [Google Scholar]
- Cynthia, S.J.; Bosco, J.D.; Bhol, S. Physical and structural properties of spray dried tamarind (Tamarindus indica. L) pulp extract powder with encapsulating hydrocolloids. Int. J. Food Prop. 2015, 18, 1793–1800. [Google Scholar] [CrossRef] [Green Version]
- Suhag, Y.; Nanda, V. Optimization of process parameters to develop nutritionally rich spray dried honey powder with vitamin C content and antioxidant properties. Int. J. Food Sci. Technol. 2015, 50, 1771–1777. [Google Scholar] [CrossRef]
- Jayasundera, M.; Adhikari, B.; Adhikari, R.; Aldred, P. The effect of protein types and low molecular weight surfactants on spray drying of sugar-rich foods. Food Hydrocoll. 2011, 25, 459–469. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, R.V.B.; Borges, S.V.; Botrel, D.A. Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydr. Polym. 2014, 101, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Caparino, O.A.; Tang, J.; Nindo, C.I.; Sablani, S.S.; Powers, J.R.; Fellman, J.K. Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’ var.) powder. J. Food Eng. 2012, 111, 135–148. [Google Scholar] [CrossRef]
- Anjos, O.; Campos, M.G.; Ruiz, P.C.; Antunes, P. Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chem. 2015, 169, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Mao, X.; Li, F.; Zhang, D.; Leng, X.; Ren, F.; Teng, G. The improving effect of spray-drying encapsulation process on the bitter taste and stability of whey protein hydrolysate. Eur. Food Res. Technol. 2012, 235, 91–97. [Google Scholar] [CrossRef]
- Rao, S.A.; Vijay, Y.; Deepthi, T.; Lakshmi, C.S.; Rani, V. Antidiabetic effect of ethanolic extract of leaves of Ocimum sanctum in alloxan induced diabetes in rats. Int. J. Basic Clin. Pharmacol. 2013, 2, 613–616. [Google Scholar]
- Amatroodi, S.A.; Alsahli, M.A.; Almatroudi, A.; Dev, K.; Rafat, S.; Verma, A.K.; Rahmani, A.H. Amla (Emblica officinalis): Role in health management via controlling various biological activities. Gene Rep. 2020, 21, 100820. [Google Scholar] [CrossRef]
- Singh, M.K.; Dwivedi, S.; Yadav, S.S.; Khattri, S. Anti-diabetic effect of Emblica officinalis (Amla) against arsenic induced metabolic disorder in Mice. Ind. J. Clin. Biochem. 2020, 35, 179–187. [Google Scholar] [CrossRef]
- Tonon, R.V.; Brabet, C.; Hubinger, M.D. Anthocyanin stability and antioxidant activity of spray dried acai (Euterpe oleraceaMart.) juice powder produced with different carrier agents. Food Res. Int. 2010, 43, 907–914. [Google Scholar] [CrossRef]
- Chaikham, P.; Prangthip, P. Alteration of antioxidative properties of longan flower-honey after high pressure ultra-sonic and thermal processing. Food Biosci. 2015, 10, 1–7. [Google Scholar] [CrossRef]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of melissopalynology. Bee World 1978, 59, 139–157. [Google Scholar] [CrossRef]
- Goula, A.M.; Adamopoulos, K.G.; Kazakis, N.A. Influence of spray drying conditions on tomato powder properties. Dry. Technol. 2004, 22, 1129–1151. [Google Scholar] [CrossRef]
- Jaya, S.; Das, H. Effect of maltodextrin glycerol monostearate and tricalcium phosphate on vacuum dried mango powder properties. J. Food Eng. 1994, 63, 125–134. [Google Scholar] [CrossRef]
- Cano-Chauca, M.; Stringheta, P.C.; Ramos, A.M.; Cal-Vidal, J. Effect of carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innov. Food Sci. Emerg. Technol. 2005, 6, 420–428. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Corke, H. Production and properties of spray-dried Amaranthus betacyanin pigments. J. Food Sci. 2000, 65, 1248–1252. [Google Scholar] [CrossRef]
- Liu, X.; Cui, C.; Zha, M.; Wang, J.; Luo, W.; Yang, B.; Jiang, Y. Identification of phenolics in the fruit of emblica (Phyllanthus emblica L.) and their antioxidant activities. Food Chem. 2008, 109, 909–915. [Google Scholar] [CrossRef]
- Luo, W.; Zhao, M.; Yang, B.; Shen, G.; Rao, G. Identification of bioactive compounds in Phyllenthus emblica L. fruit and their free radical scavenging activities. Food Chem. 2009, 114, 499–504. [Google Scholar] [CrossRef]
- Nayik, G.A.; Dar, B.N.; Nanda, V. Physico-chemical rheological and sugar profile of different unifloral honeys from Kashmir valley of India. Arab J. Chem. 2015, 12, 3151–3162. [Google Scholar] [CrossRef] [Green Version]
- Daza, L.D.; Fujita, A.; Fávaro-Trindade, C.S.; Rodrigues-Ract, J.N.; Granato, D.; Genovese, M.I. Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food Bioprod. Process. 2016, 97, 20–29. [Google Scholar] [CrossRef]
- Fang, Z.; Bhandari, B. Comparing the efficiency of protein and maltodextrin on spray drying of bayberry juice. Food Res. Int. 2012, 48, 478–483. [Google Scholar] [CrossRef]
- Ferrari, C.C.; Germer, S.P.M.; Alvim, I.D.; Vissotto, F.Z.; Aguirre, J.M. Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. Int. J. Food Sci. Technol. 2012, 47, 1237–1245. [Google Scholar] [CrossRef]
- Zareifard, M.R.; Niakousari, M.; Shokrollahi, Z.; Javadian, S. A feasibility study on the drying of lime juice: The relationship between the key operating parameters of a small laboratory spray dryer and product quality. Food Bioprocess. Technol. 2012, 5, 1896–1906. [Google Scholar] [CrossRef]
- Laokuldilok, T.; Kanha, N. Effects of processing conditions on powder properties of black glutinous rice Oryza sativa L. bran anthocyanins produced by spray drying and freeze drying. LWT-Food Sci. Technol. 2015, 641, 405–411. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Saurel, R.; Chambin, O.; Cases, E.; Voilley, A.P.; Cayot, P. Utilisation of pectin coating to enhance spray dry stability of pea protein-stabilised oil-in-water emulsions. Food Chem. 2010, 122, 447–454. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, W. Characterisation of spray dried soy sauce powders made by adding crystalline carbohydrates to drying carrier. Food Chem. 2015, 168, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, S.; Emam-Djomeh, Z.; Mousavi, M.; Kobarfard, F.; Zbicinski, I. Developing spray-dried powders containing anthocyanins of black raspberry juice encapsulated based on fenugreek gum. Adv. Powder Technol. 2015, 26, 462–469. [Google Scholar] [CrossRef]
- Du, J.; Ge, Z.Z.; Xu, Z.; Zou, B.; Zhang, Y.; Li, C.M. Comparison of the efficiency of five different drying carriers on the spray drying of persimmon pulp powders. Dry. Technol. 2014, 32, 1157–1166. [Google Scholar] [CrossRef]
- Muzaffar, K.; Kumar, P. Parameter optimization for spray drying of tamarind pulp using response surface methodology. Powder Technol. 2015, 279, 179–184. [Google Scholar] [CrossRef]
- Bhusari, S.N.; Muzaffar, K.; Kumar, P. Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technol. 2014, 266, 354–364. [Google Scholar] [CrossRef]
- Flores, F.P.; Singh, R.K.; Kerr, W.L.; Pegg, R.B.; Kong, F. Total phenolics content and antioxidant capacities of microencapsulated blueberry anthocyanins during in vitro digestion. Food Chem. 2014, 153, 272–278. [Google Scholar] [CrossRef]
- Joshi, M.; Adhikari, B.; Aldred, P.; Panozzo, J.F.; Kasapis, S. Physicochemical and functional properties of lentil protein isolates prepared by different drying methods. Food Chem. 2011, 129, 1513–1522. [Google Scholar] [CrossRef]
- Wang, J.; Kliks, M.M.; Jun, S.; Jackson, M.; Qing, X.L. Rapid analysis of glucose, fructose, sucrose, and maltose in honeys from different geographic regions using fourier transform infrared spectroscopy and multivariate analysis. J. Food Sci. 2010, 75, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Witczak, M.; Juszczak, L.; Galkowska, D. Non Newtonian behaviour of heather honey. J. Food Eng. 2011, 104, 532–537. [Google Scholar] [CrossRef]
- Medina-Torres, L.; Calderas, F.; Nunez Ramírez, D.M.; Herrera-Valencia, E.; Bernad Bernad, M.J.; Manero, O. Spray drying egg using either maltodextrin or nopal mucilage as stabilizer agents. J. Food Sci. Technol. 2017, 54, 4427–4435. [Google Scholar] [CrossRef] [PubMed]
- Kiran, P.; Rao, P.S. Rheological and structural characterization of prepared aqueous Aloevera dispersions. Food Res. Int. 2014, 62, 1029–1037. [Google Scholar] [CrossRef]
- Soares, S.; Sousa, A.; Mateus, N.; de Freitas, V. Effect of condensed tannins addition on the astringency of red wines. Chem. Sens. 2012, 37, 191–198. [Google Scholar] [CrossRef] [Green Version]
Rating | Scale |
---|---|
Dislike extremely | 1 |
Dislike very much | 2 |
Dislike moderately | 3 |
Dislike slightly | 4 |
Neither likes nor dislike | 5 |
Like slightly | 6 |
Like moderately | 7 |
Like very much | 8 |
Like extremely | 9 |
Samples | Viscosity (m Pa s) |
---|---|
Honey | 3.48 ± 0.45 d |
MD | 27.32 ± 0.23 b |
GA | 35.56 ± 0.75 a |
WPC | 22.12 ± 0.39 c |
Properties | MD | GA | WPC |
---|---|---|---|
Water activity (aw) | 0.289 ± 0.05 a | 0.242 ± 0.04 b | 0.195 ± 0.06 c |
Powder recovery (%) | 53.44 ± 1.5 c | 59.39 ± 0.9 b | 65.10 ± 1.7 a |
Moisture content (%) | 3.58 ± 0.1 c | 4.36 ± 0.1 b | 4.92 ± 0.2 a |
Bulk density (g/mL) | 0.58 ± 0.07 a | 0.56 ± 0.08 b | 0.50 ± 0.05 c |
Absolute density (g/mL) | 1.80 ± 0.01 a | 1.64 ± 0.02 b | 1.52 ± 0.12 c |
Porosity (%) | 0.684 ± 0.030 a | 0.678 ± 0.040 a | 0.688 ± 0.050 a |
Solubility (%) | 68.14 ± 0.77 c | 75.39 ± 0.70 b | 82.17 ± 0.84 a |
Dispersibility (%) | 67.55 ± 0.04 c | 74.93 ± 0.06 b | 81.47 ± 0.08 a |
Hygroscopicity (%) | 26.39 ± 0.4 a | 25.43 ± 0.3 b | 23.14 ± 0.2 c |
Particle Size (μm) | 20.06 ± 0.04 c | 41.24 ± 0.27 b | 60.45 ± 0.11 a |
Spore Counts (cfu/g) | 3.5 × 10.04 a | 2.4 × 10.04 b | 1.2 × 10.04 c |
Samples | L* | a* | b* | Chroma* | Hue Angle (°) |
---|---|---|---|---|---|
Honey + MD | 35.94 ± 0.18 c | 0.68 ± 0.03 c | 5.82 ± 0.1 d | 5.86 ± 0.10 c | 83.30 ± 0.28 a |
Honey + GA | 34.32 ± 0.51 c | 1.17 ± 0.04 b | 8.36 ± 0.25 c | 8.44 ± 0.25 b | 82.03 ± 0.25 b |
Honey + WPC | 30.74 ± 0.85 d | 1.89 ± 0.07 a | 9.52 ± 0.34 b | 9.52 ± 0.34 a | 78.76 ± 0.15 c |
Honey + MD + extract (aonla + basil) | 45.78 ± 0.32 a | 0.85 ± 0.12 c | 7.93 ± 0.18 c | 7.97 ± 0.17 c | 83.86 ± 0.99 a |
Honey + GA + extract (aonla + basil) | 42.94 ± 0.29 a | 1.52 ± 0.20 b | 9.91 ± 0.14 b | 10.02 ± 0.11 b | 81.23 ± 1.26 b |
Honey + WPC + extract (aonla + basil) | 40.88 ± 0.14 b | 2.17 ± 0.15 a | 11.64 ± 0.06 a | 11.84 ± 0.06 a | 79.41 ± 0.71 c |
Powder Combination | TPC (mg of GAE/100 g) | Vitamin C (mg/100 g) | AOA (%) |
---|---|---|---|
Honey + MD | 42.72 ± 0.33 c | Not detected | 64.63 ± 0.51 c |
Honey + GA | 45.81 ± 0.35 b | Not detected | 66.73 ± 0.77 b |
Honey + WPC | 51.13 ± 0.80 a | Not detected | 72.08 ± 0.57 a |
Honey + MD + Extract (Aonla & Basil) | 58.62 ± 0.62 c | 85.26 ± 0.29 c | 74.85 ± 0.17 c |
Honey + GA + Extract (Aonla & Basil) | 60.99 ± 0.17 b | 87.23 ± 0.47 b | 78.15 ± 0.21 b |
Honey + WPC + Extract (Aonla & Basil) | 63.22 ± 0.63 a | 94.87 ± 0.18 a | 82.73 ± 0.42 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suhag, Y.; Nayik, G.A.; Karabagias, I.K.; Nanda, V. Development and Characterization of a Nutritionally Rich Spray-Dried Honey Powder. Foods 2021, 10, 162. https://doi.org/10.3390/foods10010162
Suhag Y, Nayik GA, Karabagias IK, Nanda V. Development and Characterization of a Nutritionally Rich Spray-Dried Honey Powder. Foods. 2021; 10(1):162. https://doi.org/10.3390/foods10010162
Chicago/Turabian StyleSuhag, Yogita, Gulzar Ahmad Nayik, Ioannis K. Karabagias, and Vikas Nanda. 2021. "Development and Characterization of a Nutritionally Rich Spray-Dried Honey Powder" Foods 10, no. 1: 162. https://doi.org/10.3390/foods10010162
APA StyleSuhag, Y., Nayik, G. A., Karabagias, I. K., & Nanda, V. (2021). Development and Characterization of a Nutritionally Rich Spray-Dried Honey Powder. Foods, 10(1), 162. https://doi.org/10.3390/foods10010162