Hazard Identification Related to the Presence of Vibrio spp., Biogenic Amines, and Indole-Producing Bacteria in a Non-Filter Feeding Marine Gastropod (Tritia mutabilis) Commercialized on the Italian Market
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viability of the Batches (WPs 1, 2, and 3)
2.2. Abundance of Vibrio spp. and Pathogenic Vibrios (WPs 1, 2, and 3)
2.3. Biogenic Amines (WP2)
2.4. Abundance of IPB (WP3)
2.5. Statistical Analysis
3. Results
3.1. Viability of the Batches and Vibrio spp. Load at Retail (WP1)
3.2. Viability of the Batches, Vibrio spp. Load and BAs Content at RETAIL and at Harvest (WP2)
3.3. Viability of the Batches, Vibrio spp. and IPB Load at Harvest and during Refrigeration (WP3)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polidori, P.; Grati, F.; Bolognini, L.; Domenichetti, F.; Scarcella, G.; Fabi, G. Towards a better management of Nassarius mutabilis (Linnaeus, 1758): Biometric and biological integrative study. Acta Adriat. 2015, 56, 233–244. [Google Scholar] [CrossRef]
- Niwa, T. Iindoxyl Sulfate, A Tryptophan Metabolite, Induces Nephro-Vascular Toxicity. Biotechnol. Biotechnol. Equip. 2012, 26, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Lobo-da-Cunha, A. Structure and function of the digestive system in molluscs. Cell Tissue Res. 2019, 377, 475–503. [Google Scholar] [CrossRef] [PubMed]
- Felici, A.; Bilandzic, N.; Magi, G.E.; Iaffaldano, N.; Fiordelmondo, E.; Doti, G.; Roncarati, A. Evaluation of Long Sea Snail Hinia reticulata (Gastropod) from the Middle Adriatic Sea as a Possible Alternative for Human Consumption. Foods 2020, 9, 905. [Google Scholar] [CrossRef] [PubMed]
- Narain, A.S. A review of the structure of the heart of molluscs, particularly bivalves, in relation to cardiac function. J. Molluscan Stud. 1976, 42, 46–62. [Google Scholar] [CrossRef]
- Monahan-Earley, R.; Dvorak, A.M.; Aird, W.C. Evolutionary origins of the blood vascular system and endothelium. J. Thromb. Haemost 2013, 11 (Suppl. S1), 46–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, F.L.; Iida, T.; Swings, J. Biodiversity of vibrios. Microbiol. Mol. Biol. Rev. 2004, 68, 403–431. [Google Scholar] [CrossRef] [Green Version]
- Ceccarelli, D.; Amaro, C.; Romalde, J.L.; Suffredini, E.; Vezzulli, L. Vibrio Species. In Food Microbiology: Fundamentals and Frontiers, 5th ed.; Doyle, M.P., Diez-Gonzalez, F., Hill, C., Eds.; ASM Press: Washington, DC, USA, 2019; pp. 347–388. [Google Scholar] [CrossRef]
- Hoffmann, M.; Brown, E.W.; Feng, P.C.H.; Keys, C.E.; Fischer, M.; Monday, S.R. PCR-based method for targeting 16S-23S rRNA intergenic spacer regions among Vibrio species. BMC Microbiol. 2010, 10, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DePaola, A.; Lee, R.; Mahoney, D.; Rivera, I.; Tamplin, M. Case Study: Vibrio Vulnificus in Oysters. Background Paper for the Joint FAO/WHO Expert Consultation on Development of Practical Risk Management Strategies based on Microbiological Risk Assessment Outputs. Available online: http://www.fao.org/3/au626e/au626e.pdf (accessed on 3 June 2021).
- Kim, J.Y.; Lee, J.L. Correlation of Total Bacterial and Vibrio spp. Populations between Fish and Water in the Aquaculture System. Front. Mar. Sci. 2017, 4, 147. [Google Scholar] [CrossRef] [Green Version]
- Tack, D.M.; Ray, L.; Griffin, P.M.; Cieslak, P.R.; Dunn, J.; Rissman, T.; Jervis, R.; Lathrop, S.; Muse, A.; Duwell, M.; et al. Preliminary Incidence and Trends of Infections with Pathogens Transmitted Commonly Through Food—Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2016–2019. MMWR Morb. Mortal. Wkly Rep. 2020, 69, 509–514. [Google Scholar] [CrossRef]
- Song, X.; Zang, J.; Yu, W.; Shi, X.; Wu, Y. Occurrence and Identification of Pathogenic Vibrio Contaminants in Common Seafood Available in a Chinese Traditional Market in Qingdao, Shandong Province. Front Microbiol. 2020, 11, 1488. [Google Scholar] [CrossRef]
- Galaviz-Silva, L.; Goméz-Anduro, G.; Molina-Garza, Z.J.; Ascencio-Valle, F. Food safety issues and the microbiology of fish and shellfish. In Microbiologically Safe Foods; Heredia, N., Wesley, I., García, S., Eds.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2008; pp. 227–254. [Google Scholar] [CrossRef]
- Potasman, I.; Paz, A.; Odeh, M. Infectious outbreaks associated with bivalve shellfish consumption: A worldwide perspective. Clin. Infect Dis. 2002, 35, 921–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Froelich, B.A.; Phippen, B.; Fowler, P.; Noble, R.T.; Oliver, J.D. Differences in Abundances of Total Vibrio spp., V. vulnificus, and V. parahaemolyticus in Clams and Oysters in North Carolina. Appl. Env. Microbiol. 2017, 83, e02265-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Parliament. Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for on the hygiene of foodstuffs. Off. J. Eur. Union 2004, 47, 139–206. [Google Scholar]
- Food and Drug Amministration. Fish and Fishery Products Hazards and Controls Guidance. Available online: https://www.fda.gov/media/80637/download (accessed on 3 July 2021).
- Paredes, I.; Rietjens, I.M.; Vieites, J.M.; Cabado, A.G. Update of risk assessments of main marine biotoxins in the European Union. Toxicon 2011, 58, 336–534. [Google Scholar] [CrossRef]
- Naila, A.; Flint, S.; Fletcher, G.; Bremer, P.; Meerdink, G. Control of biogenic amines in food—Existing and emerging approaches. J. Food Sci. 2010, 75, R139–R150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Q.; Zhang, X.; Qu, Y. Biodegradation and Biotransformation of Indole: Advances and Perspectives. Front. Microbiol. 2018, 9, 2625. [Google Scholar] [CrossRef] [PubMed]
- Prester, L.; Orct, T.; Macan, J.; Vukusic, J.; Kipcic, D. Determination of biogenic amines and endotoxin in squid, musky octopus, Norway lobster, and mussel stored at room temperature. Arh. Za Hig. Rada I Toksikol. 2010, 61, 389–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biji, K.B.; Ravishankar, C.N.; Venkateswarlu, R.; Mohan, C.O.; Gopal, T.K. Biogenic amines in seafood: A review. J. Food Sci. Technol. 2016, 53, 2210–2218. [Google Scholar] [CrossRef]
- Weremfo, A.; Eduafo, M.K.; Gyimah, H.A.; Oppong, S.A. Monitoring the levels of biogenic amines in canned fish products marketed in Ghana. J. Food Qual. 2020, 2020, 2684235. [Google Scholar] [CrossRef]
- Prester, L. Biogenic amines in fish, fish products and shellfish: A review. Food Addit. Contam. Part A Chem. Anal Control. Expo Risk Assess 2011, 28, 1547–1560. [Google Scholar] [CrossRef]
- Baixas-Nogueras, S.; Bover-Cid, S.; Veciana-Nogues, M.T.; Marine-Font, A.; Vidal-Carou, M.C. Biogenic amine index for freshness evaluation in iced Mediterranean hake (Merluccius merluccius). J. Food Prot. 2005, 68, 2433–2438. [Google Scholar] [CrossRef]
- Al Bulushi, I.; Poole, S.; Deeth, H.C.; Dykes, G.A. Biogenic amines in fish: Roles in intoxication, spoilage, and nitrosamine formation—A review. Crit. Rev. Food Sci. Nutr. 2009, 49, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, J. Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev. 2010, 34, 426–444. [Google Scholar] [CrossRef] [PubMed]
- Roager, H.M.; Licht, T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Chart, H. Vibrio, mobiluncus, gardnerella and spirillum: Cholera; vaginosis; rat bite fever. In Medical Microbiology, 18th ed.; Greenwood, D., Barer, M., Slack, R., Irving, W., Eds.; Churchill Livingstone Elsevier: Amsterdam, The Netherlands, 2012; pp. 314–323. [Google Scholar]
- Mendes, R.; Gonçalves, A.; Pestana, J.; Pestana, C. Indole production and deepwater pink shrimp (Parapenaeus longirostris) decomposition. Eur. Food Res. Technol. 2005, 221, 320–328. [Google Scholar] [CrossRef]
- European Commission DG Health and Food Safety. Overview Report Bivalve Molluscs. Available online: https://op.europa.eu/en/publication-detail/-/publication/8b3b3ca8-1028-11e6-ba9a-01aa75ed71a1/language-en (accessed on 30 August 2021).
- Serratore, P.; Zavatta, E.; Bignami, G.; Lorito, L. Preliminary investigation on the microbiological quality of edible marine gastropods of the Adriatic Sea, Italy. Ital. J. Food Saf. 2019, 8, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Serratore, P.; Turtura, G.C.; Rinaldini, E.; Milandri, S.; Presepi, D. Phenotypic characterization of some bacterial populations belonging to the genus Vibrio. Ann. Microbiol. Ed. Enzimol. 1999, 49, 89–99. [Google Scholar]
- Passalacqua, P.L.; Zavatta, E.; Bignami, G.; Serraino, A.; Serratore, P. Occurrence of Vibrio Parahaemolyticus, Vibrio Cholerae and Vibrio Vulnificus in the Clam Ruditapes Philippinarum (Adams & Reeve, 1850) from Emilia Romagna and Sardinia, Italy. Ital. J. Food Saf. 2016, 5, 5709. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization and Food and Agriculture Organization of the United Nations. Risk Assessment of Vibrio Vulnificus in Raw Oysters. Interpretative Summary and Technical Report. Available online: https://apps.who.int/iris/handle/10665/43365 (accessed on 22 August 2021).
- Veciana-Nogues, M.T.; Marine-Font, A.; Vidal-Carou, M.C. Biogenic Amines as Hygienic Quality Indicators of Tuna. Relationships with Microbial Counts, ATP-Related Compounds, Volatile Amines, and Organoleptic Changes. J. Agric. Food Chem. 1997, 45, 2036–2041. [Google Scholar] [CrossRef]
- Leitão, M.F.F.; Rios, D.P.A. Microbiological and chemical changes in freshwater prawn (Macrobrachium rosembergii) stored under refrigeration. Braz. J. Microbiol. 2000, 31, 177–182. [Google Scholar] [CrossRef] [Green Version]
- European Parliament. Regulation (EU) 2017/625 of the European Parliament and of the Council of 15 March 2017 on official controls and other official activities performed to ensure the application of food and feed law, rules on animal health and welfare, plant health and plant protection products, amending Regulations (EC) No 999/2001, (EC) No 396/2005, (EC) No 1069/2009, (EC) No 1107/2009, (EU) No 1151/2012, (EU) No 652/2014, (EU) 2016/429 and (EU) 2016/2031 of the European Parliament and of the Council, Council Regulations (EC) No 1/2005 and (EC) No 1099/2009 and Council Directives 98/58/EC, 1999/74/EC, 2007/43/EC, 2008/119/EC and 2008/120/EC, and repealing Regulations (EC) No 854/2004 and (EC) No 882/2004 of the European Parliament and of the Council, Council Directives 89/608/EEC, 89/662/EEC, 90/425/EEC, 91/496/EEC, 96/23/EC, 96/93/EC and 97/78/EC and Council Decision 92/438/EEC (Official Controls Regulation). Off. J. Eur. Union 2017, 60, 1–142. [Google Scholar]
- European Parliament. Commision Delegated Regulation (EU) 2019/624 of 8 February 2019 concerning specific rules for the performance of official controls on the production of meat and for production and relaying areas of live bivalve molluscs in accordance with Regulation (EU) 2017/625 of the European Parliament and of the Council. Off. J. Eur. Union 2019, 62, 1–17. [Google Scholar]
- European Parliament. Regulation (EU) No 558/2010 of 24 June 2010 amending Annex III to Regulation (EC) No 853/2004 of the European Parliament and of the Council laying down specific hygiene rules for food of animal origin. Off. J. Eur. Union 2010, 53, 18–21. [Google Scholar]
- Shi, L.Y.; Liang, S.; Luo, X.; Ke, C.H.; Zhao, J. Microbial community of Pacific abalone (Haliotis discus hannai) juveniles during a disease outbreak in South China. Aquac. Res. 2017, 48, 1080–1088. [Google Scholar] [CrossRef]
- Cheng, C.A.; Hwang, D.F.; Tsai, Y.H.; Chen, H.C.; Jeng, S.S.; Noguchi, T.; Ohwada, K.; Hasimoto, K. Microflora and tetrodotoxin-producing bacteria in a gastropod, Niotha clathrata. Food Chem. Toxicol. 1995, 33, 929–934. [Google Scholar] [CrossRef]
- Serratore, P.; Ostanello, F.; Passalacqua, P.L.; Zavatta, E.; Bignami, G.; Serraino, A.; Giacometti, F. First Multi-Year Retrospective Study on Vibrio Parhaemolyticus and Vibrio Vulnificus Prevalence in Ruditapes Philippinarum Harvested in Sacca Di Goro, Italy. Ital. J. Food Saf. 2016, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mendes, R.; Huidobro, A.; Caballero, L. Indole levels in deepwater pink shrimp (Parapenaeus longirostris) from the Portuguese coast. Effects of temperature abuse. Eur. Food Res. Technol. 2014, 214, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Mueller, R.S.; Beyhan, S.; Saini, S.G.; Yildiz, F.H.; Bartlett, D.H. Indole acts as an extracellular cue regulating gene expression in Vibrio cholerae. J. Bacteriol. 2009, 191, 3504–3516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.H.; Lee, J.H.; Bae, E.A.; Han, M.J. Induction and inhibition of indole production of intestinal bacteria. Arch. Pharmacal. Res. 1995, 18, 351–355. [Google Scholar] [CrossRef]
- Palego, L.; Betti, L.; Rossi, A.; Giannaccini, G. Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans. J. Amino Acids 2016, 2016, 8952520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Viability Class | Batch id. (Date of Collection or Purchase) | Viability (%) | Vibrio spp. (log10 CFU g−1) | |
---|---|---|---|---|
<90% | 1379 | (10 October 2017) | 0 | 7.69 |
1442 | (26 February 2019) | 0 | 6.16 | |
1446 | (7 March 2019) | 0 | 5.48 | |
1448 | (18 March 2019) | 0 | 6.26 | |
1453 | (9 April 2019) | 0 | 5.66 | |
1384 | (25 October 2017) | 19 | 6.42 | |
1407 | (18 April 2018) | 20 | 5.26 | |
1433 | (15 January 2019) | 20 | 4.34 | |
1447 | (12 March 2019) | 20 | 5.29 | |
1443 | (28 February 2019) | 25 | 5.18 | |
1452 | (3 April 2019) | 25 | 5.76 | |
1434 | (17 January 2019) | 30 | 5.92 | |
1438 | (5 February 2019) | 30 | 6.26 | |
1435 | (22 January 2019) | 40 | 6.29 | |
1440 | (13 February 2019) | 50 | 5.71 | |
1406 | (21 March 2018) | 70 | 6.32 | |
1439 | (13 February 2019) | 70 | 5.73 | |
1450 | (21 March 2019) | 70 | 5.79 | |
1449 | (19 March 2019) | 80 | 4.88 | |
mean | - | 29.95 | 5.81 | |
std. deviation | - | 26.64 | 0.71 | |
std. error of mean | - | 6.11 | 0.16 | |
≥90% | 1436 | (29 January 2019) | 90 | 5.03 |
1437 | (31 January 2019) | 90 | 6.07 | |
1378 | (4 October 2017) | 100 | 6.00 | |
1382 | (18 October 2017) | 100 | 5.20 | |
1451 | (25 March 2019) | 100 | 4.07 | |
mean | - | 96.0 | 5.27 | |
std. deviation | - | 5.48 | 0.82 | |
std. error of mean | - | 2.45 | 0.37 | |
all viability classes | ||||
mean | - | 43.71 | 5.70 | |
std. deviation | - | 36.21 | 0.75 | |
std. error of mean | - | 7.39 | 0.15 |
Batch Origin | Batch id. (Date of Collection or Purchase) | Viability (%) | Vibrio spp. (log10 CFU g−1) | Histamine (mg Kg−1) | Putrescine (mg Kg−1) | Cadaverine (mg Kg−1) | Tyramine (mg Kg−1) | BAI (mg Kg−1) |
---|---|---|---|---|---|---|---|---|
Harvest | 1389 (21 November 2017) | 100 | 5.92 | 15.60 | 38.30 | 13.30 | 6.50 | 73.70 |
1470 (12 February 2020) | 100 | 5.53 | 19.00 | 5.10 | 17.10 | 5.50 | 46.70 | |
1471 (19 February 2020) | 100 | 5.7 | 3.80 | 15.80 | 33.50 | 5.10 | 58.20 | |
1472 (24 February 2020) | 100 | 4.04 | 3.90 | 6.30 | 8.70 | 4.30 | 23.20 | |
mean | 100 | 5.30 | 10.58 | 16.38 | 18.15 | 5.35 | 50.45 | |
std. deviation | 0.00 | 0.85 | 7.89 | 15.38 | 10.79 | 0.91 | 21.27 | |
std. error of mean | 0.00 | 0.43 | 3.94 | 7.69 | 5.40 | 0.46 | 10.64 | |
Retail | 1406 (21 March 2018) | 70 | 6.32 | 6.00 | 14.50 | 15.90 | 5.70 | 42.10 |
1433 (15 January 2019) | 20 | 4.34 | 2.00 | 9.60 | 19.10 | 3.30 | 34.00 | |
1434 (17 January 2019) | 30 | 5.92 | 5.40 | 16.90 | 21.10 | 4.60 | 48.00 | |
1435 (22 January 2019) | 40 | 6.29 | 7.00 | 2.96 | 43.60 | 6.70 | 60.26 | |
1436 (29 January 2019) | 90 | 5.03 | 4.00 | 12.60 | 27.90 | 5.40 | 49.90 | |
1437 (31 January 2019) | 90 | 6.07 | 2.30 | 16.00 | 27.90 | 4.60 | 50.80 | |
1438 (5 February 2019) | 30 | 5.48 | 2.50 | 172.00 | 24.90 | 25.70 | 225.10 | |
1439 (13 February 2019) | 70 | 5.73 | 4.60 | 19.70 | 19.30 | 2.50 | 46.10 | |
1442 (26 February 2019) | 0 | 6.16 | 16.90 | 24.10 | 36.50 | 13.20 | 90.70 | |
1443 (28 February 2019) | 25 | 5.18 | 1.70 | 8.00 | 12.60 | 8.50 | 30.80 | |
1446 (7 March 2019) | 0 | 5.48 | 5.90 | 18.20 | 26.40 | 9.60 | 60.10 | |
1447 (12 March 2019) | 20 | 5.29 | 5.00 | 8.20 | 16.30 | 7.80 | 37.30 | |
1448 (18 March 2019) | 0 | 6.26 | 4.20 | 20.70 | 27.40 | 10.90 | 63.20 | |
1449 (19 March 2019) | 80 | 4.88 | 39.00 | 8.10 | 28.50 | 7.70 | 83.30 | |
mean | 40.36 | 5.60 | 7.61 | 25.11 | 24.81 | 8.30 | 65.83 | |
std. deviation | 33.31 | 0.61 | 9.78 | 42.69 | 8.36 | 5.82 | 48.36 | |
std. error of mean | 8.90 | 0.16 | 2.61 | 11.41 | 2.24 | 1.55 | 13.09 | |
Total | mean | 53.61 | 5.53 | 8.27 | 23.17 | 23.33 | 7.64 | 62.41 |
std. deviation | 38.72 | 0.65 | 9.26 | 38.07 | 9.07 | 5.25 | 44.23 | |
std. error of mean | 9.13 | 0.15 | 2.18 | 8.97 | 2.14 | 1.24 | 10.43 |
Batch id. | Time | Vibrio spp. (log10 CFU g−1) | Viability of the Batches (%) | IPB (log10 MPN g−1) | |||
---|---|---|---|---|---|---|---|
(Date of Collection or Purchase) | Without Immersion | With Immersion | Without Immersion | With Immersion | Without Immersion | With Immersion | |
1470 (12 February 2020) | 0 | 5.53 | - | 100 | - | 1.66 | - |
1 | 4.74 | - | 74.0 | - | 2.58 | - | |
2 | 5.71 | - | 32.0 | - | 5.04 | - | |
3 | 4.00 | - | 73.0 | - | 4.63 | - | |
1471 (19 February 2020) | 0 | 5.70 | - | 100 | - | 3.04 | - |
1 | 5.49 | - | 86.0 | - | 4.04 | - | |
2 | 6.12 | - | 44.0 | - | 4.18 | - | |
3 | 5.08 | - | 54.0 | - | 5.18 | - | |
1472 (24 February 2020) | 0 | 4.04 | - | 100 | - | 2.18 | - |
1 | 4.41 | - | 73.0 | - | 3.18 | - | |
2 | 4.67 | - | 69.0 | - | 3.63 | - | |
3 | 5.38 | - | 59.0 | - | 3.20 | - | |
1486 (19 October 2020) | 0 | 6.23 | (6.03) a | 100 | (100) | 4.04 | (3.30) |
1 | 4.63 | 5.79 | 100 | 100 | 2.88 | 2.92 | |
2 | 5.25 | 4.64 | 94.0 | 100 | 4.18 | 2.63 | |
3 | 5.88 | 5.53 | 84.0 | 93.0 | 2.86 | 3.38 | |
14893 (November 2020) | 0 | 4.98 | (6.08) | 90.4 | (99.0) | 2.81 | (3.66) |
1 | 4.00 | 4.76 | 80.0 | 84.0 | 2.04 | 1.36 | |
2 | 5.64 | 5.36 | 35.0 | 84.0 | 4.18 | 2.63 | |
3 | 4.60 | 5.43 | 16.0 | 84.0 | 1.56 | 1.56 | |
1492 (18 January 2021) | 0 | 4.99 | (4.92) | 100 | (100) | 1.63 | (1.63) |
1 | 5.09 | 5.23 | 100 | 100 | 1.36 | 2.97 | |
2 | 5.75 | 5.86 | 97.0 | 100 | 3.04 | 3.15 | |
3 | 5.45 | 5.58 | 51.0 | 100 | 2.54 | 3.63 | |
1495 (22 February 2021) | 0 | 4.09 | (4.91) | 100 | (100) | 2.30 | (3.66) |
1 | 3.81 | 5.48 | 100 | 100 | 3.81 | 1.88 | |
2 | 4.86 | 5.87 | 100 | 100 | 2.88 | 2.81 | |
3 | 5.30 | 5.31 | 100 | 100 | 3.18 | 4.32 | |
Total | mean at T0 | 5.08 | (5.48) | 98.63 | (99.75) | 2.52 | (3.06) |
std. deviation at T0 | 0.82 | 0.66 | 3.63 | 0.50 | 0.85 | 0.97 | |
std. error of mean at T0 | 0.31 | 0.33 | 1.37 | 0.25 | 0.32 | 0.48 | |
mean at T3 | 5.10 | 5.46 | 62.43 | 94.25 | 3.31 | 3.22 | |
std. deviation at T3 | 0.62 | 0.12 | 26.95 | 7.59 | 1.23 | 1.18 | |
std. error of mean at T3 | 0.23 | 0.06 | 10.19 | 3.79 | 0.47 | 0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serratore, P.; Bignami, G.; Ostanello, F.; Lorito, L. Hazard Identification Related to the Presence of Vibrio spp., Biogenic Amines, and Indole-Producing Bacteria in a Non-Filter Feeding Marine Gastropod (Tritia mutabilis) Commercialized on the Italian Market. Foods 2021, 10, 2574. https://doi.org/10.3390/foods10112574
Serratore P, Bignami G, Ostanello F, Lorito L. Hazard Identification Related to the Presence of Vibrio spp., Biogenic Amines, and Indole-Producing Bacteria in a Non-Filter Feeding Marine Gastropod (Tritia mutabilis) Commercialized on the Italian Market. Foods. 2021; 10(11):2574. https://doi.org/10.3390/foods10112574
Chicago/Turabian StyleSerratore, Patrizia, Giorgia Bignami, Fabio Ostanello, and Luna Lorito. 2021. "Hazard Identification Related to the Presence of Vibrio spp., Biogenic Amines, and Indole-Producing Bacteria in a Non-Filter Feeding Marine Gastropod (Tritia mutabilis) Commercialized on the Italian Market" Foods 10, no. 11: 2574. https://doi.org/10.3390/foods10112574