Development of Antioxidant and Antihypertensive Properties during Growth of Lactobacillus helveticus, Lactobacillus rhamnosus and Lactobacillus reuteri on Cow’s Milk: Fermentation and Peptidomics Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Fermented Milk Samples
2.2. Characterization of Fermented Milk Samples
2.3. Peptide Profile Analysis
3. Results and Discussion
3.1. Growth Performance, Acidification Capability and Proteolytic Activity
3.2. The Development of Antioxidant and Antihypertensive Properties
3.3. Peptide Profile
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nasri, H.; Baradaran, A.; Shirzad, H.; Rafieian-Kopaei, M. New Concepts in Nutraceuticals as Alternative for Pharmaceuticals. Int. J. Prev. Med. 2014, 5, 1487–1499. [Google Scholar] [PubMed]
- Mine, Y.; Li-Chan, E.C.; Jiang, B. Biologically Active Food Proteins and Peptides in Health: An Overview. In Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals; Wiley: Hoboken, NJ, USA, 2010; pp. 3–11. [Google Scholar]
- Chanda, S.; Tiwari, R.K.; Kumar, A.; Singh, K. Nutraceuticals Inspiring the Current Therapy for Lifestyle Diseases. Adv. Pharmacol. Sci. 2019, 2019, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Beltrán-Barrientos, L.; Hernández-Mendoza, A.; Torres-Llanez, M.; González-Córdova, A.; Vallejo-Cordoba, B. Invited review: Fermented milk as antihypertensive functional food. J. Dairy Sci. 2016, 99, 4099–4110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Séverin, S.; Wenshui, X. Milk Biologically Active Components as Nutraceuticals: Review. Crit. Rev. Food Sci. Nutr. 2005, 45, 645–656. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.; Pingitore, E.V.; Mozzi, F.; Saavedra, L.; Villegas, J.M.; Hebert, E. Lactic Acid Bacteria as Cell Factories for the Generation of Bioactive Peptides. Protein Pept. Lett. 2017, 24, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, A.; Vázquez, A. Bioactive peptides: A review. Food Qual. Saf. 2017, 1, 29–46. [Google Scholar] [CrossRef]
- Raveschot, C.; Cudennec, B.; Coutte, F.; Flahaut, C.; Fremont, M.; Drider, D.; Dhulster, P. Production of Bioactive Peptides by Lactobacillus Species: From Gene to Application. Front. Microbiol. 2018, 9, 2354. [Google Scholar] [CrossRef] [Green Version]
- Tagliazucchi, D.; Martini, S.; Solieri, L. Bioprospecting for Bioactive Peptide Production by Lactic Acid Bacteria Isolated from Fermented Dairy Food. Fermentation 2019, 5, 96. [Google Scholar] [CrossRef] [Green Version]
- Liong, M.-T. (Ed.) Beneficial Microorganisms in Food and Nutraceuticals; Springer International Publishing: Cham, Switzerland, 2015; Volume 27. [Google Scholar] [CrossRef] [Green Version]
- Fedorova, T.V.; Vasina, D.V.; Begunova, A.V.; Rozhkova, I.V.; Raskoshnaya, T.A.; Gabrielyan, N.I. Antagonistic Activity of Lactic Acid Bacteria Lactobacillus spp. against Clinical Isolates of Klebsiella pneumoniae. Appl. Biochem. Microbiol. 2018, 54, 277–287. [Google Scholar] [CrossRef]
- Begunova, A.V.; Rozhkova, I.V.; Zvereva, E.A.; Glazunova, O.A.; Fedorova, T.V. Lactic and Propionic Acid Bacteria: The Formation of a Community for the Production of Functional Products with Bifidogenic and Hypotensitive Properties. Appl. Biochem. Microbiol. 2019, 55, 660–669. [Google Scholar] [CrossRef]
- Torkova, A.A.; Ryazantseva, K.A.; Agarkova, E.Y.; Kruchinin, A.G.; Tsentalovich, M.Y.; Fedorova, T.V. Rational design of enzyme compositions for the production of functional hydrolysates of cow milk whey proteins. Appl. Biochem. Microbiol. 2017, 53, 669–679. [Google Scholar] [CrossRef]
- Manguy, J.; Jehl, P.; Dillon, E.T.; Davey, N.E.; Shields, D.C.; Holton, T.A. Peptigram: A web-based application for peptidomics data visualization. J. Proteome Res. 2017, 16, 712–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, S.D.; Beverly, R.L.; Qu, Y.; Dallas, D.C. Milk bioactive peptide database: A comprehensive data-base of milk protein-derived bioactive peptides and novel visualization. Food Chem. 2017, 232, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM database of bioactive peptides: Current opportunities. Int. J. Mol. Sci. 2019, 20, 5978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raak, N.; Rohm, H.; Jaros, D. Enzymatic Cross-Linking of Casein Facilitates Gel Structure Weakening Induced by Overacidification. Food Biophys. 2017, 16, 261–268. [Google Scholar] [CrossRef]
- Giacometti Cavalheiro, F.; Parra Baptista, D.; Domingues Galli, B.; Negrão, F.; Nogueira Eberlin, M.; Lúcia Gigante, M. High protein yogurt with addition of Lactobacillus helveticus: Peptide profile and angiotensin-converting enzyme ACE-inhibitory activity. Food Chem. 2020, 333, 127482. [Google Scholar] [CrossRef]
- Pihlanto, A.; Virtanen, T.; Korhonen, H.J.T. Angiotensin I converting enzyme (ACE) inhibitory activity and antihypertensive effect of fermented milk. Int. Dairy J. 2010, 20, 3–10. [Google Scholar] [CrossRef]
- Solieri, L.; De Vero, L.; Tagliazucchi, D. Peptidomic study of casein proteolysis in bovine milk by Lactobacillus casei PRA205 and Lactobacillus rhamnosus PRA331. Int. Dairy J. 2018, 85, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Duar, R.M.; Lin, X.B.; Zheng, J.; Martino, M.E.; Grenier, T.; Pérez-Muñoz, M.E.; Leulier, F.; Gänzle, M.; Walter, J. Lifestyles in transition: Evolution and natural history of the genus Lactobacillus. FEMS Microbiol. Rev. 2017, 41, S27–S48. [Google Scholar] [CrossRef] [Green Version]
- Sadat-Mekmene, L.; Genay, M.; Atlan, D.; Lortal, S.; Gagnaire, V. Original features of cell-envelope pro-teinases of Lactobacillus helveticus. A review. Int. J. Food Microbiol. 2011, 146, 1–13. [Google Scholar] [CrossRef]
- Liu, M.; Bayjanov, J.R.; Renckens, B.; Nauta, A.; Siezen, R.J. The proteolytic system of lactic acid bacteria revisited: A genomic comparison. BMC Genom. 2010, 11, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarmadi, B.H.; Ismail, A. Antioxidative peptides from food proteins: A review. Peptides 2010, 31, 1949–1956. [Google Scholar] [CrossRef] [PubMed]
- Pihlanto, A. Antioxidative peptides derived from milk proteins. Int. Dairy J. 2006, 16, 1306–1314. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; E Aluko, R. Food Protein-Derived Bioactive Peptides: Production, Processing, and Potential Health Benefits. J. Food Sci. 2011, 77, R11–R24. [Google Scholar] [CrossRef]
- Ramesh, V.; Kumar, R.; Singh, R.R.B.; Kaushik, J.K.; Mann, B. Comparative evaluation of selected strains of lactobacilli for the development of antioxidant activity in milk. Dairy Sci. Technol. 2011, 92, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Virtanen, T.; Pihlanto, A.; Akkanen, S.; Korhonen, H.J. Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. J. Appl. Microbiol. 2007, 102, 106–115. [Google Scholar] [CrossRef]
- Gobbetti, M.; Ferranti, P.; Smacchi, E.; Goffredi, F.; Addeo, F. Production of angiotensin-I-converting-enzyme-inhibitory peptides in fermented milks started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4. Appl. Environ. Microbiol. 2000, 66, 3898–3904. [Google Scholar] [CrossRef] [Green Version]
- Contreras, M.D.M.; Carrón, R.; Montero, M.J.; Ramos, M.; Recio, I. Novel casein-derived peptides with antihypertensive activity. Int. Dairy J. 2009, 19, 566–573. [Google Scholar] [CrossRef]
- Saito, T.; Nakamura, T.; Kitazawa, H.; Kawai, Y.; Itoh, T. Isolation and structural analysis of antihypertensive peptides that exist naturally in gouda cheese. J. Dairy Sci. 2000, 83, 1434–1440. [Google Scholar] [CrossRef]
- Ali, E.; Nielsen, S.D.; Aal, S.A.-E.; El-Leboudy, A.; Saleh, E.; Lapointe, G. Use of Mass Spectrometry to Profile Peptides in Whey Protein Isolate Medium Fermented by Lactobacillus helveticus LH-2 and Lactobacillus acidophilus La-5. Front. Nutr. 2019, 6, 152. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Hamid, M.; Romeih, E.; Gamba, R.R.; Nagai, E.; Suzuki, T.; Koyanagi, T.; Enomoto, T. The biological activity of fermented milk produced by Lactobacillus casei ATCC 393 during cold storage. Int. Dairy J. 2019, 91, 1–8. [Google Scholar] [CrossRef]
- Maeno, M.; Yamamoto, N.; Takano, T. Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 1996, 79, 1316–1321. [Google Scholar] [CrossRef]
- Hayes, M.; Stanton, C.; Slattery, H.; O’Sullivan, O.; Hill, C.; Fitzgerald, G.F.; Ross, R.P. Casein Fermentate of Lactobacillus animalis DPC6134 Contains a Range of Novel Propeptide Angiotensin-Converting Enzyme Inhibitors. Appl. Environ. Microbiol. 2007, 73, 4658–4667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, L.; Shah, N. Release and identification of angiotensin-converting enzyme-inhibitory peptides as influenced by ripening temperatures and probiotic adjuncts in Cheddar cheeses. LWT 2008, 41, 1555–1566. [Google Scholar] [CrossRef]
- Pihlanto-Leppälä, A.; Koskinen, P.; Piilola, K.; Tupasela, T.; Korhonen, H. Angiotensin I-converting enzyme inhibitory properties of whey protein digests: Concentration and characterization of active peptides. J. Dairy Res. 2000, 67, 53–64. [Google Scholar] [CrossRef] [PubMed]
Peptide | Protein Fragment | MS Extracted Ion Intensity | Activity | Ref. | |||
---|---|---|---|---|---|---|---|
Control | Lr LR1 | Lrh F | Lhel NK1 | ||||
DKIHPF | β-CN f (47–52) | nd | nd | 1.34 × 106 | 3.33 × 106 | ACE-I/Antioxidant | [29] |
VVPPFLQPE | β-CN f (83–91) | nd | nd | nd | 1.44 × 106 | ACE-I | [30] |
YPFPGPIPN | β-CN f (60–68) | nd | 2.77 × 105 | nd | nd | ACE-I | [31] |
NIPPLTQTPV | β-CN f (73–82) | nd | nd | nd | 6.56 × 106 | ACE-I | [29] |
TQTPVVVPPFLQPE | β-CN f (78–91) | nd | nd | nd | 1.25 × 106 | Antioxidant | [32] |
DVENLHLPLPLLQSWM | β-CN f (129–144) | nd | nd | nd | 8.21 × 105 | ACE-I | [33] |
LHLPLPLLQSW | β-CN f (133–143) | nd | nd | nd | 1.29 × 105 | ACE-I | [29,30] |
SLSQSKVLPVPQK | β-CN f (164–176) | nd | nd | nd | 9.27 × 106 | Antioxidant | [32] |
KVLPVPQ | β-CN f (169–175) | nd | nd | nd | 2.17 × 105 | ACE-I | [34] |
LLYQEPVLGPVRGPFPIIV | β-CN f (191–209) | 8.89 × 106 | 8.52 × 105 | nd | 1.28 × 108 | ACE-I/Antioxidant | [32] |
YQEPVLGPVRGPFP | β-CN f (193–206) | nd | 3.42 × 106 | 1.73 × 105 | nd | ACE-I | [32] |
QEPVLGPVRGPFPIIV | β-CN f (194–209) | nd | 1.8 × 106 | 3.04 × 107 | 1.13 × 108 | ACE-I/Antioxidant | [32] |
EPVLGPVRGPFP | β-CN f (195–206) | nd | 4.17 × 105 | nd | nd | ACE-I | [35] |
GPVRGPFPIIV | β-CN f (199–209) | 1.17 × 106 | 7.49 × 106 | 2.66 × 104 | 2.42 × 107 | ACE-I | [30] |
RPKHPIKHQ | αS1-CN f (1–9) | nd | 4.09 × 104 | nd | 6.06 × 106 | ACE-I | [31] |
EVLNENLLRF | αS1-CN f (14–23) | nd | 1.46 × 105 | nd | nd | ACE-I | [32] |
FVAPFPEVFGKE | αS1-CN f (24–35) | nd | nd | nd | 3.72 × 105 | ACE-I/Antioxidant | [30] |
VAPFPEVFGKE | αS1-CN f (25–35) | nd | nd | nd | 4.45 × 105 | ACE-I | [32] |
LYQGPIVLNPWDQVK | αS2-CN f (99–113) | nd | nd | nd | 3.9 × 105 | ACE-I | [32] |
NAVPITPT | αS2-CN f (115–122) | 6.11 × 105 | 5.81 × 105 | nd | nd | ACE-I | [32] |
KYIPIQYVL | κ-CN f (30–38) | nd | nd | nd | 4.47 × 105 | Antioxidant | [33] |
VQVTSTAV | κ-CN f (162–169) | 3.21 × 105 | 3.15 × 105 | nd | nd | ACE-I | [30] |
Peptide * | Protein Fragment | MS Extracted Ion Intensity |
---|---|---|
QHQKAMKPW | αS2-CN f (200–208) | 1.88 × 104 |
PWIQPKTKVIPYVRYL | αS2-CN f (207–222) | 1.66 × 105 |
IQPKTKVIPYVRYL | αS2-CN f (209–222) | 1.14 × 107 |
IQPKTKVIPY | αS2-CN f (209–218) | 1.44 × 105 |
KVIPYVRYL | αS2-CN f (214–222) | 7.53 × 104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Begunova, A.V.; Savinova, O.S.; Glazunova, O.A.; Moiseenko, K.V.; Rozhkova, I.V.; Fedorova, T.V. Development of Antioxidant and Antihypertensive Properties during Growth of Lactobacillus helveticus, Lactobacillus rhamnosus and Lactobacillus reuteri on Cow’s Milk: Fermentation and Peptidomics Study. Foods 2021, 10, 17. https://doi.org/10.3390/foods10010017
Begunova AV, Savinova OS, Glazunova OA, Moiseenko KV, Rozhkova IV, Fedorova TV. Development of Antioxidant and Antihypertensive Properties during Growth of Lactobacillus helveticus, Lactobacillus rhamnosus and Lactobacillus reuteri on Cow’s Milk: Fermentation and Peptidomics Study. Foods. 2021; 10(1):17. https://doi.org/10.3390/foods10010017
Chicago/Turabian StyleBegunova, Anna V., Olga S. Savinova, Olga A. Glazunova, Konstantin V. Moiseenko, Irina V. Rozhkova, and Tatyana V. Fedorova. 2021. "Development of Antioxidant and Antihypertensive Properties during Growth of Lactobacillus helveticus, Lactobacillus rhamnosus and Lactobacillus reuteri on Cow’s Milk: Fermentation and Peptidomics Study" Foods 10, no. 1: 17. https://doi.org/10.3390/foods10010017