Nutritional Composition, In Vitro Antioxidant Activity and Phenolic Profile of Shortcrust Cookies Supplemented by Edible Flowers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemicals and Reagents
2.3. Preparation of Shortcrust Cookies
2.4. Chemical Composition Analysis of the Cookies
2.5. In Vitro Digestibility Assay
2.6. Extraction of Phenolic Compounds of the Cookies
2.6.1. Defatting of Cookie Samples
2.6.2. Extraction of Free Phenolic Compounds
2.6.3. Extraction of Bound Phenolics
2.7. Determination of Total Phenolic Compound Content
2.8. Antioxidant Activity Measured Using DPPH and ABTS Radicals
2.9. Determination of Individual Phenolics Using HPLC
2.10. Antioxidant Activity Determination Using Photochemiluminiscence Assay
2.11. Statistical Analysis
3. Results
3.1. Chemical Analysis
3.2. Phenolic Compound Contents and Antioxidant Activity Values of the Cookies
3.3. Flavonoid, Stilbene and Phenolic Acid Contents of Free and Bound Phenolic Compounds
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manley, D. Short dough biscuits. In Manley’s Technology of Biscuits, Crackers and Cookies, 4th ed.; Manley, D., Ed.; Woodhead Publishing Limited: Sawston, UK, 2011; pp. 331–346. [Google Scholar]
- Tarrega, A.; Marcano, J.; Fiszman, S. Consumer perceptions of indulgence: A case study with cookies. Food Qual. Prefer. 2017, 62, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Jacob, J.; Leelavathi, K. Effect of fat-type on cookie dough and cookie quality. J. Food Eng. 2007, 79, 299–305. [Google Scholar] [CrossRef]
- Agrahar-Murugkar, D. Food to food fortification of breads and biscuits with herbs, spices, millets and oilseeds on bio-accessibility of calcium, iron and zinc and impact of proteins, fat and phenolics. LWT Food Sci. Technol. 2020, 130, 109703. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E. Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J. Food Compos. Anal. 2017, 60, 38–50. [Google Scholar] [CrossRef]
- Skrajda-Brdak, M.; Dabrowski, G.; Konopka, I. Edible flowers, a source of valuable phytonutrients and their pro-healthy effects—A review. Trends Food Sci. Technol. 2020, 103, 179–199. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Calhelna, R.C.; Alves, M.J.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Edible flowers as sources of phenolic compounds with bioactive potential. Food Res. Int. 2018, 105, 580–588. [Google Scholar] [CrossRef] [Green Version]
- Ou, J.; Wang, M.; Zheng, J.; Ou, S. Positive and negative effects of polyphenol incorporation in baked foods. Food Chem. 2019, 284, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Lu, B.; Xu, B. An update on the health benefits promoted by edible flowers and involved mechanisms. Food Chem. 2021, 340, 127940. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Method No. 930.15. In Official Methods of Analysis of the Association of Official Analytical Chemists, 18th ed.; AOAC: Washington, DC, USA, 2007. [Google Scholar]
- AOAC. Determination of Moisture, Ash, Protein and Fat. In Official Method of Analysis of the Association of Analytical Chemists, 18th ed.; AOAC: Washington, DC, USA, 2005. [Google Scholar]
- AACC. Method [30-25.01]. In Approved Methods of the AACC; American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- ISO 10520. Native Starch—Determination of Starch Content—Ewer’s Polarimetric Method; International Standard Organisation: Geneva, Switzerland, 1997. [Google Scholar]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Ferreira, I.C.F.R. Nutritional and chemical characterization of edible petals and corresponding infusions: Valorization as new food ingredients. Food Chem. 2017, 220, 337–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumczynski, D.; Bubelová, Z.; Fišera, M. Determination of chemical, insoluble dietary fibre, neutral-detergent fibre and in vitro digestibility in rice types commercialized in Czech markets. J. Food Compos. Anal. 2015, 40, 8–13. [Google Scholar] [CrossRef]
- Mišurcová, L. Nove Nutricni Aspekty a Vyuziti Morskych a Sladkovodnich ras ve Vyzive Cloveka. Dissertation Thesis, Tomas Bata University, Zlin, Czech Republic, 2008. [Google Scholar]
- Alrahmany, R.; Avis, T.J.; Tsompo, A. Treatment of oat bran with carbohydrases increases soluble phenolic acid content and influences antioxidant and antimicrobial activities. Food Res. Int. 2013, 52, 568–574. [Google Scholar] [CrossRef]
- Kotásková, E.; Sumczynski, D.; Mlček, J.; Valášek, P. Determination of free and bound phenolics using HPLC-DAD, antioxidant activity and in vitro digestibility of Eragrostis tef. J. Food Compos. Anal. 2016, 46, 15–21. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzym. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Sumczynski, D.; Bubelová, Z.; Sneyd, J.; Erb-Weber, S.; Mlček, J. Total phenolics, flavonoids, antioxidant activity, crude fibre and digestibility in non-traditional wheat flakes and muesli. Food Chem. 2015, 174, 319–325. [Google Scholar] [CrossRef]
- Besco, E.; Braccioli, E.; Vertuani, S.; Ziosi, P.; Brazzo, F.; Bruni, R.; Sacchetti, G.; Manfredini, S. The use of photochemiluminescence for the measurement of the integral antioxidant capacity of baobab products. Food Chem. 2007, 102, 1352–1356. [Google Scholar] [CrossRef]
- Rosenfelder, P.; Eklund, M.; Mosenthin, R. Nutritive value of wheat and wheat by products in pig nutrition: A review. Anim. Feed Sci. Technol. 2013, 185, 107–125. [Google Scholar] [CrossRef]
- Tang, M.; Wang, L.; Cheng, X.; Wu, Y.; Ouyang, J. Non-starch constituents influence the in vitro digestibility of naked oat (Avena nuda L.) starch. Food Chem. 2019, 297, 124953. [Google Scholar] [CrossRef] [PubMed]
- Baik, B.K.; Ullrich, S. Barley for food: Characteristics, improvement, and renewed interest. J. Cereal Sci. 2008, 48, 233–242. [Google Scholar] [CrossRef]
- Frede, E. Butter and Other Milk Products—Properties and Analysis. In Encyclopedia of Diary Sciences, 2nd ed.; Fuquay, J.W., Fox, P.F., McSweeney, P.L.H., Eds.; Academic Press Inc.: Cambridge, MA, USA, 2011; p. 506514. [Google Scholar]
- Liao, M.; Zhao, Y.; Xu, Y.; Gong, C.; Jiao, S. Effects of hot air-assisted radio frequency roasting on nutritional quality and aroma composition of cashew nut kernels. LWT Food Sci. Technol. 2019, 116, 274–280. [Google Scholar] [CrossRef]
- Gao, X.; Tong, J.; Guo, L.; Yu, L.; Shaopeng, L.; Yang, B.; Wang, L.; Liu, Y.; Li, F.; Guo, J.; et al. Influence of gluten and starch granules interactions on dough mixing properties in wheat (Triticum aestivum L.). Food Hydrocoll. 2020, 106, 105885. [Google Scholar] [CrossRef]
- Antonini, E.; Lombardi, F.; Alfieri, M.; Diamantini, G.; Redaelli, R.; Ninfali, P. Nutritional characterization of naked and dehulled oat cultivar samples at harvest and after storage. J. Cereal Sci. 2016, 72, 46–53. [Google Scholar] [CrossRef]
- Koláčková, T.; Kolofiková, K.; Sytařová, I.; Snopek, L.; Sumczynski, D.; Orsavová, J. Matcha Tea: Analysis of nutritional composition, phenolics and antioxidant activity. Plant Foods Hum. Nutr. 2020, 75, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Sogi, D.S.; Siddiq, M.; Dolan, K.D. Total phenolics, carotenoids and antioxidant properties of Tommy Atkin mango cubes as affected by drying techniques. LWT Food Sci. Technol. 2015, 62 Pt 2, 564–568. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18 Pt B, 820–897. [Google Scholar] [CrossRef]
- Bondonno, N.P.; Bondonno, C.P.; Ward, N.C.; Hodgson, J.M.; Croft, K.D. The cardiovascular health benefits of apples: Whole fruit vs. isolated compounds. Trends Food Sci. Technol. 2017, 69 Pt B, 243–256. [Google Scholar] [CrossRef]
- Fardet, A.; Rock, E.; Rémésy, C. Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo? J. Cereal Sci. 2008, 48, 258–276. [Google Scholar] [CrossRef]
- Komes, D.; Horžić, D.; Belščak, A.; Kovačević Ganić, A.; Vulić, A. Green tea preparation and its influence on the content of bioactive compounds. Food Res. Int. 2010, 43, 167–176. [Google Scholar] [CrossRef]
- Abdel-Aal, E.M.; Rabalski, I. Effect of baking on free and bound phenolic acids in wholegrain bakery products. J. Cereal Sci. 2013, 57, 312–318. [Google Scholar] [CrossRef]
Ingredients (%, w/w) | Control | C-1 | C-2 | C-3 | C-4 | C-5 |
---|---|---|---|---|---|---|
Wheat flour | 100 | 18.0 | 43.0 | 59.3 | 43.0 | 40.8 |
Substitute flour | - | 82.0 Whole Spelt | 57.0 Oat flakes | 40.7 Barley flakes | 57.0 Kamut | 59.2 Red wheat |
Edible flowers | - | 0.8 Lavender | 3.6 Rose | 1.2 Hop flower | 4.1 Jasmine | 3.4 Elderflower |
Flavouring ingredients | - | 44.5 Dried apricot | 3.3 Raspberry 1 | 16.5 Dried malt extract | 43.0 Dried mango | 2.8 Dried lemon peel |
5.5 Strawberry 1 | 14.3 Dried ginger | 5.8 Matcha tea | 22.4 Dried apple | |||
18.2 Cashew | ||||||
Butter | 61.0 | 62.2 | 69.5 | 61.8 | 69.8 | 78.2 |
Powdered sugar | 32.6 | 33.4 | 37.3 | 16.5 | 37.2 | 41.9 |
Egg yolk | 17.5 | 17.8 | 20.2 | 17.7 | 19.9 | 22.1 |
Vanillin sugar | 6.5 | 6.7 | 7.5 | 6.6 | 7.4 | 8.4 |
Salt | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Nutritional Properties | Control | C-1 | C-2 | C-3 | C-4 | C-5 |
---|---|---|---|---|---|---|
DM (%) | 98.0 ± 0.1 a | 94.7 ± 0.2 b | 96.8 ± 0.1 c | 96.2 ± 0.1 d | 95.6 ± 0.2 e | 96.1 ± 0.1 c |
CP (%) | 10.1 ± 0.3 a | 11.0 ± 0.3 b | 10.2 ± 0.3 a | 8.4 ± 0.5 c | 8.6 ± 0.4 c | 9.4 ± 0.3 d |
CFat (%) | 28.3 ± 0.2 a | 25.0 ± 0.2 b | 30.8 ± 1.3 c | 27.2 ± 0.6 d | 22.6 ± 1.7 e | 28.0 ± 0.1 f |
Ash (%) | 0.56 ± 0.03 a | 1.44 ± 0.04 b | 1.12 ± 0.03 c | 0.80 ± 0.05 d | 0.97 ± 0.01 e | 1.06 ± 0.01 f |
TCH (%) | 63.2 ± 0.2 a | 68.1 ± 0.2 b | 61.1 ± 0.5 c | 67.6 ± 0.4 d | 72.5 ± 0.7 e | 65.6 ± 0.1 f |
Starch (%) | 43.6 ± 1.5 a | 34.2 ± 1.4 b | 29.3 ± 1.5 c | 41.6 ± 1.5 d | 34.4 ± 0.4 b | 34.6 ± 0.7 b |
CF (%) | 1.17 ± 0.13 a | 1.95 ± 0.05 b | 1.92 ± 0.12 b | 1.51 ± 0.15 c | 2.00 ± 0.04 d | 1.62 ± 0.12 e |
NDF (%) | 1.88 ± 0.16 a | 4.53 ± 0.26 b | 4.76 ± 0.19 c | 2.64 ± 0.19 d | 4.99 ± 0.16 e | 4.70 ± 0.01 c |
OMD (%) | 99.2 ± 0.1 a | 95.3 ± 0.3 b,d | 95.4 ± 0.5 c,b | 97.2 ± 0.1 d | 96.0 ± 0.4 e | 96.4 ± 0.5 e |
DMD (%) | 98.3 ± 0.3 a | 94.1 ± 0.3 b,d | 94.4 ± 0.5 c,b | 96.2 ± 0.1 d | 94.9 ± 0.4 e | 95.3 ± 0.5 e |
Energy (kJ/100 g) | 2245 ± 15 a | 2148 ± 14 b | 2282 ± 20 c | 2210 ± 34 d | 2110 ± 29 e | 2221 ± 11 d |
Control | C-1 | C-2 | C-3 | C-4 | C-5 | ||
---|---|---|---|---|---|---|---|
Free PC | mg GAE/g | 0.47 ± 0.02 a 46% | 1.22 ± 0.03 b 70% | 1.68 ± 0.09 c 52% | 1.28 ± 0.11 b 68% | 3.24 ± 0.13 d 68% | 1.61 ± 0.05 c 72% |
Bound PC | 0.54 ± 0.10 a 54% | 0.52 ± 0.01 a 30% | 1.56 ± 0.06 b 48% | 0.61 ± 0.01 c 32% | 1.52 ± 0.08 b 32% | 0.62 ± 0.01 c 28% | |
Total PC | 1.01 ± 0.08 a | 1.74 ± 0.01 b | 3.24 ± 0.04 c | 1.90 ± 0.06 d | 4.76 ± 0.16 e | 2.22 ± 0.03 f | |
DPPH: Free PC | mg TE/g | 0.19 ± 0.01 a 40% | 0.72 ± 0.03 b 53% | 2.33 ± 0.13 c 68% | 0.86 ± 0.07 d 57% | 4.79 ± 0.15 e 84% | 1.24 ± 0.04 f 59% |
DPPH: Bound PC | 0.28 ± 0.03 a 60% | 0.64 ± 0.04 b 47% | 1.12 ± 0.09 c 32% | 0.64 ± 0.04 b 43% | 0.88 ± 0.07 d 16% | 0.86 ± 0.04 d 41% | |
DPPH: Total PC | 0.47 ± 0.02 a | 1.36 ± 0.03 b | 3.45 ± 0.11 c | 1.50 ± 0.06 d | 5.67 ± 0.08 e | 2.10 ± 0.04 f | |
ABTS: Free PC | mg TE/g | 0.51 ± 0.01 a 41% | 1.53 ± 0.08 b 49% | 4.30 ± 0.14 c 54% | 1.97 ± 0.14 d 56% | 10.6 ± 1.0 e 78% | 2.42 ± 0.13 f 67% |
ABTS: Bound PC | 0.74 ± 0.08 a 59% | 1.58 ± 0.20 b 51% | 3.74 ± 0.09 c 46% | 1.58 ± 0.10 b 44% | 3.03 ± 0.18 d 22% | 1.03 ± 0.06 e 33% | |
ABTS: Total PC | 1.25 ± 0.05 a | 3.11 ± 0.09 b | 8.04 ± 0.11 c | 3.55 ± 0.12 d | 13.6 ± 1.2 e | 3.45 ± 0.10 d | |
PCL-ACW | mg AAE/g | 0.04 ± 0.01 a | 0.29 ± 0.02 b | 0.34 ± 0.01 c | 0.10 ± 0.04 d | 0.63 ± 0.02 e | 0.81 ± 0.04 f |
PCL-ACL | mg TE/g | 0.06 ± 0.01 a | 0.54 ± 0.05 b | 1.39 ± 0.01 c | 0.44 ± 0.03 d | 3.19 ± 0.22 e | 1.45 ± 0.01 f |
r1 | ||
---|---|---|
DPPH | Free PC | 0.9672 |
Bound PC | 0.7464 | |
Total PC | 0.9993 | |
ABTS | Free PC | 0.9683 |
Bound PC | 0.9446 | |
Total PC | 0.9899 |
μg/g | Control | C-1 | C-2 | C-3 | C-4 | C-5 | |
---|---|---|---|---|---|---|---|
Epigallocatechin | Free | ND | 0.50 ± 0.04 a | 56.2 ± 0.6 b | 42.7 ± 2.8 c | 901 ± 11 d | 73.4 ± 1.2 e |
Bound | ND | ND | 8.54 ± 0.5 a | ND | 246 ± 4 b | 12.1 ± 0.3 c | |
Total FS | ND | 0.50 ± 0.04 a | 64.7 ± 0.6 b | 42.7 ± 2.8 c | 1150 ± 8 d | 85.6 ± 0.8 e | |
Catechin | Free | 1.35 ± 0.04 a | 43.2 ± 2.8 b | 23.7 ± 0.7 c | 2.96 ± 0.14 d | 5.67 ± 0.21 e | 4.14 ± 0.21 f |
Bound | 1.57 ± 0.05 a | 3.51 ± 0.32 b | 1.29 ± 0.14 c | 0.81 ± 0.04 d | 1.59 ± 0.14 a | 4.43 ± 0.26 e | |
Total FS | 2.92 ± 0.05 a | 46.7 ± 1.56 b | 25.0 ± 0.4 c | 3.77 ± 0.09 d | 7.16 ± 0.18 e | 8.57 ± 0.24 f | |
Epicatechin | Free | 4.90 ± 0.12 a | 4.17 ± 0.07 b | 5.79 ± 0.01 c | 1.91 ± 0.11 d | 1090 ± 29 e | 22.1 ± 0.1 f |
Bound | 0.97 ± 0.04 a | 0.62 ± 0.04 b | 11.5 ± 0.3 c | ND | 420 ± 4 d | 19.3 ± 0.1 e | |
Total FS | 5.87 ± 0.08 a | 4.79 ± 0.06 b | 17.3 ± 0.14 c | 1.91 ± 0.11 d | 1510 ± 17 e | 41.4 ± 0.1 f | |
Rutin | Free | 0.09 ± 0.01 a | 1.27 ± 0.10 b | 153 ± 1 c | 0.59 ± 0.01 d | 4.79 ± 0.24 e | 266 ± 1 f |
Bound | ND | ND | 4.94 ± 0.9 a | ND | 0.24 ± 0.02 b | 40.4 ± 0.06 c | |
Total FS | 0.09 ± 0.01 a | 1.27 ± 0.10 b | 158 ± 1 c | 0.59 ± 0.01 d | 5.03 ± 0.13 e | 306 ± 1 f | |
Quercetin | Free | ND | ND | ND | ND | ND | ND |
Bound | ND | 1.46 ± 0.05 a | ND | 3.78 ± 0.01 b | ND | ND | |
Total FS | ND | 1.46 ± 0.05 a | ND | 3.78 ± 0.01 b | ND | ND | |
Kaempferol | Free | ND | 0.32 ± 0.02 a | 3.49 ± 0.20 b | ND | 0.52 ± 0.04 c | ND |
Bound | ND | 5.72 ± 0.05 a | 4.35 ± 0.23 b | 3.01 ± 0.04 c | ND | 0.43 ± 0.02 d | |
Total FS | ND | 6.04 ± 0.03 a | 7.84 ± 0.41 b | 3.01 ± 0.04 c | 0.52 ± 0.04 d | 0.43 ± 0.02 e | |
Resveratrol | Free | ND | 1.41 ± 0.01 a | 2.63 ± 0.05 b | 1.98 ± 0.03 c | 1.64 ± 0.05 d | 8.35 ± 0.04 e |
Bound | ND | ND | 0.40 ± 0.01 a | 1.06 ± 0.01 b | 2.45 ± 0.15 c | ND | |
Total FS | ND | 1.41 ± 0.01 a | 3.03 ± 0.03 b | 3.03 ± 0.02 b | 4.09 ± 0.10 c | 8.35 ± 0.04 d | |
Free FS | 6.34 ± 0.17 a | 50.9 ± 3.1 b | 245 ± 3 c | 50.1 ± 3.1 b | 2010 ± 42 d | 374 ± 3 e | |
Bound FS | 2.54 ± 0.15 a | 11.3 ± 0.5 b | 31.0 ± 3.1 c | 8.66 ± 0.10 d | 670 ± 8 e | 76.7 ± 1.6 f | |
Total FS | 8.88 ± 0.32 a | 62.2 ± 3.6 b | 276 ± 6 c | 58.8 ± 3.2 b | 2680 ± 50 d | 451 ± 5 e |
μg/g | Control | C-1 | C-2 | C-3 | C-4 | C-5 | |
---|---|---|---|---|---|---|---|
Chlorogenic acid | Free | ND | 8.94 ± 0.17 a | 4.49 ± 0.06 b | 1.29 ± 0.05 c | 5.88 ± 0.14 d | 2.93 ± 0.12 e |
Bound | ND | 5.31 ± 0.59 a | 1.82 ± 0.18 b | 1.70 ± 0.22 b | ND | 0.69 ± 0.06 c | |
Total PC | ND | 14.3 ± 0.6 a | 6.31 ± 0.22 b | 2.99 ± 0.13 c | 5.88 ± 0.14 d | 3.62 ± 0.09 e | |
Gallic acid | Free | 17.3 ± 0.3 a | 26.2 ± 0.6 b | 73.0 ± 0.1 c | 76.9 ± 0.9 d | 36.6 ± 1.4 e | 26.4 ± 0.4 b |
Bound | 0.04 ± 0.01 a | 0.79 ± 0.02 b | 5.74 ± 0.01 c | 0.76 ± 0.01 b | 6.46 ± 0.02 d | 0.84 ± 0.06 b | |
Total PC | 17.3 ± 0.2 a | 27.0 ± 0.3 b | 78.7 ± 0.1 c | 77.7 ± 0.5 d | 43.1 ± 0.7 e | 27.2 ± 0.2 b | |
Protocatechuic acid | Free | 2.04 ± 0.05 a | 7.40 ± 0.16 b | 15.9 ± 0.9 c | 6.98 ± 0.31 b | 17.7 ± 0.6 d | 6.42 ± 0.19 e |
Bound | ND | 2.90 ± 0.16 a | 1.97 ± 0.04 b | 2.56 ± 0.24 a | 2.71 ± 0.03 a | 1.77 ± 0.01 c | |
Total PC | 2.04 ± 0.05 a | 10.3 ± 0.16 b | 17.9 ± 0.9 c | 9.54 ± 0.55 b | 20.4 ± 0.6 d | 8.19 ± 0.1 e | |
Neochlorogenic acid | Free | 48.2 ± 0.2 a | 165 ± 1 b | 104 ± 1 c | 76.1 ± 1.2 d | 106 ± 3 c | 83.8 ± 0.2 e |
Bound | 7.00 ± 0.15 a | 17.9 ± 0.4 b,e | 19.1 ± 1.4 b | 12.9 ± 0.01 c | 23.9 ± 0.1 d | 16.6 ± 1.2 e | |
Total PC | 55.2 ± 0.2 a | 183 ± 1 b | 123 ± 1 c | 89.0 ± 0.6 d | 130 ± 2 e | 100 ± 1 f | |
p-hydroxybenzoic acid | Free | 0.65 ± 0.07 a | 0.82 ± 0.01 b | 8.17 ± 0.21 c | 1.06 ± 0.03 d | 2.29 ± 0.12 e | 1.16 ± 0.03 f |
Bound | ND | 0.51 ± 0.01 a | 0.85 ± 0.05 b | 0.14 ± 0.01 c | 4.43 ± 0.01 d | ND | |
Total PC | 0.65 ± 0.07 a | 1.33 ± 0.01 b | 9.02 ± 0.13 c | 1.20 ± 0.02 d | 6.72 ± 0.07 e | 1.16 ± 0.03 d | |
Vanillic acid | Free | 26.2 ± 0.3 a | 17.8 ± 0.2 b | 35.5 ± 0.5 c | 1.11 ± 0.06 d | 378 ± 9 e | 97.4 ± 1.7 f |
Bound | ND | 1.11 ± 0.02 a | 137 ± 0.01 b | 0.32 ± 0.03 c | 231 ± 1 d | 1.72 ± 0.04 e | |
Total PC | 26.2 ± 0.3 a | 18.9 ± 0.1 b | 173 ± 0.3 c | 1.43 ± 0.05 d | 609 ± 5 e | 99.1 ± 0.9 f | |
Caffeic acid | Free | ND | 6.43 ± 0.42 a | 0.19 ± 0.01 b | 0.76 ± 0.02 c | 0.98 ± 0.02 d | 0.75 ± 0.03 c |
Bound | ND | 0.30 ± 0.01 a | ND | 0.27 ± 0.01 b | ND | 0.06 ± 0.01 c | |
Total PC | ND | 6.73 ± 0.21 a | 0.19 ± 0.01 b | 1.03 ± 0.01 c | 0.98 ± 0.02 d | 0.81 ± 0.02 e | |
Syringic acid | Free | 0.12 ± 0.02 a | 6.65 ± 0.90 b | 2.57 ± 0.08 c | 0.14 ± 0.01 a | 27.0 ± 0.3 d | 3.24 ± 0.13 e |
Bound | ND | 0.67 ± 0.01 a | 12.1 ± 0.2 b | ND | 12.6 ± 0.2 c | 0.13 ± 0.01 d | |
Total PC | 0.12 ± 0.02 a | 7.32 ± 0.5 b | 14.7 ± 0.1 c | 0.14 ± 0.01 a | 39.6 ± 0.3 d | 3.37 ± 0.07 e | |
p-coumaric acid | Free | 0.33 ± 0.01 a | 3.66 ± 0.17 b | 0.74 ± 0.03 c | 0.34 ± 0.01 a | ND | 1.67 ± 0.07 d |
Bound | ND | 1.10 ± 0.01 a | 0.23 ± 0.01 b | ND | ND | 0.24 ± 0.03 b | |
Total PC | 0.33 ± 0.01 a | 4.76 ± 0.09 b | 0.97 ± 0.02 c | 0.34 ± 0.01 a | ND | 1.91 ± 0.05 d | |
Ferulic acid | Free | 11.5 ± 0.8 a | 5.70 ± 0.10 b | 29.3 ± 0.6 c | 0.52 ± 0.02 d | 17.5 ± 0.5 e | 111 ± 1 f |
Bound | 0.99 ± 0.07 a | 0.07 ± 0.01 b | 11.4 ± 0.4 c | ND | 0.84 ± 0.04 d | 2.17 ± 0.01 e | |
Total PC | 12.5 ± 0.9 a | 5.77 ± 0.06 b | 40.7 ± 0.5 c | 0.52 ± 0.02 d | 18.3 ± 0.3 e | 113 ± 1 f | |
Sinapic acid | Free | ND | 0.17 ± 0.01 a | 26.4 ± 1.0 b | 0.63 ± 0.04 c | 86.1 ± 1.5 d | 0.69 ± 0.03 c |
Bound | ND | ND | 7.34 ± 0.12 a | 0.16 ± 0.02 b | 11.7 ± 0.7 c | 0.61 ± 0.05 d | |
Total PC | ND | 0.17 ± 0.01 a | 33.7 ± 0.6 b | 0.79 ± 0.03 c | 97.8 ± 1.5 d | 1.30 ± 0.04 e | |
Ellagic acid | Free | ND | 2.22 ± 0.14 a | 12.4 ± 0.1 b | 0.67 ± 0.04 c | 30.0 ± 0.1 d | 19.5 ± 0.2 e |
Bound | ND | ND | 5.43 ± 0.16 a | 4.53 ± 0.20 b | ND | 0.50 ± 0.01 c | |
Total PC | ND | 2.22 ± 0.14 a | 17.8 ± 0.5 b | 5.20 ± 0.12 c | 30.0 ± 0.1 d | 20.0 ± 0.1 e | |
o-coumaric acid | Free | ND | 0.49 ± 0.01 a | 5.48 ± 0.15 b | 0.77 ± 0.02 c | 0.18 ± 0.01 d | 0.23 ± 0.01 e |
Bound | ND | ND | ND | 0.07 ± 0.01 | ND | ND | |
Total PC | ND | 0.49 ± 0.01 a | 5.48 ± 0.15 b | 0.84 ± 0.01 c | 0.18 ± 0.01 d | 0.23 ± 0.01 e | |
Protocatechuic ethyl acid | Free | 0.88 ± 0.01 a | 2.06 ± 0.09 b | 0.81 ± 0.01 c | 0.08 ± 0.01 d | 22.0 ± 0.1 e | 1.96 ± 0.10 f |
Bound | ND | 0.25 ± 0.02 a | 0.05 ± 0.01 b | ND | 6.07 ± 0.04 c | ND | |
Total PC | 0.88 ± 0.01 a | 2.31 ± 0.06 b | 0.86 ± 0.01 c | 0.08 ± 0.01 d | 28.1 ± 0.1 e | 1.96 ± 0.10 f | |
Cinnamic acid | Free | 0.01 ± 0.01 a | 0.31 ± 0.01 b | 0.16 ± 0.01 c | 0.03 ± 0.01 d | 0.14 ± 0.01 e | 1.34 ± 0.02 f |
Bound | ND | ND | 0.03 ± 0.01 a | ND | 0.04 ± 0.01 a | 0.04 ± 0.01 a | |
Total PC | 0.01 ± 0.01 a | 0.31 ± 0.01 b | 0.19 ± 0.01 c | 0.03 ± 0.01 d | 0.18 ± 0.01 c | 1.38 ± 0.02 e | |
Free PA | 107 ± 2 a | 255 ± 3 b | 319 ± 5 c | 167 ± 3 d | 730 ± 17 e | 358 ± 4 f | |
Bound PA | 8.03 ± 0.23 a | 30.9 ± 1.6 b | 203 ± 3 c | 23.4 ± 0.7 d | 300 ± 7 e | 25.4 ± 1.5 d | |
Total PA | 115 ± 2 a | 286 ± 5 b | 522 ± 8 c | 190 ± 4 d | 1030 ± 20 e | 383 ± 6 f |
DPPH | ABTS | |||||
---|---|---|---|---|---|---|
r1 | Free | Bound | Total | Free | Bound | Total |
Flavonoids and stilbene | ||||||
Epigallocatechin | 0.9263 | 0.2856 | 0.8762 | 0.9577 | 0.4633 | 0.8903 |
Catechin | −0.1094 | 0.0648 | −0.0770 | −0.1414 | −0.4191 | −0.0681 |
Epicatechin | 0.9056 | 0.2777 | 0.8547 | 0.9414 | 0.4572 | 0.8740 |
Rutin | −0.0090 | 0.2931 | 0.0630 | −0.0769 | −0.2934 | −0.0665 |
Quercetin | - | −0.2269 | −0.3491 | - | −0.2142 | −0.3091 |
Kaempferol | 0.3081 | 0.2520 | 0.0132 | 0.2219 | 0.2859 | 0.0374 |
Resveratrol | −0.0642 | 0.2924 | 0.3492 | −0.0990 | 0.5180 | 0.2213 |
Phenolic acids | ||||||
Chlorogenic acid | 0.3700 | 0.0410 | 0.1428 | 0.3583 | 0.0028 | 0.1484 |
Gallic acid | 0.1567 | 0.7496 | 0.3081 | 0.1153 | 0.9405 | 0.3302 |
Protocatechuic acid | 0.9081 | 0.5518 | 0.9259 | 0.8712 | 0.4459 | 0.9279 |
Neochlorogenic acid | 0.1859 | 0.8048 | 0.3179 | 0.1729 | 0.7328 | 0.3146 |
p-hydroxybenzoic acid | 0.3768 | 0.3693 | 0.8015 | 0.2908 | 0.5998 | 0.8144 |
Vanillic acid | 0.9067 | 0.6061 | 0.9450 | 0.9341 | 0.8429 | 0.9496 |
Caffeic acid | −0.1983 | −0.2299 | −0.2113 | −0.1799 | −0.3222 | −0.1961 |
Syringic acid | 0.8947 | 0.7126 | 0.9510 | 0.9256 | 0.9423 | 0.9681 |
p-coumaric acid | −0.4006 | 0.0230 | −0.3387 | −0.4099 | −0.0848 | −0.3659 |
Ferulic acid | −0.0642 | 0.6808 | 0.0831 | −0.0380 | 0.6980 | −0.0506 |
Sinapic acid | 0.9774 | 0.6366 | 0.9538 | 0.9863 | 0.8516 | 0.9756 |
Ellagic acid | 0.8763 | 0.4701 | 0.9166 | 0.8640 | 0.5072 | 0.8560 |
o-coumaric acid | 0.1617 | −0.1647 | 0.2447 | 0.0729 | −0.1549 | 0.2485 |
Protocatechuic ethyl acid | 0.8987 | 0.2496 | 0.8464 | 0.9341 | 0.4534 | 0.8639 |
Cinnamic acid | −0.0955 | 0.7423 | −0.0132 | −0.1204 | 0.4307 | −0.1491 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šťastná, K.; Sumczynski, D.; Yalcin, E. Nutritional Composition, In Vitro Antioxidant Activity and Phenolic Profile of Shortcrust Cookies Supplemented by Edible Flowers. Foods 2021, 10, 2531. https://doi.org/10.3390/foods10112531
Šťastná K, Sumczynski D, Yalcin E. Nutritional Composition, In Vitro Antioxidant Activity and Phenolic Profile of Shortcrust Cookies Supplemented by Edible Flowers. Foods. 2021; 10(11):2531. https://doi.org/10.3390/foods10112531
Chicago/Turabian StyleŠťastná, Kristýna, Daniela Sumczynski, and Erkan Yalcin. 2021. "Nutritional Composition, In Vitro Antioxidant Activity and Phenolic Profile of Shortcrust Cookies Supplemented by Edible Flowers" Foods 10, no. 11: 2531. https://doi.org/10.3390/foods10112531
APA StyleŠťastná, K., Sumczynski, D., & Yalcin, E. (2021). Nutritional Composition, In Vitro Antioxidant Activity and Phenolic Profile of Shortcrust Cookies Supplemented by Edible Flowers. Foods, 10(11), 2531. https://doi.org/10.3390/foods10112531