Freeze-Chilling of Whitefish: Effects of Capture, On-Board Processing, Freezing, Frozen Storage, Thawing, and Subsequent Chilled Storage—A Review
Abstract
:1. Introduction
2. Effects of Individual Processing Steps in the Value Chain
2.1. Intrinsic Quality and Effects of Capture
2.2. On Board Processing
2.3. Freezing
2.4. Frozen Storage
2.5. Thawing
2.6. Double Freezing
2.7. Chilled Storage and Shelf-Life
3. Studies Comprising the Freeze-Chilling Chain
3.1. Freeze-Chilling Chain
3.1.1. Fish Frozen at Sea
3.1.2. Chilled Transport of Fish before Freezing Ashore
3.1.3. Other Freeze-Chilling Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicholson, F.J. The Freezing Time of Fish; Torry Advisory Note No 62; FAO: Rome, Italy, 1982; 7p. [Google Scholar]
- Hedges, N. Maintaining the quality of frozen fish. In Safety and Quality Issues in Fish Processing; Bremner, H.A., Ed.; CRC Press: Boca Raton, FL, USA; Woodhead Publishing Ltd.: Sawston, UK, 2002; pp. 379–406. ISBN 9781855735521. [Google Scholar]
- Kolbe, E.; Kramer, D. Planning for Seafood Freezing; Alaska Sea Grant College Program: Fairbanks, AK, USA, 2007; 128p, ISBN 1-56612-119-1. [Google Scholar]
- Gökoğlu, N.; Yerlikaya, P. Seafood Chilling, Refrigeration and Freezing: Science and Technology; Wiley-Blackwell: Hoboken, NJ, USA, 2015; 248p, ISBN 9781118512180. [Google Scholar]
- Svendsen, E.S.; Widell, K.N.; Tveit, G.M.; Nordtvedt, T.S.; Uglem, S.; Standal, I.; Greiff, K. Industrial methods of freezing, thawing and subsequent chilled storage of whitefish. J. Food Eng. 2021, 315, 110803. [Google Scholar] [CrossRef]
- Backi, C.J. Methods for (industrial) thawing of fish blocks: A review. J. Food Process. Eng. 2017, 41, e12598. [Google Scholar] [CrossRef]
- Cai, L.; Cao, M.; Regenstein, J.; Cao, A. Recent Advances in Food Thawing Technologies. Compr. Rev. Food Sci. Food Saf. 2019, 18, 953–970. [Google Scholar] [CrossRef]
- Nagarajarao, R.C. Recent Advances in Processing and Packaging of Fishery Products: A Review. Aquat. Procedia 2016, 7, 201–213. [Google Scholar] [CrossRef]
- Gonçalves, A.A.; Blaha, F. Cold chain in seafood industry. In Refrigeration: Theory, Technology and Applications; Nova Science Publishers Inc.: New York, NY, USA, 2011; pp. 287–367. ISBN 978-1-61668-930-8. [Google Scholar]
- Maccallum, W.A.; Jaffray, J.I.; Churchill, D.N.; Idler, D.R. Condition of Newfoundland Trap-Caught Cod and Its Influence on Quality After Single and Double Freezing. J. Fish. Res. Board Can. 1968, 25, 733–755. [Google Scholar] [CrossRef]
- Castell, C.H. Some fundamental problems in the quality assessment of fishery products. In Fish Inspection and Quality Control; Kreuzer, R., Ed.; Fishing News Books: London, UK, 1971; pp. 9–13. [Google Scholar]
- Love, L.M. The Food Fishes, Their Intrinsic Variation and Practical Implications; Farrand Press: London, UK, 1988; ISBN 9780442207465. [Google Scholar]
- Bøknæs, N.; Østerberg, C.; Sørensen, R.; Nielsen, J.; Dalgaard, P. Effects of Technological Parameters and Fishing Ground on Quality Attributes of Thawed, Chilled Cod Fillets Stored in Modified Atmosphere Packaging. LWT 2001, 34, 513–520. [Google Scholar] [CrossRef]
- Botta, J.R.; Bonnell, G.; Squires, B.E. Effect of Method of Catching and Time of Season on Sensory Quality of Fresh Raw Atlantic Cod (Gadus morhua). J. Food Sci. 1987, 52, 928–931. [Google Scholar] [CrossRef]
- Martinsdottir, E.M.; Magnusson, H. Keeping Quality of Sea-Frozen Thawed Cod Fillets on Ice. J. Food Sci. 2001, 66, 1402–1408. [Google Scholar] [CrossRef]
- Rotabakk, B.T.; Skipnes, D.; Akse, L.; Birkeland, S. Quality assessment of Atlantic cod (Gadus morhua) caught by longlining and trawling at the same time and location. Fish. Res. 2011, 112, 44–51. [Google Scholar] [CrossRef]
- Margeirsson, S.; Jonsson, G.R.; Arason, S.; Thorkelsson, G. Influencing factors on yield, gaping, bruises and nematodes in cod (Gadus morhua) fillets. J. Food Eng. 2007, 80, 503–508. [Google Scholar] [CrossRef]
- Botta, J.R.; Bonell, G. Causes of reduced quality of fresh Atlantic cod (Gadus morhua) caught by otter trawl. In Proceedings of the World Symposium on Fishing Gear and Fishing Vessel Design; Marine Institute: St. John’s, NL, Canada, 1989; pp. 340–344. [Google Scholar]
- Veldhuizen, L.; Berentsen, P.; de Boer, I.; van de Vis, J.; Bokkers, E. Fish welfare in capture fisheries: A review of injuries and mortality. Fish. Res. 2018, 204, 41–48. [Google Scholar] [CrossRef]
- Tveit, G.M.; Sistiaga, M.; Herrmann, B.; Brinkhof, J. External damage to trawl-caught northeast arctic cod (Gadus morhua): Effect of codend design. Fish. Res. 2019, 214, 136–147. [Google Scholar] [CrossRef]
- Digre, H.; Hansen, U.J.; Erikson, U. Effect of trawling with traditional and ‘T90′ trawl codends on fish size and on different quality parameters of cod Gadus morhua and haddock Melanogrammus aeglefinus. Fish. Sci. 2010, 76, 549–559. [Google Scholar] [CrossRef]
- Brinkhof, J.; Olsen, S.H.; Ingólfsson, Ó.A.; Herrmann, B.; Larsen, R.B. Sequential codend improves quality of trawl-caught cod. PLoS ONE 2018, 13, e0204328. [Google Scholar] [CrossRef]
- Sistiaga, M.; Herrmann, B.; Brinkhof, J.; Larsen, R.B.; Jacques, N.; Santos, J.; Gjøsund, S.H. Quantification of gear inflicted damages on trawl-caught haddock in the Northeast Atlantic fishery. Mar. Pollut. Bull. 2020, 157, 111366. [Google Scholar] [CrossRef]
- Brinkhof, J.; Herrmann, B.; Sistiaga, M.; Larsen, R.B.; Jacques, N.; Gjøsund, S.H. Effect of gear design on catch damage on cod (Gadus morhua) in the Barents Sea demersal trawl fishery. Food Control 2021, 120, 107562. [Google Scholar] [CrossRef]
- Brinkhof, J.; Larsen, R.B.; Herrmann, B.; Olsen, S.H. Assessing the impact of buffer towing on the quality of Northeast Atlantic cod (Gadus morhua) caught with a bottom trawl. Fish. Res. 2018, 206, 209–219. [Google Scholar] [CrossRef]
- de Haan, D.; Fosseidengen, J.E.; Fjelldal, P.G.; Burggraaf, D.; Rijnsdorp, A.D. Pulse trawl fishing: Characteristics of the electrical stimulation and the effect on behaviour and injuries of Atlantic cod (Gadus morhua). ICES J. Mar. Sci. 2016, 73, 1557–1569. [Google Scholar] [CrossRef]
- Digre, H.; Erikson, U.; Misimi, E.; Standal, I.B.; Gallart-Jornet, L.; Riebroy, S.; Rustad, T. Bleeding of Farmed Atlantic Cod: Residual Blood, Color, and Quality Attributes of Pre- and Postrigor Fillets as Affected by Perimortem Stress and Different Bleeding Methods. J. Aquat. Food Prod. Technol. 2011, 20, 391–411. [Google Scholar] [CrossRef]
- Olsen, S.H.; Tobiassen, T.; Akse, L.; Evensen, T.H.; Midling, K.Ø. Capture induced stress and live storage of Atlantic cod (Gadus morhua) caught by trawl: Consequences for the flesh quality. Fish. Res. 2013, 147, 446–453. [Google Scholar] [CrossRef]
- Misimi, E.; Erikson, U.; Digre, H.; Skavhaug, A.; Mathiassen, J. Computer Vision-Based Evaluation of Pre- and Postrigor Changes in Size and Shape of Atlantic Cod (Gadus morhua) and Atlantic Salmon (Salmo salar) Fillets during Rigor Mortis and Ice Storage: Effects of Perimortem Handling Stress. J. Food Sci. 2008, 73, E57–E68. [Google Scholar] [CrossRef]
- Erikson, U.; Digre, H.; Misimi, E. Effects of Perimortem Stress on Farmed Atlantic Cod Product Quality: A Baseline Study. J. Food Sci. 2011, 76, S251–S261. [Google Scholar] [CrossRef]
- Erikson, U.; Tveit, G.; Bondø, M.; Digre, H. On-board Live Storage of Atlantic Cod (Gadus morhua): Effects of Capture Stress, Recovery, Delayed Processing, and Frozen Storage on Fillet Color Characteristics. J. Aquat. Food Prod. Technol. 2019, 28, 1076–1091. [Google Scholar] [CrossRef]
- Digre, H.; Rosten, C.; Erikson, U.; Mathiassen, J.R.; Aursand, I.G. The on-board live storage of Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) caught by trawl: Fish behaviour, stress and fillet quality. Fish. Res. 2017, 189, 42–54. [Google Scholar] [CrossRef]
- Olsen, S.H.; Joensen, S.; Tobiassen, T.; Heia, K.; Akse, L.; Nilsen, H.A. Quality consequences of bleeding fish after capture. Fish. Res. 2014, 153, 103–107. [Google Scholar] [CrossRef]
- Van Nguyen, M.; Karlsdottir, M.G.; Olafsdottir, A.; Bergsson, A.B.; Arason, S. Sensory, microbiological and chemical assessment of cod (Gadus morhua) fillets during chilled storage as influenced by bleeding methods. Int. J. Nutr. Food Eng. 2013, 7, 544–551. [Google Scholar] [CrossRef]
- Tobiassen, T.; Akse, L.; Midling, K.; Aas, K.; Dahl, R.; Eilertsen, G. Quality of farmed fish: The effect of pre rigor processing of cod (Gadus morhua L.) on quality and shelf life. In Seafood Research from Fish to Dish: Quality, Safety and Processing of Wild and Farmed Seafood; Luten, J.B., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2006; pp. 149–159. ISBN 9789086860050. [Google Scholar]
- Erikson, U.; Grimsmo, L.; Digre, H. Establishing a Method for Electrical Immobilization of Whitefish on Board Fishing Vessels. J. Aquat. Food Prod. Technol. 2021, 30, 694–705. [Google Scholar] [CrossRef]
- Heen, E. Developments in chilling and freezing of fish. Int. J. Refrig. 1982, 5, 45–49. [Google Scholar] [CrossRef]
- Anderssen, K.E.; Syed, S.; Stormo, S.K. Quantification and mapping of tissue damage from freezing in cod by magnetic resonance imaging. Food Control 2021, 123, 107734. [Google Scholar] [CrossRef]
- Erikson, U.; Kjørsvik, E.; Bardal, T.; Digre, H.; Schei, M.; Søreide, T.S.; Aursand, I.G. Quality of Atlantic Cod Frozen in Cell Alive System, Air-Blast, and Cold Storage Freezers. J. Aquat. Food Prod. Technol. 2016, 25, 1001–1020. [Google Scholar] [CrossRef]
- Offer, G.; Cousins, T. The mechanism of drip production: Formation of two compartments of extracellular space in musclePost mortem. J. Sci. Food Agric. 1992, 58, 107–116. [Google Scholar] [CrossRef]
- Connell, J.J.; Howgate, P.F. Sensory and objective measurements of the quality of frozen stored cod of different initial freshnesses. J. Sci. Food Agric. 1968, 19, 342–354. [Google Scholar] [CrossRef]
- Mørkøre, T.; Lilleholt, R. Impact of freezing temperature on quality of farmed atlantic cod (Gadus morhua L.). J. Texture Stud. 2007, 38, 457–472. [Google Scholar] [CrossRef]
- Haard, N.F. Biochemical reactions in fish muscle during frozen storage. In Seafood Science and Technology; Bligh, E.G., Ed.; Fishing New Books: London, UK, 1990; pp. 176–209. ISBN 9780852381731. [Google Scholar]
- Mackie, I.M. The effects of freezing on flesh proteins. Food Rev. Int. 1993, 9, 575–610. [Google Scholar] [CrossRef]
- Jessen, F.; Nielsen, J.; Larsen, E. Chilling and Freezing of Fish. In Seafood Processing; Wiley: Hoboken, NJ, USA, 2013; pp. 33–59. [Google Scholar]
- Biglia, A.; Comba, L.; Fabrizio, E.; Gay, P.; Aimonino, D.R. Case Studies in Food Freezing at Very Low Temperature. Energy Procedia 2016, 101, 305–312. [Google Scholar] [CrossRef]
- Leblanc, E.L.; Leblanc, R.J.; Blum, I.E. Prediction of Quality in Frozen Cod (Gadus morhua) Fillets. J. Food Sci. 1988, 53, 328–340. [Google Scholar] [CrossRef]
- Kim, Y.J.; Heldman, D.R. Quantitative analysis of texture change in cod muscle during frozen storage. J. Food Process. Eng. 1985, 7, 265–272. [Google Scholar] [CrossRef]
- Careche, M.; Del Mazo, M.L.; Torrejón, P.; Tejada, M. Importance of Frozen Storage Temperature in the Type of Aggregation of Myofibrillar Proteins in Cod (Gadus morhua) Fillets. J. Agric. Food Chem. 1998, 46, 1539–1546. [Google Scholar] [CrossRef]
- Badii, F.; Howell, N.K. Changes in the texture and structure of cod and haddock fillets during frozen storage. Food Hydrocoll. 2002, 16, 313–319. [Google Scholar] [CrossRef]
- Burgaard, M.G.; Jørgensen, B.M. Effect of Temperature on Quality-Related Changes in Cod (Gadus morhua) During Short- and Long-Term Frozen Storage. J. Aquat. Food Prod. Technol. 2010, 19, 249–263. [Google Scholar] [CrossRef]
- Lee, J.; Park, J.W. Pacific whiting frozen fillets as affected by postharvest processing and storage conditions. Food Chem. 2016, 201, 177–184. [Google Scholar] [CrossRef]
- Baixas-Nogueras, S.; Bover-Cid, S.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Effects of previous frozen storage on chemical, microbiological and sensory changes during chilled storage of Mediterranean hake (Merluccius merluccius) after thawing. Eur. Food Res. Technol. 2007, 226, 287–293. [Google Scholar] [CrossRef]
- Magnússon, H.; Martlnsdóttlr, E. Storage Quality of Fresh and Frozen-thawed Fish in Ice. J. Food Sci. 1995, 60, 273–278. [Google Scholar] [CrossRef]
- Bøknæs, N.; Østerberg, C.; Nielsen, J.; Dalgaard, P. Influence of Freshness and Frozen Storage Temperature on Quality of Thawed Cod Fillets Stored in Modified Atmosphere Packaging. LWT 2000, 33, 244–248. [Google Scholar] [CrossRef]
- Aubourg, S.P.; Medina, I. Influence of storage time and temperature on lipid deterioration during cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) frozen storage. J. Sci. Food Agric. 1999, 79, 1943–1948. [Google Scholar] [CrossRef]
- Badii, F.; Howell, N.K. A comparison of biochemical changes in cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) fillets during frozen storage. J. Sci. Food Agric. 2002, 82, 87–97. [Google Scholar] [CrossRef]
- Boknes, N.; Guldager, H.S.; Sterberg, C.; Nielsen, J. Production of High Quality Frozen Cod (Gadus morhua) Fillets and Portions on a Freezer Trawler. J. Aquat. Food Prod. Technol. 2001, 10, 33–47. [Google Scholar] [CrossRef]
- Cappeln, G.; Jessen, F. Glycolysis and ATP Degradation in Cod (Gadus morhua) at Subzero Temperatures in Relation to Thaw Rigor. LWT 2001, 34, 81–88. [Google Scholar] [CrossRef]
- Cappeln, G.; Nielsen, J.; Jessen, F. Synthesis and degradation of adenosine triphosphate in cod (Gadus morhua) at subzero temperatures. J. Sci. Food Agric. 1999, 79, 1099–1104. [Google Scholar] [CrossRef]
- Stroud, G.D. Rigor in Fish: The Effect on Quality; Torry Advisory Note No 36 1969; FAO: Rome, Italy, 1969; 11p. [Google Scholar]
- Hurling, R.; Mcarthur, H. Thawing, Refreezing and Frozen Storage Effects on Muscle Functionality and Sensory Attributes of Frozen Cod (Gadus morhua). J. Food Sci. 1996, 61, 1289–1296. [Google Scholar] [CrossRef]
- Hewitt, M.R. Thawing of frozen fish in water. In Freezing and Irradiation of Fish; Kreuzer, R., Ed.; Fishing New Books: London, UK, 1969. [Google Scholar]
- Genç, I.Y.; Esteves, E.; Anibal, J.; Diler, A. Effects of different thawing methods on the quality of meagre fillets. Ankara Üniversitesi Veteriner Fakültesi Dergisi 2015, 62, 153–159. [Google Scholar] [CrossRef]
- Kristinsson, H.G.; Kelleher, S.D.; Hultin, H.O. Changes in Red Hake (Urophycis chuss) Muscle Induced by Different Freezing Strategies. J. Aquat. Food Prod. Technol. 2009, 18, 360–369. [Google Scholar] [CrossRef]
- Schubring, R. Double freezing of cod fillets: Influence on sensory, physical and chemical attributes of battered and breaded fillet portions. Food/Nahrung 2002, 46, 227–232. [Google Scholar] [CrossRef]
- Schubring, R. Influence of double freezing on quality attributes of lean fish fillets during frozen storage as affected by rigor states. In Advances in the Refrigeration Systems, Food Technologies and Cold Chain; Fikiin, K., Ed.; IIR Proceedings Series Refrigeration and Technology; IIF-IIR: Sofia, Bulgaria, 1998; pp. 504–513. ISBN 2913149006. [Google Scholar]
- Margeirsson, B.; Lauzon, H.L.; Pálsson, H.; Popov, V.; Gospavic, R.; Jónsson, M.Þ.; Sigurgísladóttir, S.; Arason, S. Temperature fluctuations and quality deterioration of chilled cod (Gadus morhua) fillets packaged in different boxes stored on pallets under dynamic temperature conditions. Int. J. Refrig. 2012, 35, 187–201. [Google Scholar] [CrossRef]
- Huss, H.H. Quality and Quality Changes in Fresh Fish; FAO Fisheries Technical Paper No 328 1995; FAO: Rome, Italy, 1995. [Google Scholar]
- Sivertsvik, M.; Jeksrud, W.K.; Rosnes, J.T. A review of modified atmosphere packaging of fish and fishery products—Significance of microbial growth, activities and safety. Int. J. Food Sci. Technol. 2002, 37, 107–127. [Google Scholar] [CrossRef]
- Kumar, P.; Ganguly, S. Role of vacuum packaging in increasing shelf-life in fish processing technology. Asian J. Bio Sci. 2014, 9, 109–112. [Google Scholar]
- DeWitt, C.A.M.; Oliveira, A.C. Modified Atmosphere Systems and Shelf Life Extension of Fish and Fishery Products. Foods 2016, 5, 48. [Google Scholar] [CrossRef]
- Tavares, J.; Martins, A.; Fidalgo, L.; Lima, V.; Amaral, R.; Pinto, C.; Silva, A.; Saraiva, J. Fresh Fish Degradation and Advances in Preservation Using Physical Emerging Technologies. Foods 2021, 10, 780. [Google Scholar] [CrossRef]
- Corbo, M.R.; Altieri, C.; Bevilacqua, A.; Campaniello, D.; D’Amato, D.; Sinigaglia, M. Estimating packaging atmosphere–temperature effects on the shelf life of cod fillets. Eur. Food Res. Technol. 2005, 220, 509–513. [Google Scholar] [CrossRef]
- Sivertsvik, M. The optimized modified atmosphere for packaging of pre-rigor filleted farmed cod (Gadus morhua) is 63 ml/100 ml oxygen and 37 ml/100 ml carbon dioxide. LWT 2007, 40, 430–438. [Google Scholar] [CrossRef]
- Wang, T.; Sveinsdóttir, K.; Magnússon, H.; Martinsdóttir, E. Combined Application of Modified Atmosphere Packaging and Superchilled Storage to Extend the Shelf Life of Fresh Cod (Gadus morhua) Loins. J. Food Sci. 2007, 73, S11–S19. [Google Scholar] [CrossRef] [PubMed]
- Tsironi, T.N.; Taoukis, P.S. Current Practice and Innovations in Fish Packaging. J. Aquat. Food Prod. Technol. 2018, 27, 1024–1047. [Google Scholar] [CrossRef]
- Milijasevic, J.B.; Milijasevic, M.; Djordjevic, V. Modified atmosphere packaging of fish—An impact on shelf life. In Proceedings of the IOP Conference Series: Earth and Environmental Science, The 60th International Meat Industry Conference MEATCON2019, Kopaonik, Serbia, 22–25 September 2019; IOP Publishing: Bristol, UK, 2019; Volume 333, p. 012028. [Google Scholar]
- Roiha, I.S.; Tveit, G.M.; Backi, C.J.; Jónsson, Á.; Karlsdóttir, M.; Lunestad, B.T. Effects of controlled thawing media temperatures on quality and safety of pre-rigor frozen Atlantic cod (Gadus morhua). LWT 2018, 90, 138–144. [Google Scholar] [CrossRef]
- Dalgaard, P.; Gram, L.; Huss, H.H. Spoilage and shelf-life of cod fillets packed in vacuum or modified atmospheres. Int. J. Food Microbiol. 1993, 19, 283–294. [Google Scholar] [CrossRef]
- Gram, L.; Huss, H.H. Microbiological spoilage of fish and fish products. Int. J. Food Microbiol. 1996, 33, 121–137. [Google Scholar] [CrossRef]
- Dalgaard, P.; Mejlholm, O.; Christiansen, T.; Huss, H. Importance of Photobacterium phosphoreum in relation to spoilage of modified atmosphere-packed fish products. Lett. Appl. Microbiol. 1997, 24, 373–378. [Google Scholar] [CrossRef]
- Hansen, A.; Mørkøre, T.; Rudi, K.; Olsen, E.; Eie, T. Quality Changes during Refrigerated Storage of MA-Packaged Pre-rigor Fillets of Farmed Atlantic Cod (Gadus morhua L.) Using Traditional MAP, CO2 Emitter, and Vacuum. J. Food Sci. 2007, 72, M423–M430. [Google Scholar] [CrossRef]
- Dalgaard, P. Microbiology of marine muscle foods. In Handbook of Food Science, Technology, and Engineering; Hui, Y.H., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 1–20. ISBN 9780429096112. [Google Scholar]
- Hovda, M.B.; Sivertsvik, M.; Lunestad, B.T.; Rosnes, J.T. Microflora Assessments Using PCR–Denaturing Gradient Gel Electrophoresis of Ozone-Treated and Modified-Atmosphere-Packaged Farmed Cod Fillets. J. Food Prot. 2007, 70, 2460–2465. [Google Scholar] [CrossRef]
- Kuuliala, L.; Al Hage, Y.; Ioannidis, A.-G.; Sader, M.; Kerckhof, F.-M.; Vanderroost, M.; Boon, N.; De Baets, B.; De Meulenaer, B.; Ragaert, P.; et al. Microbiological, chemical and sensory spoilage analysis of raw Atlantic cod (Gadus morhua) stored under modified atmospheres. Food Microbiol. 2018, 70, 232–244. [Google Scholar] [CrossRef]
- Rotabakk, B.T.; Sivertsvik, M. Solubility of carbon dioxide in muscle foods and its use to extend the shelf life of packaged products. In Advances in Meat, Poultry and Seafood Packaging; Woodhead Publishing Limited: Sawston, UK, 2012; pp. 314–330. [Google Scholar]
- Masniyom, P. Deterioration and shelf-life extension of fish and fishery products by modified atmosphere packaging. Songklanakarin J. Sci. Technol. 2011, 33, 181–192. [Google Scholar]
- Lauzon, H.L. Overview on fish quality research. Impact of fish handling, processing, storage and logistics on fish quality deterioration. Food Res. Innov. Saf. 2010, 39, 1–73. [Google Scholar]
- Aune, T.F.; Olsen, R.L.; Akse, L.; Ytterstad, E.; Esaiassen, M. Influence of different cold storage temperatures during the Rigor mortis phase on fillet contraction and longer-term quality changes of Atlantic cod fillets. LWT 2014, 59, 583–586. [Google Scholar] [CrossRef]
- Ahmed, I.; Lin, H.; Zou, L.; Brody, A.L.; Li, Z.; Qazi, I.M.; Pavase, T.R.; Lv, L. A comprehensive review on the application of active packaging technologies to muscle foods. Food Control 2017, 82, 163–178. [Google Scholar] [CrossRef]
- Kontominas, M.; Badeka, A.; Kosma, I.; Nathanailides, C. Recent Developments in Seafood Packaging Technologies. Foods 2021, 10, 940. [Google Scholar] [CrossRef]
- Hansen, A.Å.; Moen, B.; Rødbotten, M.; Berget, I.; Pettersen, M.K. Effect of vacuum or modified atmosphere packaging (MAP) in combination with a CO 2 emitter on quality parameters of cod loins (Gadus morhua). Food Packag. Shelf Life 2016, 9, 29–37. [Google Scholar] [CrossRef]
- Nielsen, J.; Hyldig, G.; Larsen, E. ‘Eating Quality’ of Fish—A Review. J. Aquat. Food Prod. Technol. 2002, 11, 125–141. [Google Scholar] [CrossRef]
- Roiha, I.S.; Jónsson, Á.; Backi, C.J.; Lunestad, B.T.; Karlsdóttir, M.G. A comparative study of quality and safety of Atlantic cod (Gadus morhua ) fillets during cold storage, as affected by different thawing methods of pre-rigor frozen headed and gutted fish. J. Sci. Food Agric. 2017, 98, 400–409. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, L.; Luo, Y. Changes in microbial communities and quality attributes of white muscle and dark muscle from common carp (Cyprinus carpio) during chilled and freeze-chilled storage. Food Microbiol. 2018, 73, 237–244. [Google Scholar] [CrossRef]
- Yin, X.; Luo, Y.; Fan, H.; Wu, H.; Feng, L. Effect of previous frozen storage on quality changes of grass carp (Ctenopharyngodon idellus) fillets during short-term chilled storage. Int. J. Food Sci. Technol. 2013, 49, 1449–1460. [Google Scholar] [CrossRef]
- Jensen, L.H.S.; Nielsen, J.; Jørgensen, B.M.; Frosch, S.; Jã¸rgensen, B.M. Cod and rainbow trout as freeze-chilled meal elements. J. Sci. Food Agric. 2009, 90, 376–384. [Google Scholar] [CrossRef]
- Fagan, J.; Gormley, T.; Mhuircheartaigh, M.U. Effect of modified atmosphere packaging with freeze-chilling on some quality parameters of raw whiting, mackerel and salmon portions. Innov. Food Sci. Emerg. Technol. 2004, 5, 205–214. [Google Scholar] [CrossRef]
- Fagan, J.D.; Gormley, T.R.; Mhuircheartaigh, M.U. Effect of freeze-chilling, in comparison with fresh, chilling and freezing, on some quality parameters of raw whiting, mackerel and salmon portions. LWT 2003, 36, 647–655. [Google Scholar] [CrossRef]
- Bøknæs, N.; Jensen, K.N.; Guldager, H.S.; Østerberg, C.; Nielsen, J.; Dalgaard, P. Thawed Chilled Barents Sea Cod Fillets in Modified Atmosphere Packaging-Application of Multivariate Data Analysis to Select Key Parameters in Good Manufacturing Practice. LWT 2002, 35, 436–443. [Google Scholar] [CrossRef]
- Guldager, H.S.; Bøknæs, N.; Østerberg, C.; Nielsen, J.; Dalgaard, P. Thawed Cod Fillets Spoil Less Rapidly Than Unfrozen Fillets When Stored under Modified Atmosphere at 2 °C. J. Food Prot. 1998, 61, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Vyncke, W. Shelf life of thawed cod fillets kept in ice. Eur. Food Res. Technol. 1983, 177, 19–21. [Google Scholar] [CrossRef]
Species | Freshness at Freezing | Freezing Conditions | Frozen Storage Conditions | Thawing Conditions | Packaging | Chilled Storage | Quality Analyses | Shelf Life | Reference |
---|---|---|---|---|---|---|---|---|---|
Atlantic cod | Day 0 Pre-rigor * | −40 °C | −25 °C for ≈ 6 weeks | Water (initial temp. 18 °C, fish-to-water ratio 1:4) with and without air circulation or by contact thawing in a converted plate freezer | After thawing, storage over-night at 0 °C, before filleting and packaging in plastic film | 14 days at 0–2 °C | Bacteria (E.Coli, Listeria, H2S-bacteria, coliforms, thermo-tolerant coliforms), CO, CY, DL, PC, SE, TX, TVBN, TVC, WHC | 10–14 days | Roiha et al. [95] |
Atlantic cod | Day 0 Pre-rigor * | −40 °C | −28 °C for 9 weeks | Two methods: (i) air circulation and continuous water flow at 10 °C (constant temp.) for 4 h, (ii) water at 10 °C for 2 h before water temp. was lowered to −0.5 °C for ≈ 26 h. | After thawing, filleting and packaging (EPS boxes) with plastic film between ice and fish. | 6 days at 2.9 ± 0.6 °C | Bacteria (E. coli, Listeria, H2S-bacteria, coliforms, thermo-tolerant coliforms), blood spots, CY, DL, pH, QIM (fillets), redness, TVBN, TVC, TX, WC | NA (>6 days) | Roiha et al. [79] |
Carp | Day 0 * | −20 °C (vs fresh control at 4 °C) | −20 °C for 4 weeks | NA | Fillets in polyethylene bags | 8 days at 4 °C | Bacterial DNA & rRNA, DL, SP, TVBN, TVC, VOC | 8 days (white muscle) 10 days (red muscle) | Li et al. [96] |
Carp | Day 0 * | −40 °C for 12 h | Control: Day 0 (1) 4 °C for 6 days; (2) −20 °C for 5 days (3) −20 °C for 5 days before chilled storage for 4 days. | 2 °C for 12 h | Fillets in PVC bags | 4 to 6 days at 4 °C | CO, DL, protein content, SE, TAC, TVBN, TX | NA | Yin et al. [97] |
Atlantic cod | Pre-rigor* | ND (plate freezer) | −23 °C for about 3 mo | Fish blocks thawed in a two-step process: (a) 7 h in water (initial temperature 10 °C) in bin, followed by (b) separation of single fish from blocks and storage in ice water for 9 h | After thawing, loins wrapped in Al-foil | Up to 7 days at 0–2 °C | APC, bacteria (psychrotrophic, P. phosphoreum), CO, DL, DSC, FI, pH, SE, TMA, TX (firmness), WHC | NA | Rotabakk et al. [16] |
Atlantic cod | Not stated, processed on day of arrival (unfrozen) to port | −40 °C | −30 °C for 46 to 66 days | Slowly at 2 °C | Individual loins in vacuum | 0 to 12 days | DL, SE, DM, LHC | NA (>6 days) | Jensen et al. [98] |
Whiting | 3 days fillets | −35 °C for 2.5 h | −30 °C for 3 days | Overnight at 2–4 °C | Individual fillet/portions in trays: air vs. MAP | 5 days at 2–4 °C | CO, DL, SP, TMA, TVBN, TVC, TX, WC | NA (>5 days) | Fagan et al. [99] |
Whiting | 3 days fillets | −35 °C for 2.5 h | −30 °C for 3 days | Overnight at 4 °C | Individual fillet/portions in trays: aerobic conditions | 3 days at 4 °C | CO, DL, SP, TMA, TVBN, TVC, TX, WC | NA (>3 days) | Fagan et al. [100] |
Atlantic cod | Pre-rigor * | Until core temperature reached −25 °C after 2 h | (i)−30 °C for 10 weeks (on vessel) followed by (ii) −20 °C vs. −30 °C (still as blocks) for 3, 6, 9 and 12 mo | MAP thawed for 20 h at 5 °C before chilled storage | Fillets packed with interleave plastic film frozen as blocks. Cod pieces (<100 g) sawed in frozen state, placed in trays with absorbent, MA-packed in Riloten bags (40% CO2, 40% N2, 20% O2) | 0–21 days at 2 °C | Bacteria (P. phosphoreum), DL, DMA, FA, NaCl, pH, TMA, TMAO, sensory panel (odor, taste, juiciness), TVC, WHC | 14–21 days at −30 °C >21 days at −20 °C | Bøknæs et al. [101] |
Atlantic cod | Pre-rigor * | (i) < 2 h + 6 fillets at −196 °C, (ii) One batch in SW-slurry at 3–6 °C for 40 h post rigor, before frozen in plate freezer + 6 fillets at −196 °C | −25 °C for 2, 6, 12 and 17 mo | (i) Thawing trial after 2 mo: pre- vs. post-rigor fillets: in air at 0–1, 5, 8 and 22 °C, (ii) Overnight at 0–1 °C, then at room temp. for 2–3 h until core temperature was 0 °C. | Fillets | (i) Only after 17 mo storage: 0–15 days at 4 and 0 °C, (ii) Thawing trial: 9 days at 0–1 °C | Bacteria (H2S), DL, pH, SAP, TMA, TVC | 12–14 days (2–6 mo) ** 10–11 days (12 mo) ** 7 days (17 mo) ** | Martinsdottir and Magnusson [15] |
Baltic Sea cod and Barents Sea cod | Baltic Sea cod: Chilled transport from sea to local fish company, filleted and packed in MA 1 days post capture Barents Sea cod: pre-rigor filleted on board | Baltic Sea cod: Blast-frozen for 4 h at −30 °C Barents Sea cod: processed on trawler, frozen in plate freezer for 2 h, stored at −30 °C for 10 weeks before transport to lab. Before refreezing at lab., portions were packed in MAP, stored at −30 °C for another 5 weeks | Baltic Sea cod: 30 °C for 8 weeks and −20 °C (constant vs. fluctuating temperature) Barents Sea cod: −30 °C for 15 weeks | MAP thawed for 20 h at 5 °C | MAP (40% CO2, 40% N2, 20% O2) in Riloten bags and trays including absorbent using gas:fish ratio > 1:2. | (i) 0–21 days at 2 °C (ii) 14 days at 5 °C | Amine odor, Bacteria (P. phosphoreum), DL, juiciness, NaCl, TMA, TMAO, TVC | NA | Bøknæs et al. [13] |
Atlantic cod | After chilled transport from sea to fish company | Blast-frozen until core temp reached −30 °C | −20 °C or −30 °C for 6 weeks | In air for 14 h at 5 °C | MAP (60% CO2, 40% N2) in Riloten bags, fish:gas = 1:2, fillets also wrapped in PE and stored aerobically at 0 °C for 7 days until packed in MA | 17 days at 2 °C | Bacteria (P. phosphoreum), SP, TMA, TMAO | NA | Bøknæs et al. [55] |
Atlantic cod | 1 day fillets | −40 °C for 3.5 h (MAP) | −20 °C for 2 mo | In air at 5 °C for 16 h | MAP (40% CO2, 60% N2) vs. (40% CO2, 40% N2, 20% O2) | 20 days at 2 °C | DMA, DL, SB, SP, TMA, TVC | 11–12 days (fresh MAP) >20 days (thawed MAP) | Guldager et al. [102] |
Atlantic cod | Fish from (I) trawler: whole gutted fish (II) longliner: gutted, filleted, skinned ashore within 24 h post capture, subsequently (a) fresh fillets on ice, or (b) fillets frozen | (1) plate freezer (vessel) after 4 days on ice, (2) tunnel freezer (ashore) | −25 °C for (I) 8 weeks, (II) 1 day, 5, 14, 27 and 52 weeks | (I) and (II) at 15 °C | Whole fish and fillets | 0–1 °C for up to 3 weeks as unfrozen and thawed whole cod (I), or 3 weeks as fillets (II) | Bacteria (flora composition, H2S), SP, TMA, TMAO, TVB, TVC | 10−12 days | Magnusson and Martinsdottir [54] |
Atlantic cod | 6 days fillets | −40 °C | −28 °C for 1 week and 3, 6 and 12 mo | Circulating water at 18 °C | In vacuum before freezing and packaging removed before ice storage | 13 days | pH, SP, TMA, TVBN, TVC, VAN | 8 days (fresh) 10 days (1 week) ** 11–12 days (3–12 mo) ** | Vyncke [103] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erikson, U.; Uglem, S.; Greiff, K. Freeze-Chilling of Whitefish: Effects of Capture, On-Board Processing, Freezing, Frozen Storage, Thawing, and Subsequent Chilled Storage—A Review. Foods 2021, 10, 2661. https://doi.org/10.3390/foods10112661
Erikson U, Uglem S, Greiff K. Freeze-Chilling of Whitefish: Effects of Capture, On-Board Processing, Freezing, Frozen Storage, Thawing, and Subsequent Chilled Storage—A Review. Foods. 2021; 10(11):2661. https://doi.org/10.3390/foods10112661
Chicago/Turabian StyleErikson, Ulf, Solveig Uglem, and Kirsti Greiff. 2021. "Freeze-Chilling of Whitefish: Effects of Capture, On-Board Processing, Freezing, Frozen Storage, Thawing, and Subsequent Chilled Storage—A Review" Foods 10, no. 11: 2661. https://doi.org/10.3390/foods10112661
APA StyleErikson, U., Uglem, S., & Greiff, K. (2021). Freeze-Chilling of Whitefish: Effects of Capture, On-Board Processing, Freezing, Frozen Storage, Thawing, and Subsequent Chilled Storage—A Review. Foods, 10(11), 2661. https://doi.org/10.3390/foods10112661