Impact of Storing Condition on Staling and Microbial Spoilage Behavior of Bread and Their Contribution to Prevent Food Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bread Storage and Sampling
2.2. Initial Bread Characterization
2.3. Moisture Determination
2.4. Texture Profile Analyses
2.5. Plating and Identification of Spoilage Organisms
2.6. Mycotoxins
2.6.1. Fumonisins B1 and B2
2.6.2. Ochratoxin A (ELISA)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Initial Bread Characteristics
3.2. Microbial Stability of Breads under Different Storage Conditions
3.3. Relation between Microbial Growth and Mycotoxin Production
3.4. Bread Staling under Different Storage Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Leverenz, D.; Schmid, D.; Hafner, G.; Kranert, M. Backwarenverluste in Bäckereien Aufkommen und Einflussfaktoren. In Proceedings of the REFOWAS-Abschlusskonferenz, Berlin, Germany, 19 March 2018. [Google Scholar]
- Hug-Iten, S.; Escher, F.; Conde-Petit, B. Staling of bread: Role of amylose and amylopectin and influence of starch-degrading enzymes. Cereal Chem. 2003, 80, 654–661. [Google Scholar] [CrossRef]
- Fadda, C.; Sanguinetti, A.M.; Del Caro, A.; Collar, C.; Piga, A. Bread staling: Updating the view. Compr. Rev. Food Sci. Food Saf. 2014, 13, 473–492. [Google Scholar] [CrossRef] [Green Version]
- Le-Bail, A.; Boumali, K.; Jury, V.; Ben-Aissa, F.; Zuniga, R. Impact of the baking kinetics on staling rate and mechanical properties of bread crumb and degassed bread crumb. J. Cereal Sci. 2009, 50, 235–240. [Google Scholar] [CrossRef]
- Sarko, A.; Wu, H.-C.H. The Crystal Structures of A-, B- and C-Polymorphs of Amylose and Starch. Starch—Stärke 1978, 30, 73–78. [Google Scholar] [CrossRef]
- Bosmans, G.M.; Lagrain, B.; Ooms, N.; Fierens, E.; Delcour, J.A. Biopolymer Interactions, Water Dynamics, and Bread Crumb Firming. J. Agric. Food Chem. 2013. [Google Scholar] [CrossRef]
- Baik, M.; Chinachoti, P. Moisture Redistribution and Phase Transitions During Bread Staling. Cereal Chem. 2000, 484–488. [Google Scholar] [CrossRef]
- Lorenz, K.; Maga, J. Staling of White Bread: Changes in Carbonyl Composition and Glc Headspace Profiles. J. Agric. Food Chem. 1972, 20, 211–213. [Google Scholar] [CrossRef]
- Legan, J.D. Mould spoilage of bread: The problem and some solutions. Int. Biodeterior. Biodegrad. 1993, 32, 33–53. [Google Scholar] [CrossRef]
- Knight, R.A.; Menlove, E.M. Effect of the bread-baking process on destruction of certain mould spores. J. Sci. Food Agric. 1961, 12, 653–656. [Google Scholar] [CrossRef]
- Garcia, M.V.; Copetti, M.V. Alternative methods for mould spoilage control in bread and bakery products. Int. Food Res. J. 2019, 26, 737–749. [Google Scholar]
- Schünemann, C.; Treu, G. Technologie der Backwarenherstellung: Fachkundliches Lehrbuch für Bäcker und Bäckerinnen; Gildebuchverlag GmbH: Alfeld/Leine, Germany, 2002; ISBN 3773401507. [Google Scholar]
- Garcia, M.V.; Bernardi, A.O.; Copetti, M.V. The fungal problem in bread production: Insights of causes, consequences, and control methods. Curr. Opin. Food Sci. 2019, 29, 1–6. [Google Scholar] [CrossRef]
- Ryan, L.A.M.; Zannini, E.; Dal Bello, F.; Pawlowska, A.; Koehler, P.; Arendt, E.K. Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products. Int. J. Food Microbiol. 2011, 146, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Le Lay, C.; Mounier, J.; Vasseur, V.; Weill, A.; Le Blay, G.; Barbier, G.; Coton, E. In vitro and in situ screening of lactic acid bacteria and propionibacteria antifungal activities against bakery product spoilage molds. Food Control 2016, 60, 247–255. [Google Scholar] [CrossRef]
- Garofalo, C.; Zannini, E.; Aquilanti, L.; Silvestri, G.; Fierro, O.; Picariello, G.; Clementi, F. Selection of sourdough lactobacilli with antifungal activity for use as biopreservatives in bakery products. J. Agric. Food Chem. 2012, 60, 7719–7728. [Google Scholar] [CrossRef]
- Lavermicocca, P.; Valerio, F.; Evidente, A.; Lazzaroni, S.; Corsetti, A.; Gobbetti, M. Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl. Environ. Microbiol. 2000, 66, 4084–4090. [Google Scholar] [CrossRef] [Green Version]
- Jepsen, D.; Vollmer, A.; Eberle, U.; Fels, J.; Schomerus, T. Entwicklung von Instrumenten zur Vermeidung von Lebensmittelabfällen. Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit. 2014. Available online: https://www.bmu.de/fileadmin/Daten_BMU/Pools/Forschungsdatenbank/fkz_3712_32_311_instrumente_lebensmittelabfaelle_bf.pdf (accessed on 2 January 2021).
- Hoover, R. Starch retrogradation. Food Rev. Int. 1995, 11, 331–346. [Google Scholar] [CrossRef]
- Gray, J.A.; Bemiller, J.N. Bread staling: Molecular basis and control. Compr. Rev. Food Sci. Food Saf. 2003, 2, 1–21. [Google Scholar] [CrossRef]
- Santos, J.L.P.; Chaves, R.D.; Sant’Ana, A.S. Estimation of growth parameters of six different fungal species for selection of strains to be used in challenge tests of bakery products. Food Biosci. 2017, 20, 62–66. [Google Scholar] [CrossRef]
- AGF e.V.; Max Rubner-Institut. Standard-Methoden für Getreide, Mehl und Brot; Moritz Schäfer GmbH & Co. KG: Detmold, Germany, 2016; pp. 185–189. [Google Scholar]
- Sulyok, M.; Krska, R.; Schuhmacher, R. A liquid chromatography/tandem mass spectrometric multi-mycotoxin method for the quantification of 87 analytes and its application to semi-quantitative screening of moldy food samples. Anal. Bioanal. Chem. 2007, 389, 1505–1523. [Google Scholar] [CrossRef]
- R-Biopharm RIDASCREEN® Ochratoxin A 30/15. R-Biopharm. Available online: https://food.r-biopharm.com/wp-content/uploads/sites/2/2020/06/r1312-ochratoxin-a-30-15-2020-03-23.doc.pdf (accessed on 2 January 2021).
- Rosentrater, K.A.; Evers, A.D. Bread-baking technology. In Kent’s Technology of Cereals, 5th ed.; Rosentrater, K.A., Evers, A.D., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2018; Chapter 8; pp. 565–622. ISBN 978-0-08-100529-3. [Google Scholar]
- Vinkx, C.J.A.; Delcour, J.A. Rye (Secale cereale L) arabinoxylans: A critical review. J. Cereal Sci. 1996, 24, 1–14. [Google Scholar] [CrossRef]
- Girhammar, U.; Nair, B.M. Certain physical properties of water soluble non-starch polysaccharides from wheat, rye, triticale, barley and oats. Top. Catal. 1992, 6, 329–343. [Google Scholar] [CrossRef]
- Leistner, L.; Gorris, L.G.M. Food preservation by hurdle technology. Trends Food Sci. Technol. 1995, 6, 41–46. [Google Scholar] [CrossRef]
- Brandt, M.J.; Gänzle, P.D.M. Handbuch Sauerteig; Behr: Hamburg, Germany, 2006; ISBN 9783899479454. [Google Scholar]
- Galal, A.M.; Johnson, J.A.; Varriano-Marston, E. Lactic and Volatile (C2-C5) Organic Acids of San Francisco Sourdough French Bread. Cereal Chem. 1978, 55, 461–468. [Google Scholar]
- Arendt, E.K.; Ryan, L.A.M.; Bello, F.D. Impact of sourdough on the texture of bread. Food Microbiol. 2007, 24, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Garcia, D.; Ramos, A.J.; Sanchis, V.; Marín, S. Predicting mycotoxins in foods: A review. Food Microbiol. 2009, 26, 757–769. [Google Scholar] [CrossRef] [PubMed]
- Bhat, R.; Rai, R.V.; Karim, A.A. Mycotoxins in food and feed: Present status and future concerns. Compr. Rev. Food Sci. Food Saf. 2010, 9, 57–81. [Google Scholar] [CrossRef]
- Slade, L.; Levine, H. Recent Advances in Starch Retrogradation. In Industrial Polysaccharides: The Impact of Biotechnology and Advanced Methodologies; Gordon & Breach Science Publishers, Inc.: London, UK, 1987; pp. 387–430. [Google Scholar]
- Colwell, B.K.H.; Axford, D.W.E.; Chamberlain, N.; Elton, G.A.H. Effect of storage temperature on the aeging of concentrated wheat starch gels. J. Sci. Food Agric. 1969, 20, 550–555. [Google Scholar] [CrossRef]
- Jekle, M.; Fuchs, A.; Becker, T. A normalized texture pro fi le analysis approach to evaluate firming kinetics of bread crumbs independent from its initial texture. J. Cereal Sci. 2018, 81, 147–152. [Google Scholar] [CrossRef]
- Mihhalevski, A.; Heinmaa, I.; Traksmaa, R.; Pehk, T.; Mere, A.; Paalme, T. Structural Changes of Starch during Baking and Staling of Rye Bread. J. Agric. Food Chem. 2012, 60, 8492–8500. [Google Scholar] [CrossRef]
- Michniewicz, J.; Biliaderis, G.G.; Bushuk, W. Effect of added pentosans on some properties of wheat bread. Food Chem. 1992, 43, 251–257. [Google Scholar] [CrossRef]
Moisture Content (%) | aw-Value ( ) | pH-Value ( ) | Total Titratable Acidity (mL 0.1 M NaOH) | |
---|---|---|---|---|
Pan wheat bread | 45.38 ± 2.60 a | 0.98 ± 0.01 a | 5.48 ± 0.03 a | 4.18 ± 0.31 a |
Mixed-type sourdough bread | 48.59 ± 0.01 a | 0.97 ± 0.01 b | 4.48 ± 0.06 b | 9.11 ± 0.28 b |
Absolute Moisture Loss of Pan Wheat Bread (%) | Absolute Moisture Loss of Mixed-Type Sourdough Bread (%) | |
---|---|---|
PE-layered microperforated paper bag (21.3 ± 0.4 °C) | 10.3 ± 2.9 | 13.5 ± 3.3 |
Bread box (22.0 ± 0.5 °C) | 7.0 ± 2.9 | 8.9 ± 1.3 |
Plastic bag (21.9 ± 0.5 °C) | 3.5 ± 3.1 | 5.7 ± 0.6 |
Plastic bag (8.2 ± 0.2 °C) | 3.1 ± 2.5 | 5.5 ± 1.1 |
Absolute Firming Rate of Pan Wheat Bread (N/d) | Absolute Firming Rate of Mixed-Type Sourdough Bread (N/d) | |||
---|---|---|---|---|
PE-layered microperforated paper bag (21.3 ± 0.4 °C) | 0.51 ± 0.07 | (R² = 0.84) | 1.30 ± 0.14 | (R² = 0.90) |
Bread box (22.0 ± 0.5 °C) | 0.27 ± 0.07 | (R² = 0.61) | 1.27 ± 0.12 | (R² = 0.93) |
Plastic bag (21.9 ± 0.5 °C) | 0.29 ± 0.03 | (R² = 0.92) | 0.92 ± 0.05 | (R² = 0.98) |
Plastic bag (8.2 ± 0.2 °C) | 0.41 ± 0.08 | (R² = 0.76) | 1.38 ± 0.16 | (R² = 0.89) |
Norm. Firming Rate of Pan Wheat Bread (N/d) | Norm. Firming Rate of Mixed-Type Sourdough Bread (N/d) | |||
---|---|---|---|---|
PE-layered microperforated paper bag (21.3 ± 0.4 °C) | 0.46 ± 0.07 | (R² = 0.84) | 0.34 ± 0.04 | (R² = 0.90) |
Bread box (22.0 ± 0.5 °C) | 0.24 ± 0.06 | (R² = 0.61) | 0.33 ± 0.03 | (R² = 0.93) |
Plastic bag (21.9 ± 0.5 °C) | 0.26 ± 0.03 | (R² = 0.92) | 0.24 ± 0.01 | (R² = 0.98) |
Plastic bag (8.2 ± 0.2 °C) | 0.37 ± 0.07 | (R² = 0.76) | 0.36 ± 0.04 | (R² = 0.89) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alpers, T.; Kerpes, R.; Frioli, M.; Nobis, A.; Hoi, K.I.; Bach, A.; Jekle, M.; Becker, T. Impact of Storing Condition on Staling and Microbial Spoilage Behavior of Bread and Their Contribution to Prevent Food Waste. Foods 2021, 10, 76. https://doi.org/10.3390/foods10010076
Alpers T, Kerpes R, Frioli M, Nobis A, Hoi KI, Bach A, Jekle M, Becker T. Impact of Storing Condition on Staling and Microbial Spoilage Behavior of Bread and Their Contribution to Prevent Food Waste. Foods. 2021; 10(1):76. https://doi.org/10.3390/foods10010076
Chicago/Turabian StyleAlpers, Thekla, Roland Kerpes, Mariana Frioli, Arndt Nobis, Ka Ian Hoi, Axel Bach, Mario Jekle, and Thomas Becker. 2021. "Impact of Storing Condition on Staling and Microbial Spoilage Behavior of Bread and Their Contribution to Prevent Food Waste" Foods 10, no. 1: 76. https://doi.org/10.3390/foods10010076
APA StyleAlpers, T., Kerpes, R., Frioli, M., Nobis, A., Hoi, K. I., Bach, A., Jekle, M., & Becker, T. (2021). Impact of Storing Condition on Staling and Microbial Spoilage Behavior of Bread and Their Contribution to Prevent Food Waste. Foods, 10(1), 76. https://doi.org/10.3390/foods10010076