Characterization and Discrimination of Key Aroma Compounds in Pre- and Postrigor Roasted Mutton by GC-O-MS, GC E-Nose and Aroma Recombination Experiments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Preparation
2.3. GC-O-MS Analysis
2.4. Identification Analysis of Aroma Compounds
2.5. Quantitation Analysis of Aroma Compounds
2.6. OAVs and Contribution Rate Analysis
2.7. Aroma Recombination and Omission Experiments
2.8. Flash GC E-Nose Analysis of Aroma Profile
2.9. Statistical Analysis
3. Results
3.1. Identification and Quantitation of Aroma Compounds in the Roasted Mutton
3.2. Determination of Key Aroma Compounds in the Roasted Mutton
3.3. Confirmation of Key Aroma Compounds in the Roasted Mutton
3.4. Potential Markers Analysis for Discriminating the Pre- and Postrigor Roasted Mutton Based on Aroma Compounds
4. Discussion
4.1. Aldehydes and Alcohols Were Key Aroma Compounds in the Pre- and Postrigor Roasted Mutton
4.2. Pre- and Postrigor Roasted Mutton were Discriminated Based on Key Aroma Compounds by GC-O-MS and GC E-Nose
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Ma, J.; Pan, T.; Suleman, R.; Wang, Z.; Zhang, D. Effects of roasting by charcoal, electric, microwave and superheated steam methods on (non)volatile compounds in oyster cuts of roasted lamb. Meat Sci. 2021, 172, 108324. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Hou, C.; Zhang, D.; Li, X.; Ren, C.; Ijaz, M.; Hussain, Z.; Liu, D. Effect of pre- and post-rigor on texture, flavor, heterocyclic aromatic amines and sensory evaluation of roasted lamb. Meat Sci. 2020, 169, 108220. [Google Scholar] [CrossRef]
- Fan, M.; Xiao, Q.; Xie, J.; Cheng, J.; Sun, B.; Du, W.; Wang, Y.; Wang, T. Aroma Compounds in Chicken Broths of Beijing Youji and Commercial Broilers. J. Agric. Food Chem. 2018, 66, 10242–10251. [Google Scholar] [CrossRef]
- Marcq, P.; Schieberle, P. Characterization of the key aroma compounds in a commercial Fino and a commercial Pedro Ximenez sherry wine by application of the sensomics approach. J. Agric. Food Chem. 2021, 69, 5125–5133. [Google Scholar] [CrossRef]
- Jonas, M.; Schieberle, P. Characterization of the Key Aroma Compounds in Fresh Leaves of Garden Sage (Salvia officinalis L.) by Means of the Sensomics Approach: Influence of Drying and Storage and Comparison with Commercial Dried Sage. J. Agric. Food Chem. 2021, 69, 5113–5124. [Google Scholar] [CrossRef]
- Rasekh, M.; Karami, H.; Wilson, A.; Gancarz, M. Classification and Identification of Essential Oils from Herbs and Fruits Based on a MOS Electronic-Nose Technology. Chemosensors 2021, 9, 142. [Google Scholar] [CrossRef]
- Melucci, D.; Bendini, A.; Tesini, F.; Barbieri, S.; Zappi, A.; Vichi, S.; Conte, L.; Toschi, T.G. Rapid direct analysis to discriminate geographic origin of extra virgin olive oils by flash gas chromatography electronic nose and chemometrics. Food Chem. 2016, 204, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Rusinek, R.; Kmiecik, D.; Gawrysiak-Witulska, M.; Malaga-Toboła, U.; Tabor, S.; Findura, P.; Siger, A.; Gancarz, M. Identification of the olfactory profile of rapeseed oil as a function of heating time and ratio of volume and surface area of contact with oxygen using an electronic nose. Sensors 2021, 21, 303. [Google Scholar] [CrossRef]
- Rusinek, R.; Gawrysiak-Witulska, M.; Siger, A.; Oniszczuk, A.; Ptaszy’nska, A.A.; Knaga, J.; Malaga-Toboła, U.; Gancarz, M. Effect of supplementation of flour with fruit fiber on the volatile compound profile in bread. Sensors 2021, 21, 2812. [Google Scholar] [CrossRef] [PubMed]
- García-González, D.L.; Aparicio, R. Coupling MOS sensors and gas chromatography to interpret the sensor responses to complex food aroma: Application to virgin olive oil. Food Chem. 2010, 120, 572–579. [Google Scholar] [CrossRef]
- AUS-MEAT. Handbook of Australian Meat, 7th ed.; AUS-MEAT Ltd.: South Brisbane, Australia, 2005. [Google Scholar]
- Liu, H.; Wang, Z.; Zhang, D.; Shen, Q.; Pan, T.; Hui, T.; Ma, J. Characterization of key aroma compounds in Beijing roasted duck by gas chromatography-olfactometry-mass spectrometry, odor activity values and aroma-recombination experiments. J. Agric. Food Chem. 2019, 67, 5847–5856. [Google Scholar] [CrossRef] [PubMed]
- Schieberle, P. New developments in methods for analysis of volatile flavor compounds and their precursors. In Characterization of Food: Emerging Methods; Gaonkar, A.G., Ed.; Elsevier Science BV: Amsterdam, The Netherlands, 1995; pp. 403–431. [Google Scholar]
- Bueno, M.; Campo, M.M.; Cacho, J.; Ferreira, V.; Escudero, A. A model explaining and predicting lamb flavour from the aroma-active chemical compounds released upon grilling light lamb loins. Meat Sci. 2014, 98, 622–628. [Google Scholar] [CrossRef]
- Elmore, J.S.; Cooper, S.L.; Enser, M.; Mottram, D.S.; Sinclair, L.A.; Wilkinson, R.G.; Wood, J.D. Dietary manipulation of fatty acid composition in lamb meat and its effect on the volatile aroma compounds of grilled lamb. Meat Sci. 2005, 69, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Amanpour, A.; Kelebek, H.; Selli, S. Characterization of aroma, aroma-active compounds and fatty acids profiles ofcv. Nizip Yaglik oils as affected by three maturity periods of olives. J. Sci. Food Agric. 2018, 99, 726–740. [Google Scholar] [CrossRef] [PubMed]
- Fogerty, A.C.; Whitfield, F.B.; Svoronos, D.; Ford, G.L. The composition of the fatty acids and aldehydes of the ethanolamine and choline phospholipids of various meats. Int. J. Food Sci. Technol. 2007, 26, 363–371. [Google Scholar] [CrossRef]
- Dach, A.; Schieberle, P. Characterization of the Key Aroma Compounds in a Freshly Prepared Oat (Avena sativa L.) Pastry by Application of the Sensomics Approach. J. Agric. Food Chem. 2021, 69, 1578–1588. [Google Scholar] [CrossRef]
- Watanabe, A.; Kamada, G.; Imanari, M.; Shiba, N.; Yonai, M.; Muramoto, T. Effect of aging on volatile compounds in cooked beef. Meat Sci. 2015, 107, 12–19. [Google Scholar] [CrossRef]
- Elmore, J.S.; Nisyrios, I.; Mottram, D.S. Analysis of the headspace aroma compounds of walnuts (Juglans regia L.). Flavour Fragr. J. 2005, 20, 501–506. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, L.; Wang, Z.; Wang, X.; Liu, Y. Physicochemical and sensory variables of Maillard reaction products obtained from Takifugu obscurus muscle hydrolysates. Food Chem. 2019, 290, 40–46. [Google Scholar] [CrossRef]
- Jia, X.; Wang, L.; Zheng, C.; Yang, Y.; Wang, X.; Hui, J.; Zhou, Q. Key odorant differences in fragrant brassica napus and Brassica juncea oils revealed by gas chromatography-olfactometry, odor activity values, and aroma recombination. J. Agric. Food Chem. 2020, 68, 14950–14960. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, Y.; Pan, D.; Wang, Y.; Cao, J. Effects of high pressure treatment on lipolysis-oxidation and volatiles of marinated pork meat in soy sauce. Meat Sci. 2018, 145, 186–194. [Google Scholar] [CrossRef]
- Elmore, J.S.; Mottram, D.S.; Dodson, A.T. Meat aroma analysis: Problems and solutions. In Handbook of Flavor Characterization: Sensory Analysis, Chemistry, and Physiology; Deibler, K.D., Delwiche, J., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2004; pp. 304–319. [Google Scholar]
- Xiao, Z.; Xiang, P.; Zhu, J.; Zhu, Q.; Liu, Y.; Niu, Y. Evaluation of the perceptual interaction among sulfur compounds in mango by Feller’s additive model, odor activity value, and vector model. J. Agric. Food Chem. 2019, 67, 8926–8937. [Google Scholar] [CrossRef] [PubMed]
- Coppock, B.M.; MacLeod, G. The effect of ageing on the sensory and chemical properties of boiled beef aroma. J. Sci. Food Agric. 1977, 28, 206–214. [Google Scholar] [CrossRef]
- Ma, Q.; Hamid, N.; Bekhit, A.E.D.; Robertson, J.; Law, T.F. Evaluation of pre-rigor injection of beef with proteases on cooked meat volatile profile after 1 day and 21 days post-mortem storage. Meat Sci. 2012, 92, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Zhan, P.; Li, W.; Zhang, X.; He, X.; Ma, Y.; Guo, Z.; Zhang, D. Contribution to the aroma characteristics of mutton process flavor from oxidized suet evaluated by descriptive sensory analysis, gas chromatography, and electronic nose through partial least squares regression. Eur. J. Lipid Sci. Technol. 2014, 116, 1522–1533. [Google Scholar] [CrossRef]
- Gancarz, M.; Malaga-Toboła, U.; Oniszczuk, A.; Tabor, S.; Oniszczuk, T.; Gawrysiak-Witulska, M.; Rusinek, R. Detection and measurement of aroma compounds with the electronic nose and a novel method for MOS sensor signal analysis during the wheat bread making process. Food Bioprod. Process. 2021, 127, 90–98. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Biasioli, F.; Cosio, M.S.; Schampicchio, M. Hexanal as biomarker for milk oxidative stress induced by copper ions. J. Dairy Sci. 2017, 100, 1650–1656. [Google Scholar] [CrossRef]
- Shahidi, F.; Yun, J.; Rubin, L.; Wood, D. The Hexanal Content as an Indicator of Oxidative Stability and Flavour Acceptability in Cooked Ground Pork. Can. Inst. Food Sci. Technol. J. 1987, 20, 104–106. [Google Scholar] [CrossRef]
Compounds a | LRIs | Identification d | |
---|---|---|---|
Literature b | Calculated c | ||
Pentane | – e | – | MS |
Hexane | – | – | MS, S |
1-Heptene | 750 | 757 | MS, LRI |
Propanal | 798 | 795 | MS, LRI, O, S |
Octane | – | – | MS, S |
Acetone | 814 | 816 | MS, LRI |
Methyl Ester Acetic Acid | 827 | 827 | MS, LRI |
Ethyl Acetate | 887 | 890 | MS, LRI |
2-Butanone | 900 | 905 | MS, LRI |
3-Methylbutanal | 915 | 918 | MS, LRI, O, S |
Pentanal | 979 | 980 | MS, LRI, O, S |
2,3-Pentanedione | 1060 | 1059 | MS, LRI, O, S |
Hexanal | 1094 | 1088 | MS, LRI, O, S |
Heptanal | 1188 | 1188 | MS, LRI, O, S |
2-Pentylfuran | 1230 | 1234 | MS, LRI, O, S |
1-Pentanol | 1261 | 1259 | MS, LRI |
Octanal | 1291 | 1293 | MS, LRI, O, S |
2,5-Octanedione | – | 1329 | MS |
2,6-Dimethylpyrazine | 1338 | 1337 | MS, LRI |
1-Hexanol | 1359 | 1362 | MS, LRI |
Nonanal | 1396 | 1398 | MS, LRI, O, S |
(E)-2-Octenal | 1434 | 1437 | MS, LRI, O, S |
1-Octen-3-Ol | 1456 | 1458 | MS, LRI, O, S |
1-Heptanol | 1462 | 1464 | MS, LRI, O, S |
2-Ethyl-1-Hexanol | 1499 | 1497 | MS, LRI |
Benzaldehyde | 1534 | 1537 | MS, LRI, O, S |
(E)-2-Nonenal | 1549 | 1550 | MS, LRI, O, S |
1-Octanol | 1573 | 1571 | MS, LRI |
2,3-Butanediol | 1583 | 1589 | MS, LRI |
(E)-2-Octen-1-Ol | 1622 | 1624 | MS, LRI, O, S |
Butanoic Acid | 1644 | 1642 | MS, LRI |
Pentanoic Acid | 1720 | 1724 | MS, LRI |
Hexanoic Acid | 1854 | 1856 | MS, LRI |
Compounds | Ion Fragments a | Standard Calibration Curves b | R2 |
---|---|---|---|
Propanal | 27, 28, 29, 58 | y = 0.0001x + 0.0022 | 0.995 |
3-Methylbutanal | 41,43,44, 58 | y = 0.00004x + 0.0009 | 0.990 |
Pentanal | 29, 41, 44, 58 | y = 0.0002x + 0.0016 | 0.990 |
2,3-Pentanedione | 27, 29, 43, 57 | y = 0.0001x − 0.0002 | 0.987 |
Hexanal | 41, 44, 56, 57 | y = 0.0008x + 0.1074 | 0.989 |
Heptanal | 41, 43, 44, 70 | y = 0.0003x + 0.0021 | 0.999 |
2-Pentylfuran | 53, 81, 82, 138 | y = 0.004x + 0.0012 | 0.998 |
Octanal | 41,43, 56, 84 | y = 0.0002x + 0.018 | 0.994 |
Nonanal | 41, 43, 56, 57 | y = 0.0011x + 0.0023 | 0.997 |
(E)-2-Octenal | 29, 41, 55, 70 | y = 0.0004x + 0.0007 | 0.988 |
1-Octen-3-Ol | 43, 55, 57, 72 | y = 0.0004x + 0.0086 | 0.999 |
1-Heptanol | 41, 55, 56, 70 | y = 0.0019x − 0.0071 | 0.997 |
Benzaldehyde | 51, 77, 105, 106 | y = 0.0067x − 0.0265 | 0.994 |
(E)-2-Nonenal | 41, 43, 55, 70 | y = 0.0105x − 0.0097 | 0.992 |
(E)-2-Octen-1-Ol | 41, 43, 55, 57 | y = 0.0011x − 0.0038 | 0.999 |
Compounds | Concentration (ng/g) a | OAVs b | Contribution Rates c | |||
---|---|---|---|---|---|---|
Pre-Rigor | Post-Rigor | Pre-Rigor | Post-Rigor | Pre-Rigor | Post-Rigor | |
Pentane | 21.38 ± 1.68 a | 10.13 ± 0.68 b | 0 | 0 | 0 | 0 |
Hexane | 13.78 ± 0.77 a | 5.85 ± 0.38 b | 0 | 0 | 0 | 0 |
1-Heptene | 3.80 ± 0.15 b | 4.42 ± 0.25 a | 0 | 0 | 0 | 0 |
Propanal | 105.86 ± 2.99 b | 152.67 ± 10.72 a | 11.14 ± 0.31 b | 16.07 ± 1.13 a | 0.49 ± 0.02 | 0.49 ± 0.03 |
Octane | 14.69 ± 0.50 b | 21.45 ± 0.89 a | 0 | 0 | 0 | 0 |
Acetone | 13.33 ± 0.71 b | 16.00 ± 0.71a | 0 | 0 | 0 | 0 |
Methyl Ester Acetic Acid | 8.72 ± 0.58 | 7.62 ± 0.42 | 0 | 0 | 0 | 0 |
Ethyl Acetate | 9.46 ± 0.60 b | 15.32 ± 1.08 a | 0.10 ± 0.01 b | 0.15 ± 0.01 a | 0 | 0.01 ± 0.00 |
2-Butanone | 4.93 ± 0.26 b | 8.71 ± 0.59 a | 0 | 0 | 0 | 0 |
3-Methylbutanal | 85.31 ± 1.94 a | 48.79 ± 4.97 b | 426.56 ± 9.71 a | 243.96 ± 24.84 b | 18.85 ± 0.63 a | 7.40 ± 0.68 b |
Pentanal | 1398.14 ± 33.58 | 1407.06 ± 81.28 | 116.51 ± 2.80 | 117.26 ± 6.77 | 5.12 ± 0.08 a | 3.58 ± 0.17 b |
2,3-Pentanedione | 115.22 ± 3.01 b | 208.95 ± 11.61 a | 5.76 ± 0.15 b | 10.45 ± 0.58 a | 0.26 ± 0.01 b | 0.32 ± 0.02 a |
Hexanal | 3218.71 ± 75.44 b | 4383.43 ± 114.32 a | 715.27 ± 16.77 b | 974.1 ± 25.40 a | 31.62 ± 1.10 | 29.92 ± 0.66 |
Heptanal | 744.04 ± 23.91 b | 1294.82 ± 44.14 a | 248.02 ± 7.97 b | 431.61 ± 14.71 a | 10.88 ± 0.17 b | 13.21 ± 0.24 a |
2-Pentylfuran | 13.26 ± 0.36 b | 20.91 ± 0.73 a | 2.21 ± 0.06 b | 3.49 ± 0.12 a | 0.10 ± 0.00 b | 0.11 ± 0.00 a |
1-Pentanol | 162.93 ± 6.09 | 165.20 ± 9.19 | 0.04 ± 0.00 | 0.04 ± 0.00 | 0 | 0 |
Octanal | 264.68 ± 27.51 b | 506.82 ± 28.84 a | 378.12 ± 39.31 b | 724.02 ± 41.20 a | 16.31 ± 1.36 b | 22.17 ± 1.09 a |
2,5-Octanedione | 170.57 ± 8.26 b | 537.81 ± 9.87 a | 0 | 0 | 0 | 0 |
2,6-Dimethylpyrazine | 11.07 ± 0.45 a | 0 b | 0.03 ± 0.00 a | 0 b | 0 | 0 |
1-Hexanol | 25.39 ± 1.79 b | 48.87 ± 2.02 a | 0.01 ± 0.00 b | 0.02 ± 0.00 a | 0 | 0 |
Nonanal | 119.41 ± 4.51 b | 197.01 ± 6.38 a | 119.41 ± 4.51 b | 197.01 ± 6.38 a | 5.23 ± 0.13 b | 6.05 ± 0.18 a |
(E)-2-Octenal | 8.86 ± 0.29 b | 21.52 ± 0.69 a | 2.96 ± 0.10 b | 7.17 ± 0.23 a | 0.13 ± 0.01 b | 0.22 ± 0.01 a |
1-Octen-3-Ol | 219.01 ± 9.90 b | 498.46 ± 10.96 a | 219.01 ± 9.90 b | 498.46 ± 10.96 a | 9.57 ± 0.27 b | 15.32 ± 0.31 a |
1-Heptanol | 15.26 ± 0.38 b | 17.00 ± 0.33 a | 5.09 ± 0.12 b | 5.67 ± 0.0.11 a | 0.22 ± 0.00 a | 0.18 ± 0.00 b |
2-Ethyl-1-Hexanol | 1.76 ± 0.12 b | 3.25 ± 0.26 a | 0 | 0 | 0 | 0 |
Benzaldehyde | 7.62 ± 0.04 b | 8.88 ± 0.05 a | 2.54 ± 0.01 b | 2.96 ± 0.02 a | 0.11 ± 0.00 a | 0.09 ± 0.00 b |
(E)-2-Nonenal | 1.59 ± 0.00 b | 1.80 ± 0.01 a | 19.92 ± 0.04 b | 22.58 ± 0.14 a | 0.88 ± 0.02 a | 0.70 ± 0.02 b |
1-Octanol | 12.24 ± 0.42 b | 21.77 ± 0.64 a | 0.11 ± 0.00 b | 0.20 ± 0.01 a | 0b | 0.01 ± 0.00 a |
2,3-Butanediol | 4.31 ± 0.57 | 5.65 ± 0.59 | 0 | 0 | 0 | 0 |
(E)-2-Octen-1-Ol | 14.94 ± 0.39 b | 23.06 ± 0.93 a | 4.98 ± 0.13 b | 7.69 ± 0.31 a | 0.22 ± 0.00 | 0.24 ± 0.01 |
Butanoic Acid | 1.06 ± 0.10 a | 0 b | 0 | 0 | 0 | 0 |
Pentanoic Acid | 1.63 ± 0.11 a | 0 b | 0 | 0 | 0 | 0 |
Hexanoic Acid | 27.29 ± 1.69 b | 50.54 ± 4.28 a | 0.01 ± 0.00 b | 0.02 ± 0.00 a | 0 | 0 |
Compounds (Peak Area) | Roasted Mutton | |
---|---|---|
Pre-Rigor | Post-Rigor | |
Propanal | 1039.59 ± 31.03 | 1036.75 ± 33.45 |
Hexane | 489.23 ± 30.71 | 545.17 ± 49.23 |
3-Methylbutanal | 251.64 ± 3.01 b | 273.25 ± 7.56 a |
Pentanal | 7548.89 ± 108.17 b | 8558.67 ± 189.74 a |
2,3-Pentanedione | 175.81 ± 19.61 | 177.83 ± 19.76 |
2,3-Butanediol | 1875.48 ± 63.96 | 2063.67 ± 89.75 |
Hexanal | 77261.81 ± 1382.88 b | 87650.17 ± 1309.27 a |
1-Hexanol | 112.67 ± 2.40 b | 135.58 ± 4.32 a |
Heptanal | 2079.92 ± 43.80 b | 2627.92 ± 132.13 a |
1-Octen-3-Ol | 2498.33 ± 52.11 b | 2934.42 ± 129.93 a |
Octanal | 614.85 ± 22.62 b | 712.08 ± 12.94 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Hui, T.; Fang, F.; Ma, Q.; Li, S.; Zhang, D.; Wang, Z. Characterization and Discrimination of Key Aroma Compounds in Pre- and Postrigor Roasted Mutton by GC-O-MS, GC E-Nose and Aroma Recombination Experiments. Foods 2021, 10, 2387. https://doi.org/10.3390/foods10102387
Liu H, Hui T, Fang F, Ma Q, Li S, Zhang D, Wang Z. Characterization and Discrimination of Key Aroma Compounds in Pre- and Postrigor Roasted Mutton by GC-O-MS, GC E-Nose and Aroma Recombination Experiments. Foods. 2021; 10(10):2387. https://doi.org/10.3390/foods10102387
Chicago/Turabian StyleLiu, Huan, Teng Hui, Fei Fang, Qianli Ma, Shaobo Li, Dequan Zhang, and Zhenyu Wang. 2021. "Characterization and Discrimination of Key Aroma Compounds in Pre- and Postrigor Roasted Mutton by GC-O-MS, GC E-Nose and Aroma Recombination Experiments" Foods 10, no. 10: 2387. https://doi.org/10.3390/foods10102387
APA StyleLiu, H., Hui, T., Fang, F., Ma, Q., Li, S., Zhang, D., & Wang, Z. (2021). Characterization and Discrimination of Key Aroma Compounds in Pre- and Postrigor Roasted Mutton by GC-O-MS, GC E-Nose and Aroma Recombination Experiments. Foods, 10(10), 2387. https://doi.org/10.3390/foods10102387