Influence of Roasting Temperatures on the Antioxidant Properties, β-Glucan Content, and Volatile Flavor Profiles of Shiitake Mushroom
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Antioxidant Properties
2.3. β-Glucan and Other Glucan Content
2.4. Volatile Flavor Analysis
2.5. Statistical Analysis
3. Results
3.1. Antioxidant Properties
3.2. β-Glucan, Total, and α-Glucan Analysis Results
3.3. Volatile Flavor Analysis Results
3.4. Correlation of the Antioxidant Properties, Glucan Content, and Volatile Flavor Analysis Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Her, J.-Y.; Kim, M.S.; Kim, M.K.; Lee, K.-G. Development of a spray freeze-drying method for preparation of volatile shiitake mushroom (Lentinus edodes) powder. Int. J. Food Sci. Technol. 2015, 50, 2222–2228. [Google Scholar] [CrossRef]
- Jiang, T.; Luo, Z.; Ying, T. Fumigation with essential oils improves sensory quality and enhanced antioxidant ability of shiitake mushroom (Lentinus edodes). Food Chem. 2015, 172, 692–698. [Google Scholar] [CrossRef] [PubMed]
- KOSTAT. Results of the Agriculture, Forestry and Fishery Survey in 2017. Available online: http://kostat.go.kr/portal/eng/pressReleases/2/4/index.board (accessed on 11 November 2020).
- Chan, G.C.F.; Chan, W.K.; Sze, D.M.-Y. The effects of β-glucan on human immune and cancer cells. J. Hematol. Oncol. 2009, 2, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabal, A.; Ezeronye, O. Anti-cancer effect of polysaccharides isolated from higher basidiomycetes mushrooms. Afr. J. Biotechnol. 2003, 2, 672–678. [Google Scholar] [CrossRef] [Green Version]
- Bae, I.Y.; Kim, H.W.; Yoo, H.J.; Kim, E.S.; Lee, S.; Park, D.Y.; Lee, H.G. Correlation of branching structure of mushroom β-glucan with its physiological activities. Food Res. Int. 2013, 51, 195–200. [Google Scholar] [CrossRef]
- Cho, J.-H.; Lee, J.-Y.; Lee, M.-J.; Oh, H.-N.; Kang, D.-H.; Jhune, C.-S. Comparative analysis of useful β-glucan and polyphenol in the fruiting bodies of Ganoderma spp. J. Mushroom 2013, 11, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.-Y.; Shieh, D.-E.; Ho, C.-T. Antioxidant and free radical scavenging activities of edible mushrooms. J. Food Lipids 2002, 9, 35–43. [Google Scholar] [CrossRef]
- De Pinho, P.G.; Ribeiro, B.; Gonçalves, R.F.; Baptista, P.; Valentão, P.; Seabra, R.M.; Andrade, P. Correlation between the pattern volatiles and the overall aroma of wild edible mushrooms. J. Agric. Food Chem. 2008, 56, 1704–1712. [Google Scholar] [CrossRef]
- Dermiki, M.; Phanphensophon, N.; Mottram, D.S.; Methven, L. Contributions of non-volatile and volatile compounds to the umami taste and overall flavour of shiitake mushroom extracts and their application as flavour enhancers in cooked minced meat. Food Chem. 2013, 141, 77–83. [Google Scholar] [CrossRef]
- Kim, M.; Drake, S.; Drake, M. Evaluation of key flavor compounds in reduced- and full-fat cheddar cheeses using sensory studies on model systems. J. Sens. Stud. 2011, 26, 278–290. [Google Scholar] [CrossRef]
- Wang, H.-C.; Zhang, M.; Adhikari, B. Drying of shiitake mushroom by combining freeze-drying and mid-infrared radiation. Food Bioprod. Process. 2015, 94, 507–517. [Google Scholar] [CrossRef]
- Krygier, K.; Sosulski, F.; Hogge, L. Free, esterified, and insoluble-bound phenolic acids. 1. Extraction and purification procedure. J. Agric. Food Chem. 1982, 30, 330–334. [Google Scholar] [CrossRef]
- Cheung, L.M.; Cheung, P.C.K.; Ooi, V.E.C. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem. 2003, 81, 249–255. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, S.M.; Chun, J.; Lee, H.; Lee, J. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem. 2006, 99, 381–387. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Liu, R.H. Processed sweet corn has higher antioxidant activity. J. Agric. Food Chem. 2002, 50, 4959–4964. [Google Scholar] [CrossRef]
- Jeong, S.-M.; Kim, S.-Y.; Kim, D.-R.; Jo, S.-C.; Nam, K.C.; Ahn, A.D.U.; Lee, S.-C. Effect of heat treatment on the antioxidant activity of extracts from citrus peels. J. Agric. Food Chem. 2004, 52, 3389–3393. [Google Scholar] [CrossRef]
- Gahler, S.; Otto, K.; Böhm, V. Alterations of Vitamin C, Total Phenolics, and antioxidant capacity as affected by processing tomatoes to different products. J. Agric. Food Chem. 2003, 51, 7962–7968. [Google Scholar] [CrossRef]
- Sari, M.; Prange, A.; Lelley, J.I.; Hambitzer, R. Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms. Food Chem. 2017, 216, 45–51. [Google Scholar] [CrossRef]
- Jamil, N.A.M.; Rahmad, N.; Rashid, N.M.N.; Yusoff, N.; Yuswan, M.H.; Shaharuddin, S.; Saleh, N.M. LCMS-QTOF Determination of Lentinan-like β-D-glucan content isolated by hot water and alkaline solution from tiger’s milk mushroom, termite mushroom, and selected local market mushrooms. J. Mycol. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chanput, W.; Reitsma, M.; Kleinjans, L.; Mes, J.J.; Savelkoul, H.F.J.; Wichers, H.J. β-Glucans are involved in immune-modulation of THP-1 macrophages. Mol. Nutr. Food Res. 2012, 56, 822–833. [Google Scholar] [CrossRef]
- Kanauchi, M.; Bamforth, C. Release of β-glucan from cell walls of starchy endosperm of Barley. Cereal Chem. J. 2001, 78, 121–124. [Google Scholar] [CrossRef]
- Je, H.-J.; Kim, H.Y.; Ha, G.-J.; Ha, I.; Cho, S.R. Quality characteristics of Pleurotus eryngii, Lentinus edodes GNA01 and Grifola frondosa as affected by different drying methods. J. Korean Soc. Food Preserv. 2018, 25, 181–188. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, Y.; Huang, J.; Zeng, H.; Zheng, B. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms. Food Chem. 2016, 197, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Ruth, J.H. Odor thresholds and irritation levels of several chemical substances: A review. Am. Ind. Hyg. Assoc. J. 1986, 47, A-142–A-151. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.B.; Fernandes, A.S.; Wagner, R.; Jacob-Lopes, E.; Zepka, L.Q. Biogeneration of volatile organic compounds produced by Phormidium autumnale in heterotrophic bioreactor. J. Appl. Phycol. 2016, 28, 1561–1570. [Google Scholar] [CrossRef]
- Wang, L.-B.; Bai, J.; Yu, Z.-F. Difference in volatile profile between pericarp tissue and locular gel in tomato fruit. J. Integr. Agric. 2016, 15, 2911–2920. [Google Scholar] [CrossRef]
- Sabatini, N.; Mucciarella, M.R.; Marsilio, V. Volatile compounds in uninoculated and inoculated table olives with Lactobacillus plantarum (Olea europaea L., cv. Moresca and Kalamata). LWT—Food Sci. Technol. 2008, 41, 2017–2022. [Google Scholar] [CrossRef]
- Griglione, A.; Liberto, E.; Cordero, C.; Bressanello, D.; Cagliero, C.; Rubiolo, P.; Bicchi, C.; Sgorbini, B. High-quality Italian rice cultivars: Chemical indices of ageing and aroma quality. Food Chem. 2015, 172, 305–313. [Google Scholar] [CrossRef]
- Comuzzo, P.; Tat, L.; Tonizzo, A.; Battistutta, F. Yeast derivatives (extracts and autolysates) in winemaking: Release of volatile compounds and effects on wine aroma volatility. Food Chem. 2006, 99, 217–230. [Google Scholar] [CrossRef]
- Cho, D.-B.; Seo, H.-Y.; Kim, K.-S. Analysis of the volatile flavor compounds produced during the growth stages of the shiitake mushrooms (Lentinus edodes). Prev. Nutr. Food Sci. 2003, 8, 306–314. [Google Scholar] [CrossRef]
- Hiraide, M.; Miyazaki, Y.; Shibata, Y. The smell and odorous components of dried shiitake mushroom, Lentinula edodes I: Relationship between sensory evaluations and amounts of odorous components. J. Wood Sci. 2004, 50, 358–364. [Google Scholar] [CrossRef]
Roasting Conditions | Before Roasting | After Roasting | ||||
---|---|---|---|---|---|---|
Length (cm) | Weight (g) | Length (cm) | Weight (g) | Length Reduction (%) | Weight Reduction (%) | |
80 °C 60 min | 7.03 ± 0.05 | 2.63 ± 0.61 | 6.3 ± 0.24 | 0.84 ± 0.11 | 10.42 ± 3.55 b | 68.06 ± 7.95 b |
100 °C 60 min | 7.6 ± 0.08 | 3.27 ± 0.46 | 6.53 ± 0.21 | 0.79 ± 0.11 | 14.01 ± 3.16 b | 75.84 ± 6.80 ab |
120 °C 60 min | 5.87 ± 0.21 | 2.76 ± 0.45 | 4.03 ± 0.05 | 0.65 ± 0.10 | 31.14 ± 3.21 a | 76.36 ± 2.37 ab |
140 °C 60 min | 6.83 ± 2.26 | 2.78 ± 0.33 | 4.73 ± 0.21 | 0.47 ± 0.03 | 30.75 ± 2.31 a | 83.23 ± 1.26 a |
160 °C 60 min | 6.8 ± 0.41 | 2.95 ± 0.47 | 5.07 ± 0.41 | 0.54 ± 0.14 | 25.75 ± 5.47 a | 81.83 ± 7.45 a |
180 °C 60 min | 7.1 ± 0.14 | 3.06 ± 0.63 | 5.27 ± 0.33 | 0.56 ± 0.09 | 25.87 ± 3.60 a | 81.68 ± 0.88 a |
DPPH (%) | Total Phenol | Polyphenol | TEAC (mmol/L) | |||
---|---|---|---|---|---|---|
Free | Bound | Free | Bound | |||
80 °C | 83.74 ± 0.77 a | 0.38 ± 0.02 c | 1.28 ± 0.02 c | 0.62 ± 0.03 c | 2.13 ± 0.02 f | 4.03 ± 0.01 d |
100 °C | 76.29 ± 1.24 c | 0.42 ± 0.02 b | 1.09 ± 0.02 d | 0.70 ± 0.04 b | 2.80 ± 0.01 e | 4.60 ± 0.04 c |
120 °C | 78.87 ± 1.43 b | 0.43 ± 0.00 b | 0.98 ± 0.02 e | 0.70 ± 0.01 b | 3.62 ± 0.01 c | 4.78 ± 0.01 b |
140 °C | 82.32 ± 0.37 a | 0.52 ± 0.02 a | 1.31 ± 0.03 c | 0.81 ± 0.02 a | 4.23 ± 0.00 a | 4.89 ± 0.01 a |
160 °C | 82.64 ± 0.52 a | 0.51 ± 0.02 a | 1.54 ± 0.02 a | 0.81 ± 0.02 a | 3.86 ± 0.01 b | 3.15 ± 0.02 f |
180 °C | 50.66 ± 1.51 d | 0.39 ± 0.02 c | 1.42 ± 0.03 b | 0.62 ± 0.02 c | 2.93 ± 0.00 d | 3.43 ± 0.01 e |
Total Glucan (% w/w) | α-glucan (% w/w) | β-glucan (% w/w) | |
---|---|---|---|
80 °C | 36.93 a,b ± 2.89 | 0.24 a ± 0.15 | 36.69 a,b ± 2.88 |
100 °C | 36.03 a,b ± 4.20 | 0.11 a ± 0.25 | 35.92 a,b ± 4.41 |
120 °C | 41.61 a ± 3.95 | 0.12 a ± 0.09 | 41.49 a ± 4.02 |
140 °C | 37.02 a,b ± 3.82 | 0.06 a ± 0.13 | 36.96 a,b ± 3.80 |
160 °C | 34.84 b ± 4.08 | 0.02 a ± 0.21 | 34.86 b ± 4.20 |
180 °C | 37.05 a,b ± 3.94 | 0.10 a ± 0.12 | 36.96 a,b ± 3.82 |
Peak # | R. Time | Peak Area Ratio (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Compound Name | Aroma Description | Ref. | 80 °C | 100 °C | 120 °C | 140 °C | 160 °C | 180 °C | ||
1 | 4.013 | Carbon disulfide | Solventy, sweet | [25] | 3.68 | 6.06 | 3.1 | 4.05 | ||
2 | 4.927 | Isobutyraldehyde | Malty, green, pungent | [26] | 4.64 | 5.88 | 5.8 | 5.07 | 3.57 | |
3 | 7.182 | Benzene | Sweet, solventy | [25] | 23.27 | 11.83 | 17.8 | 11.38 | 6.46 | 26.54 |
4 | 7.359 | 3-methyl butanal | Nutty, malty | [11] | 23.97 | 33.41 | 37.1 | 23.81 | 5.15 | 17.81 |
5 | 7.463 | Thiophene | Garlic | [25] | 30 | 1.24 | ||||
6 | 7.556 | 2-methyl butanal | Nutty, malty | [11] | 11.39 | 23.4 | 6.2 | 30.61 | 16.52 | 9.34 |
7 | 7.659 | 2-methyl-2-butenal | Green, Fruit | [27] | 2.75 | |||||
8 | 8.227 | 2-pentanol | Pungent | [28] | 5.84 | 5.95 | ||||
9 | 8.438 | Pentanal | Nutty, Malty | [29] | 2.29 | |||||
10 | 9.484 | Dimethyl disulfide | Onion, Cabbage | [9,24] | 2.26 | |||||
11 | 9.67 | 3-methyl 1-butanol | Whiskey, malty, burnt | [26] | 6.27 | 2.98 | 7.01 | |||
12 | 9.676 | 2-Methyl pentanal | - | 4.25 | 7.22 | |||||
13 | 9.749 | 2-methyl 1-butanol | Malty, green, wine | [29] | 4.89 | 3.53 | 6.01 | |||
14 | 9.742 | Pyridine | - | 6.21 | ||||||
15 | 9.857 | Methyl benzene | Paint | [30] | 4.58 | 2.83 | 4.51 | |||
16 | 9.873 | Isoamyl phenyl acetate | - | 6.25 | ||||||
17 | 10.036 | 2-Methylthiophene | Sulfur | [30] | 1.64 | |||||
18 | 10.425 | 1-Pentanol | Pungent | 2.17 | ||||||
19 | 10.941 | Hexanal | Grass, tallow, fat | [26] | 2.2 | 3.96 | 5.76 | 7.19 | ||
20 | 11.495 | 2-methyl pyrazine | Popcorn | [30] | 1.44 | |||||
21 | 12.9 | 1,3,5,7-Cyclooctatetraene | - | 11.51 | 7.97 | 3.73 | 12.26 | 6.86 | 15.79 | |
22 | 13.049 | 2-Heptanone | Soap | [26] | 1.13 | |||||
23 | 13.366 | 2,5-dimethyl-Pyrazine | Peanut butter, solvent | [30] | 1.44 | |||||
24 | 14.623 | 2-Pentyl furan | Beany | [29] | 7.58 | |||||
25 | 14.987 | Benzaldehyde | Almond, burnt sugar | [27] | 2.43 | |||||
26 | 15.18 | 2,3,5-trimethyl pyrazine | - | 2.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, I.-S.; Chon, S.-Y.; Bang, W.-S.; Kim, M.K. Influence of Roasting Temperatures on the Antioxidant Properties, β-Glucan Content, and Volatile Flavor Profiles of Shiitake Mushroom. Foods 2021, 10, 54. https://doi.org/10.3390/foods10010054
Hwang I-S, Chon S-Y, Bang W-S, Kim MK. Influence of Roasting Temperatures on the Antioxidant Properties, β-Glucan Content, and Volatile Flavor Profiles of Shiitake Mushroom. Foods. 2021; 10(1):54. https://doi.org/10.3390/foods10010054
Chicago/Turabian StyleHwang, In-Seo, Seo-Yeong Chon, Woo-Suk Bang, and Mina K. Kim. 2021. "Influence of Roasting Temperatures on the Antioxidant Properties, β-Glucan Content, and Volatile Flavor Profiles of Shiitake Mushroom" Foods 10, no. 1: 54. https://doi.org/10.3390/foods10010054
APA StyleHwang, I.-S., Chon, S.-Y., Bang, W.-S., & Kim, M. K. (2021). Influence of Roasting Temperatures on the Antioxidant Properties, β-Glucan Content, and Volatile Flavor Profiles of Shiitake Mushroom. Foods, 10(1), 54. https://doi.org/10.3390/foods10010054