Bioactivity of Dietary Polyphenols: The Role in LDL-C Lowering
Abstract
:1. Introduction
2. Metabolism Pathways for Lowering LDL-C
2.1. Intestinal Cholesterol Absorption
2.2. VLDL Assembly and Secretion
2.3. CETP in LDL Metabolism
2.4. LDLR Mediates LDL Endocytosis
2.5. Bile Acid Metabolism
3. Current Strategies for LDL-C Lowering
4. Dietary Polyphenols: Potential LDL-C Lowering Agents
4.1. Diets Rich in Polyphenols
4.2. Flavonoids
4.2.1. Flavonols
4.2.2. Flavan-3-ols
4.2.3. Anthocyanins and Proanthocyanidins
4.2.4. Curcumin
4.2.5. Isoflavone
4.3. Stilbenes
4.4. Effect of Other Polyphenols on Lowering LDL-C and Mode of Action
5. Limitations and Suggestions
- In some studies, the crude extracts from food origin were applied to study the LDL-C-reducing activities without determining the active ingredients;
- In most previous studies, researchers only focused on a partial mechanism about a particular polyphenol without conducting a comprehensive study involved in polyphenol’s potential regulatory pathways;
- Bioactivity investigations using cell lines have made an extensive use of polyphenols at concentrations in the low-μM-to-mM range. However, after ingestion the dietary polyphenols appear in the circulatory system as phase II metabolites, and their presence in plasma rarely exceeds nM concentrations [12]. There is lack of data which explores the effect of polyphenols metabolites on lowering LDL-C;
- Researchers paid more attention to in vitro and animal studies but less attention to clinal studies.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Şahin, B.; İlgün, G. Risk factors of deaths related to cardiovascular diseases in World Health Organization (WHO) member countries. Health Soc. Care Community 2020. [Google Scholar] [CrossRef] [PubMed]
- McLaren, J.E.; Michael, D.R.; Ashlin, T.G.; Ramji, D.P. Cytokines, macrophage lipid metabolism and foam cells: Implications for cardiovascular disease therapy. Prog. Lipid Res. 2011, 50, 331–347. [Google Scholar] [CrossRef] [PubMed]
- Hung, J.; Miscianinov, V.; Sluimer, J.C.; Newby, D.E.; Baker, A.H. Targeting non-coding RNA in vascular biology and disease. Front. Physiol. 2018, 9, 1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ference, B.A.; Mahajan, N. The role of early LDL lowering to prevent the onset of atherosclerotic disease. Curr. Atheroscler. Rep. 2013, 15, 312. [Google Scholar] [CrossRef]
- Pirillo, A.; Catapano, A.L.; Norata, G.D. Recent insights into low-density lipoprotein metabolism and therapy. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 120–126. [Google Scholar] [CrossRef]
- Gitt, A.K.; Drexel, H.; Feely, J.; Ferrières, J.; Gonzalez-Juanatey, J.R.; Thomsen, K.K.; Leiter, L.A.; Lundman, P.; da Silva, P.M.; Pedersen, T. Persistent lipid abnormalities in statin-treated patients and predictors of LDL-cholesterol goal achievement in clinical practice in Europe and Canada. Eur. J. Prev. Cardiol. 2012, 19, 221–230. [Google Scholar] [CrossRef]
- Ravn-Haren, G.; Dragsted, L.O.; Buch-Andersen, T.; Jensen, E.N.; Jensen, R.I.; Németh-Balogh, M.; Paulovicsová, B.; Bergström, A.; Wilcks, A.; Licht, T.R. Intake of whole apples or clear apple juice has contrasting effects on plasma lipids in healthy volunteers. Eur. J. Nutr. 2013, 52, 1875–1889. [Google Scholar] [CrossRef]
- Brader, L.; Overgaard, A.; Christensen, L.P.; Jeppesen, P.B.; Hermansen, K. Polyphenol-rich bilberry ameliorates total cholesterol and LDL-cholesterol when implemented in the diet of Zucker diabetic fatty rats. Rev. Diabet. Stud. 2013, 10, 270. [Google Scholar] [CrossRef] [Green Version]
- Kardum, N.; Milovanović, B.; Šavikin, K.; Zdunić, G.; Mutavdžin, S.; Gligorijević, T.; Spasić, S. Beneficial effects of polyphenol-rich chokeberry juice consumption on blood pressure level and lipid status in hypertensive subjects. J. Med. Food 2015, 18, 1231–1238. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.P.; Li, S.; Chen, Y.M.; Li, H.B. Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016, 8, 515. [Google Scholar] [CrossRef]
- Chambers, K.F.; Day, P.E.; Aboufarrag, H.T.; Kroon, P.A. Polyphenol effects on cholesterol metabolism via bile acid biosynthesis, CYP7A1: A review. Nutrients 2019, 11, 2588. [Google Scholar] [CrossRef] [Green Version]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly) phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Hogger, P. Dietary polyphenols and type 2 diabetes: Current insights and future perspectives. Curr. Med. Chem. 2015, 22, 23–38. [Google Scholar] [CrossRef]
- Shen, C.-L.; Smith, B.J.; Lo, D.-F.; Chyu, M.-C.; Dunn, D.M.; Chen, C.-H.; Kwun, I.-S. Dietary polyphenols and mechanisms of osteoarthritis. J. Nutr. Biochem. 2012, 23, 1367–1377. [Google Scholar] [CrossRef]
- Wang, S.; Moustaid-Moussa, N.; Chen, L.; Mo, H.; Shastri, A.; Su, R.; Bapat, P.; Kwun, I.; Shen, C.-L. Novel insights of dietary polyphenols and obesity. J. Nutr. Biochem. 2014, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Wang, H.; Zhang, X.; Yang, S.-T. Nutraceuticals and functional foods in the management of hyperlipidemia. Crit. Rev. Food Sci. Nutr. 2014, 54, 1180–1201. [Google Scholar] [CrossRef]
- Mehmood, A.; Zhao, L.; Wang, C.; Nadeem, M.; Raza, A.; Ali, N.; Shah, A.A. Management of hyperuricemia through dietary polyphenols as a natural medicament: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1433–1455. [Google Scholar] [CrossRef]
- Wang, O.; Liu, J.; Cheng, Q.; Guo, X.; Wang, Y.; Zhao, L.; Zhou, F.; Ji, B. Effects of Ferulic Acid and gamma-Oryzanol on High-Fat and High-Fructose Diet-Induced Metabolic Syndrome in Rats. PLoS ONE 2015, 10, e0118135. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhao, L.; Cheng, Q.; Ji, B.; Yang, M.; Sanidad, K.Z.; Wang, C.; Zhou, F. Structurally Different Flavonoid Subclasses Attenuate High-Fat and High-Fructose Diet Induced Metabolic Syndrome in Rats. J. Agric. Food Chem. 2018, 66, 12412–12420. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.; Liu, J.; Wang, K.; Guo, X.; Ji, B.; Wu, W.; Zhou, F. Protective Effects of Genistein and Puerarin against Chronic Alcohol-Induced Liver Injury in Mice via Antioxidant, Antiinflammatory, and Anti-apoptotic Mechanisms (vol 64, pg 7291, 2016). J. Agric. Food Chem. 2016, 64, 8463. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Zhang, N.; Yang, D.; Yang, M.; Guo, X.; He, J.; Wu, W.; Ji, B.; Cheng, Q.; Zhou, F. Protective Effects of Five Structurally Diverse Flavonoid Subgroups against Chronic Alcohol-Induced Hepatic Damage in a Mouse Model. Nutrients 2018, 10, 1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atici, E.B.; Karlığa, B. Identification, synthesis and characterization of process related desfluoro impurity of ezetimibe and HPLC method validations. J. Pharm. Anal. 2015, 5, 356–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemes, K.; Åberg, F.; Gylling, H.; Isoniemi, H. Cholesterol metabolism in cholestatic liver disease and liver transplantation: From molecular mechanisms to clinical implications. World J. Hepatol. 2016, 8, 924. [Google Scholar] [CrossRef] [PubMed]
- Bruckert, E.; Giral, P.; Tellier, P. Perspectives in cholesterol-lowering therapy: The role of ezetimibe, a new selective inhibitor of intestinal cholesterol absorption. Circulation 2003, 107, 3124–3128. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Fu, Z.-Y.; Li, P.-S.; Miao, H.-H.; Li, B.-L.; Ma, Y.-T.; Song, B.-L. The clathrin adaptor proteins ARH, Dab2, and numb play distinct roles in Niemann-Pick C1-Like 1 versus low density lipoprotein receptor-mediated cholesterol uptake. J. Biol. Chem. 2014, 289, 33689–33700. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.M.; Sawyer, J.K.; Kelley, K.L.; Davis, M.A.; Rudel, L.L. Cholesterol esterification by ACAT2 is essential for efficient intestinal cholesterol absorption: Evidence from thoracic lymph duct cannulation. J. Lipid Res. 2012, 53, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.Q.-H. Regulation of intestinal cholesterol absorption. Annu. Rev. Physiol. 2007, 69, 221–248. [Google Scholar] [CrossRef]
- Visser, M.E.; Jakulj, L.; Kastelein, J.J.; Stroes, E.S. LDL-C-lowering therapy: Current and future therapeutic targets. Curr. Cardiol. Rep. 2008, 10, 512. [Google Scholar] [CrossRef]
- Mensenkamp, A.R.; Van Luyn, M.J.; Havinga, R.; Teusink, B.; Waterman, I.J.; Mann, C.J.; Elzinga, B.M.; Verkade, H.J.; Zammit, V.A.; Havekes, L.M. The transport of triglycerides through the secretory pathway of hepatocytes is impaired in apolipoprotein E deficient mice. J. Hepatol. 2004, 40, 599–606. [Google Scholar] [CrossRef]
- Tiwari, S.; Siddiqi, S.A. Intracellular trafficking and secretion of VLDL. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1079–1086. [Google Scholar] [CrossRef] [Green Version]
- Feingold, K.R.; Grunfeld, C. Introduction to Lipids and Lipoproteins; MDText.com, Inc.: South Dartmouth, MA, USA, 2021. [Google Scholar]
- Dietschy, J.M.; Turley, S.D.; Spady, D.K. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J. Lipid Res. 1993, 34, 1637–1659. [Google Scholar] [CrossRef]
- Cedó, L.; Farràs, M.; Lee-Rueckert, M. Molecular insights into the mechanisms underlying the cholesterol-lowering effects of phytosterols. Curr. Med. Chem. 2019, 26, 6704–6723. [Google Scholar] [CrossRef]
- Olofsson, S.O.; Boren, J. Apolipoprotein B: A clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis. J. Intern. Med. 2005, 258, 395–410. [Google Scholar] [CrossRef]
- Boren, J.; Wettesten, M.; Sjöberg, A.; Thorlin, T.; Bondjers, G.; Wiklund, O.; Olofsson, S. The assembly and secretion of apoB 100 containing lipoproteins in Hep G2 cells. Evidence for different sites for protein synthesis and lipoprotein assembly. J. Biol. Chem. 1990, 265, 10556–10564. [Google Scholar] [CrossRef]
- Lagrost, L. Plasma phospholipid transfer protein: A multifaceted protein with a key role in the assembly and secretion of apolipoprotein B–containing lipoproteins by the liver. Hepatology 2012, 56, 415–418. [Google Scholar] [CrossRef]
- Manchekar, M.; Liu, Y.; Sun, Z.; Richardson, P.E.; Dashti, N. Phospholipid transfer protein plays a major role in the initiation of apolipoprotein B-containing lipoprotein assembly in mouse primary hepatocytes. J. Biol. Chem. 2015, 290, 8196–8205. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Li, J.Z.; Liu, Y.; Li, X.; Yang, T.; Ma, X.; Li, Q.; Yao, Z.; Li, P. Cideb, an ER-and lipid droplet-associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B. Cell Metab. 2009, 9, 177–190. [Google Scholar] [CrossRef] [Green Version]
- Hossain, T.; Riad, A.; Siddiqi, S.; Parthasarathy, S.; Siddiqi, S.A. Mature VLDL triggers the biogenesis of a distinct vesicle from the trans-Golgi network for its export to the plasma membrane. Biochem. J. 2014, 459, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Masson, W.; Lobo, M.; Siniawski, D.; Huerín, M.; Molinero, G.; Valero, R.; Nogueira, J.P. Therapy with cholesteryl ester transfer protein (CETP) inhibitors and diabetes risk. Diabetes Metab. 2018, 44, 508–513. [Google Scholar] [CrossRef]
- Barter, P.J.; Brewer, H.B., Jr.; Chapman, M.J.; Hennekens, C.H.; Rader, D.J.; Tall, A.R. Cholesteryl ester transfer protein: A novel target for raising HDL and inhibiting atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 160–167. [Google Scholar] [CrossRef]
- Shrestha, S.; Wu, B.J.; Guiney, L.; Barter, P.J.; Rye, K.-A. Cholesteryl ester transfer protein and its inhibitors. J. Lipid Res. 2018, 59, 772–783. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.S.; Goldstein, J.L. A receptor-mediated pathway for cholesterol homeostasis. Science 1986, 232, 34–47. [Google Scholar] [CrossRef] [Green Version]
- Esser, V.; Limbird, L.; Brown, M.S.; Goldstein, J.L.; Russell, D.W. Mutational analysis of the ligand binding domain of the low density lipoprotein receptor. J. Biol. Chem. 1988, 263, 13282–13290. [Google Scholar] [CrossRef]
- Maxfield, F.R.; McGraw, T.E. Endocytic recycling. Nat. Rev. Mol. Cell Biol. 2004, 5, 121–132. [Google Scholar] [CrossRef]
- Goldstein, J.L.; Brown, M.S. The LDL receptor. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Scotti, E.; Calamai, M.; Goulbourne, C.N.; Zhang, L.; Hong, C.; Lin, R.R.; Choi, J.; Pilch, P.F.; Fong, L.G.; Zou, P. IDOL stimulates clathrin-independent endocytosis and multivesicular body-mediated lysosomal degradation of the low-density lipoprotein receptor. Mol. Cell. Biochem. 2013, 33, 1503–1514. [Google Scholar] [CrossRef] [Green Version]
- Poirier, S.; Mayer, G.; Poupon, V.; McPherson, P.S.; Desjardins, R.; Ly, K.; Asselin, M.-C.; Day, R.; Duclos, F.J.; Witmer, M. Dissection of the endogenous cellular pathways of PCSK9-induced low density lipoprotein receptor degradation: Evidence for an intracellular route. J. Biol. Chem. 2009, 284, 28856–28864. [Google Scholar] [CrossRef] [Green Version]
- Donkers, J.M.; Abbing, R.L.R.; Van de Graaf, S.F. Developments in bile salt based therapies: A critical overview. Biochem. Pharmacol. 2019, 161, 1–13. [Google Scholar] [CrossRef]
- Russell, D.W. Fifty years of advances in bile acid synthesis and metabolism. J. Lipid Res. 2009, 50, S120–S125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, H.; Takada, T.; Suzuki, H.; Onuki, R.; Hofmann, A.F.; Sugiyama, Y. Transport by vesicles of glycine-and taurine-conjugated bile salts and taurolithocholate 3-sulfate: A comparison of human BSEP with rat Bsep. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2005, 1738, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Dawson, P.A.; Lan, T.; Rao, A. Bile acid transporters. J. Lipid Res. 2009, 50, 2340–2357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawson, P.A.; Hubbert, M.L.; Rao, A. Getting the mOST from OST: Role of organic solute transporter, OSTα-OSTβ, in bile acid and steroid metabolism. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2010, 1801, 994–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slijepcevic, D.; Roscam Abbing, R.L.; Katafuchi, T.; Blank, A.; Donkers, J.M.; van Hoppe, S.; de Waart, D.R.; Tolenaars, D.; van der Meer, J.H.; Wildenberg, M. Hepatic uptake of conjugated bile acids is mediated by both sodium taurocholate cotransporting polypeptide and organic anion transporting polypeptides and modulated by intestinal sensing of plasma bile acid levels in mice. Hepatology 2017, 66, 1631–1643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- JG Marin, J.; IR Macias, R.; Briz, O.; M Banales, J.; J Monte, M. Bile acids in physiology, pathology and pharmacology. Curr. Drug Metab. 2016, 17, 4–29. [Google Scholar] [CrossRef]
- Shao, D.; Wang, Y.; Huang, Q.; Shi, J.; Yang, H.; Pan, Z.; Jin, M.; Zhao, H.; Xu, X. Cholesterol-Lowering Effects and Mechanisms in View of Bile Acid Pathway of Resveratrol and Resveratrol Glucuronides. J. Food Sci. 2016, 81, H2841–H2848. [Google Scholar] [CrossRef]
- Huff, M.W.; Telford, D.E.; Edwards, J.Y.; Burnett, J.R.; Barrett, P.H.R.; Rapp, S.R.; Napawan, N.; Keller, B.T. Inhibition of the apical sodium-dependent bile acid transporter reduces LDL cholesterol and apoB by enhanced plasma clearance of LDL apoB. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1884–1891. [Google Scholar] [CrossRef] [Green Version]
- Al-Dury, S.; Marschall, H.-U. Ileal bile acid transporter inhibition for the treatment of chronic constipation, cholestatic pruritus, and NASH. Front. Pharmacol. 2018, 9, 931. [Google Scholar] [CrossRef] [Green Version]
- Feingold, K.R.J.E. Cholesterol Lowering Drugs; MDText.com, Inc.: South Dartmouth, MA, USA, 2021. [Google Scholar]
- Clerc, R.G.; Stauffer, A.; Weibel, F.; Hainaut, E.; Perez, A.; Hoflack, J.-C.; Bénardeau, A.; Pflieger, P.; Garriz, J.M.; Funder, J.W. Mechanisms underlying off-target effects of the cholesteryl ester transfer protein inhibitor torcetrapib involve L-type calcium channels. J. Hypertens. 2010, 28, 1676–1686. [Google Scholar] [CrossRef]
- Rader, D.J.; Kastelein, J.J. Lomitapide and mipomersen: Two first-in-class drugs for reducing low-density lipoprotein cholesterol in patients with homozygous familial hypercholesterolemia. Circulation 2014, 129, 1022–1032. [Google Scholar] [CrossRef] [Green Version]
- Adhyaru, B.B.; Jacobson, T.A. Safety and efficacy of statin therapy. Nat. Rev. Cardiol. 2018, 15, 757–769. [Google Scholar] [CrossRef]
- Noto, D.; Cefalù, A.B.; Averna, M.R. Beyond statins: New lipid lowering strategies to reduce cardiovascular risk. Curr. Atheroscler. Rep. 2014, 16, 414. [Google Scholar] [CrossRef]
- Insull, W., Jr. Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: A scientific review. South. Med. J. 2006, 99, 257–274. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, L.; Xu, S.; Shen, A.-Z. ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis: An updated review. Prog. Lipid Res. 2020, 77, 101006. [Google Scholar] [CrossRef]
- Vaidya, S.; Bostedor, R.; Kurtz, M.M.; Bergstrom, J.D.; Bansal, V.S. Massive production of farnesol-derived dicarboxylic acids in mice treated with the squalene synthase inhibitor zaragozic acid A. Arch. Biochem. Biophys. 1998, 355, 84–92. [Google Scholar] [CrossRef]
- Al-Dury, S.; Wahlström, A.; Wahlin, S.; Langedijk, J.; Elferink, R.O.; Ståhlman, M.; Marschall, H.-U. Pilot study with IBAT inhibitor A4250 for the treatment of cholestatic pruritus in primary biliary cholangitis. Sci. Rep. 2018, 8, 6658. [Google Scholar] [CrossRef]
- Wu, M.; Xu, K.; Guo, Y.; Yu, J.; Wu, Y.; Lin, L. Lipoprotein (a) and atherosclerotic cardiovascular disease: Current understanding and future perspectives. Cardiovasc. Drugs Ther. 2019, 33, 739–748. [Google Scholar] [CrossRef]
- Ward, N.C.; Watts, G.F.; Eckel, R.H. Statin toxicity: Mechanistic insights and clinical implications. Circ. Res. 2019, 124, 328–350. [Google Scholar] [CrossRef]
- Neef, D.; Berthold, H.K.; Gouni-Berthold, I. Lomitapide for use in patients with homozygous familial hypercholesterolemia: A narrative review. Expert Rev. Clin. Pharmacol. 2016, 9, 655–663. [Google Scholar] [CrossRef]
- Gouni-Berthold, I.; Berthold, H.K. Mipomersen and lomitapide: Two new drugs for the treatment of homozygous familial hypercholesterolemia. Atheroscler. Suppl. 2015, 18, 28–34. [Google Scholar] [CrossRef]
- Aldridge, M.A.; Ito, M.K. Colesevelam hydrochloride: A novel bile acid-binding resin. Ann. Pharmacother. 2001, 35, 898–907. [Google Scholar] [CrossRef]
- Stein, E.A.; Bays, H.; O’Brien, D.; Pedicano, J.; Piper, E.; Spezzi, A. Lapaquistat acetate: Development of a squalene synthase inhibitor for the treatment of hypercholesterolemia. Circulation 2011, 123, 1974–1985. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Polyphenols and glycemic control. Nutrients 2016, 8, 17. [Google Scholar] [CrossRef]
- Suh, J.-H.; Virsolvy, A.; Goux, A.; Cassan, C.; Richard, S.; Cristol, J.-P.; Teissedre, P.-L.; Rouanet, J.-M. Polyphenols prevent lipid abnormalities and arterial dysfunction in hamsters on a high-fat diet: A comparative study of red grape and white persimmon wines. Food Funct. 2011, 2, 555–561. [Google Scholar] [CrossRef]
- Wu, A.H.; Spicer, D.; Stanczyk, F.Z.; Tseng, C.-C.; Yang, C.S.; Pike, M.C. Effect of 2-month controlled green tea intervention on lipoprotein cholesterol, glucose, and hormone levels in healthy postmenopausal women. Cancer Prev. Res. 2012, 5, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.A.; Navaei, N.; Pourafshar, S.; Jaime, S.J.; Akhavan, N.S.; Alvarez-Alvarado, S.; Proano, G.V.; Litwin, N.S.; Clark, E.A.; Foley, E.M.; et al. Effects of Montmorency Tart Cherry Juice Consumption on Cardiometabolic Biomarkers in Adults with Metabolic Syndrome: A Randomized Controlled Pilot Trial. J. Med. Food 2020, 23, 1238–1247. [Google Scholar] [CrossRef]
- Wang, Z.; Tu, Z.; Xie, X.; Cui, H.; Kong, K.W.; Zhang, L. Perilla frutescens Leaf Extract and Fractions: Polyphenol Composition, Antioxidant, Enzymes (alpha-Glucosidase, Acetylcholinesterase, and Tyrosinase) Inhibitory, Anticancer, and Antidiabetic Activities. Foods 2021, 10, 315. [Google Scholar] [CrossRef]
- Li, W.; Yang, C.; Mei, X.; Huang, R.; Zhang, S.; Tang, Y.; Dong, Q.; Zhou, C. Effect of the polyphenol-rich extract from Allium cepa on hyperlipidemic sprague-dawley rats. J. Food Biochem. 2021, 45, e13565. [Google Scholar] [CrossRef]
- Yousefi, R.; Parandoosh, M.; Khorsandi, H.; Hosseinzadeh, N.; Tonekaboni, M.M.; Saidpour, A.; Babaei, H.; Ghorbani, A. Grape seed extract supplementation along with a restricted-calorie diet improves cardiovascular risk factors in obese or overweight adult individuals: A randomized, placebo-controlled trial. Phytother. Res. 2021, 35, 987–995. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Z.; Chen, L.; Sun, G. Hypolipidemic Effects and Preliminary Mechanism of Chrysanthemum Flavonoids, Its Main Components Luteolin and Luteoloside in Hyperlipidemia Rats. Antioxidants 2021, 10, 1309. [Google Scholar] [CrossRef]
- Islam, M.S. Effects of the aqueous extract of white tea (Camellia sinensis) in a streptozotocin-induced diabetes model of rats. Phytomedicine 2011, 19, 25–31. [Google Scholar] [CrossRef]
- Bornhoeft, J.; Castaneda, D.; Nemoseck, T.; Wang, P.; Henning, S.M.; Hong, M.Y. The protective effects of green tea polyphenols: Lipid profile, inflammation, and antioxidant capacity in rats fed an atherogenic diet and dextran sodium sulfate. J. Med. Food 2012, 15, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, Z.; Huang, J.; Luo, G.; Liang, Q.; Wang, D.; Ye, X.; Wu, C.; Wang, L.; Hu, J. Anti-obesity and hypolipidemic effects of Fuzhuan brick tea water extract in high-fat diet-induced obese rats. J. Sci. Food Agric. 2013, 93, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Bellassoued, K.; Ghrab, F.; Makni-Ayadi, F.; Pelt, J.V.; Elfeki, A.; Ammar, E. Protective effect of kombucha on rats fed a hypercholesterolemic diet is mediated by its antioxidant activity. Pharm. Biol. 2015, 53, 1699–1709. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Lin, Z.; Jiang, H.; Jiang, Y.; Zhao, M.; Liu, X. Hypolipidemic effect of Youcha in hyperlipidemia rats induced by high-fat diet. Food Funct. 2017, 8, 1680–1687. [Google Scholar] [CrossRef] [PubMed]
- Guruvaiah, P.; Guo, H.; Li, D.; Xie, Z. Preventive effect of flavonol derivatives abundant sanglan tea on long-term high-fat-diet-induced obesity complications in c57bl/6 mice. Nutrients 2018, 10, 1276. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.; He, X.; Chen, H.; He, Q.; Yao, Z.; Li, Y.; Yang, H.; Simpson, S., Jr. Oil tea improves glucose and lipid levels and alters gut microbiota in type 2 diabetic mice. Nutr. Res. 2018, 57, 67–77. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, J.; Sun, P.; Yi, R.; Han, X.; Zhao, X. Raw Bowl Tea (Tuocha) Polyphenol Prevention of Nonalcoholic Fatty Liver Disease by Regulating Intestinal Function in Mice. Biomolecules 2019, 9, 435. [Google Scholar] [CrossRef] [Green Version]
- Zhai, X.; Chi, J.; Tang, W.; Ji, Z.; Zhao, F.; Jiang, C.; Lv, H.; Guo, H. Yellow wine polyphenolic compounds inhibit matrix metalloproteinase-2,-9 expression and improve atherosclerotic plaque in LDL-receptor–knockout mice. J. Pharmacol. Sci. 2014, 125, 132–141. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.-H.; Liu, L.-K.; Chuang, C.-M.; Chyau, C.-C.; Huang, C.-N.; Wang, C.-J. Mulberry water extracts possess an anti-obesity effect and ability to inhibit hepatic lipogenesis and promote lipolysis. J. Agric. Food Chem. 2011, 59, 2663–2671. [Google Scholar] [CrossRef]
- Suh, J.-H.; Romain, C.; González-Barrio, R.; Cristol, J.-P.; Teissèdre, P.-L.; Crozier, A.; Rouanet, J.-M. Raspberry juice consumption, oxidative stress and reduction of atherosclerosis risk factors in hypercholesterolemic golden Syrian hamsters. Food Funct. 2011, 2, 400–405. [Google Scholar] [CrossRef]
- Liu, S.; You, L.; Zhao, Y.; Chang, X. Wild Lonicera caerulea berry polyphenol extract reduces cholesterol accumulation and enhances antioxidant capacity in vitro and in vivo. Food Res. Int. 2018, 107, 73–83. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Zhan, L.; Xu, C.; Sun, L.; Jiang, H.; Sun, C.; Li, X. LC-Q-TOF-MS Characterization of Polyphenols from White Bayberry Fruit and Its Antidiabetic Effect in KK-A(y) Mice. ACS Omega 2020, 5, 17839–17849. [Google Scholar] [CrossRef]
- Leontowicz, M.; Jesion, I.; Leontowicz, H.; Park, Y.-S.; Namiesnik, J.; Rombolà, A.D.; Weisz, M.; Gorinstein, S. Health-promoting effects of ethylene-treated kiwifruit ‘Hayward’ from conventional and organic crops in rats fed an atherogenic diet. J. Agric. Food Chem. 2013, 61, 3661–3668. [Google Scholar] [CrossRef]
- Lim, C.Y.; Junit, S.M.; Abdulla, M.A.; Aziz, A.A. In vivo biochemical and gene expression analyses of the antioxidant activities and hypocholesterolaemic properties of Tamarindus indica fruit pulp extract. PLoS ONE 2013, 8, e70058. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.-R.; Li, J.-Y.; Dong, X.-W.; Tan, Z.-J.; Wu, W.-Z.; Xie, Q.-M.; Yang, Y.-M. Apple polyphenols decrease atherosclerosis and hepatic steatosis in ApoE−/− mice through the ROS/MAPK/NF-κB pathway. Nutrients 2015, 7, 7085–7105. [Google Scholar] [CrossRef] [Green Version]
- Fathy, S.M.; Drees, E.A. Protective effects of Egyptian cloudy apple juice and apple peel extract on lipid peroxidation, antioxidant enzymes and inflammatory status in diabetic rat pancreas. BMC Complement. Med. Ther. 2015, 16, 8. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Li, W.; Huang, D.; Yang, X. Polyphenols from hawthorn peels and fleshes differently mitigate dyslipidemia, inflammation and oxidative stress in association with modulation of liver injury in high fructose diet-fed mice. Chem. Biol. Interact. 2016, 257, 132–140. [Google Scholar] [CrossRef]
- Alqarni, M.M.M.; Osman, M.A.; Al-Tamimi, D.S.; Gassem, M.A.; Al-Khalifa, A.S.; Al-Juhaimi, F.; Ahmed, I.A.M. Antioxidant and antihyperlipidemic effects of Ajwa date (Phoenix dactylifera L.) extracts in rats fed a cholesterol-rich diet. J. Food Biochem. 2019, 43, e12933. [Google Scholar] [CrossRef]
- Peng, C.-H.; Chyau, C.-C.; Chan, K.-C.; Chan, T.-H.; Wang, C.-J.; Huang, C.-N. Hibiscus sabdariffa polyphenolic extract inhibits hyperglycemia, hyperlipidemia, and glycation-oxidative stress while improving insulin resistance. J. Agric. Food Chem. 2011, 59, 9901–9909. [Google Scholar] [CrossRef]
- Kao, E.-S.; Yang, M.-Y.; Hung, C.-H.; Huang, C.-N.; Wang, C.-J. Polyphenolic extract from Hibiscus sabdariffa reduces body fat by inhibiting hepatic lipogenesis and preadipocyte adipogenesis. Food Funct. 2016, 7, 171–182. [Google Scholar] [CrossRef]
- Daleprane, J.B.; Freitas, V.d.S.; Pacheco, A.; Rudnicki, M.; Faine, L.A.; Dörr, F.A.; Ikegaki, M.; Salazar, L.A.; Ong, T.P.; Abdalla, D.S.P. Anti-atherogenic and anti-angiogenic activities of polyphenols from propolis. J. Nutr. Biochem. 2012, 23, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Moniruzzaman, M.; Rokeya, B.; Ahmed, S.; Bhowmik, A.; Khalil, M.; Gan, S.H. In vitro antioxidant effects of Aloe barbadensis Miller extracts and the potential role of these extracts as antidiabetic and antilipidemic agents on streptozotocin-induced type 2 diabetic model rats. Molecules 2012, 17, 12851–12867. [Google Scholar] [CrossRef]
- Wang, L.; Sun, J.; Yi, Q.; Wang, X.; Ju, X. Protective effect of polyphenols extract of adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) on hypercholesterolemia-induced oxidative stress in rats. Molecules 2012, 17, 8886–8897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musolino, V.; Gliozzi, M.; Scarano, F.; Bosco, F.; Scicchitano, M.; Nucera, S.; Carresi, C.; Ruga, S.; Zito, M.C.; Maiuolo, J.; et al. Bergamot Polyphenols Improve Dyslipidemia and Pathophysiological Features in a Mouse Model of Non-Alcoholic Fatty Liver Disease. Sci. Rep. 2020, 10, 2565. [Google Scholar] [CrossRef] [PubMed]
- Sinaga, E.; Suprihatin; Yenisbar; Iswahyudi, M.; Setyowati, S.; Prasasty, V.D. Effect of supplementation of Rhodomyrtus tomentosa fruit juice in preventing hypercholesterolemia and atherosclerosis development in rats fed with fat cholesterol diet. Biomed. Pharmacother. 2021, 142, 111996. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, X.-L.; Hong, K.-F.; Zhao, T.-T.; Dong, R.-X.; Wang, W.-M.; Li, Y.-T.; Zhang, G.-L.; Lin, J.; Gui, D.-K.; et al. Total flavonoids of Astragalus Ameliorated Bile Acid Metabolism Dysfunction in Diabetes Mellitus. Evid. Based Complement. Altern. Med. 2021, 2021, 6675567. [Google Scholar] [CrossRef]
- Wang, M.; Wang, R.; Li, L.; Yan, Y.; Jia, S.; Jiang, H.; Du, Z. Quantitative proteomics of plasma and liver reveals the mechanism of turmeric in preventing hyperlipidemia in mice. Food Funct. 2021, 12, 10484–10499. [Google Scholar] [CrossRef] [PubMed]
- Feriani, A.; Tir, M.; Arafah, M.; Gomez-Caravaca, A.M.; Contreras, M.d.M.; Nahdi, S.; Taamalli, A.; Allagui, M.S.; Alwasel, S.; Segura-Carretero, A.; et al. Schinus terebinthifolius fruits intake ameliorates metabolic disorders, inflammation, oxidative stress, and related vascular dysfunction, in atherogenic diet-induced obese rats. Insight of their chemical characterization using HPLC-ESI-QTOF-MS/MS. J. Ethnopharmacol. 2021, 269, 113701. [Google Scholar] [CrossRef]
- Chen, I.-J.; Liu, C.-Y.; Chiu, J.-P.; Hsu, C.-H. Therapeutic effect of high-dose green tea extract on weight reduction: A randomized, double-blind, placebo-controlled clinical trial. Clin. Nutr. 2016, 35, 592–599. [Google Scholar] [CrossRef]
- Lee, T.-M.; Charng, M.-J.; Tseng, C.-D.; Lai, L.-P. A Double-Blind, Randomized, Placebo-Controlled Study to Evaluate the Efficacy and Safety of STA-2 (Green Tea Polyphenols) in Patients with Chronic Stable Angina. Acta Cardiol. Sin. 2016, 32, 439–449. [Google Scholar] [CrossRef]
- Quezada-Fernandez, P.; Trujillo-Quiros, J.; Pascoe-Gonzalez, S.; Trujillo-Rangel, W.A.; Cardona-Mueller, D.; Ramos-Becerra, C.G.; Barocio-Pantoja, M.; Rodriguez-de la Cerda, M.; Nerida Sanchez-Rodriguez, E.; Cardona-Munoz, E.G.; et al. Effect of green tea extract on arterial stiffness, lipid profile and sRAGE in patients with type 2 diabetes mellitus: A randomised, double-blind, placebo-controlled trial. Int. J. Food Sci. Nutr. 2019, 70, 977–985. [Google Scholar] [CrossRef]
- Ishida, N.; Iizuka, M.; Kataoka, K.; Okazaki, M.; Shiraishi, K.; Yagi, Y.; Jobu, K.; Yokota, J.; Oishi, M.; Moriyama, H. Improvement of blood lipid profiles by goishi tea polyphenols in a randomised, double-blind, placebo-controlled clinical study. Int. J. Food Sci. Nutr. 2018, 69, 598–607. [Google Scholar] [CrossRef]
- Kitada, M.; Ogura, Y.; Monno, I.; Koya, D. Supplementation with Red Wine Extract Increases Insulin Sensitivity and Peripheral Blood Mononuclear Sirt1 Expression in Nondiabetic Humans. Nutrients 2020, 12, 3108. [Google Scholar] [CrossRef]
- Xie, L.; Vance, T.; Kim, B.; Lee, S.G.; Caceres, C.; Wang, Y.; Hubert, P.A.; Lee, J.-Y.; Chun, O.K.; Bolling, B.W. Aronia berry polyphenol consumption reduces plasma total and low-density lipoprotein cholesterol in former smokers without lowering biomarkers of inflammation and oxidative stress: A randomized controlled trial. Nutr. Res. 2017, 37, 67–77. [Google Scholar] [CrossRef]
- Stote, K.S.; Wilson, M.M.; Hallenbeck, D.; Thomas, K.; Rourke, J.M.; Sweeney, M.I.; Gottschall-Pass, K.T.; Gosmanov, A.R. Effect of Blueberry Consumption on Cardiometabolic Health Parameters in Men with Type 2 Diabetes: An 8-Week, Double-Blind, Randomized, Placebo-Controlled Trial. Curr. Dev. Nutr. 2020, 4, nzaa030. [Google Scholar] [CrossRef] [Green Version]
- Yubero, N.; Sanz-Buenhombre, M.; Guadarrama, A.; Villanueva, S.; Carrión, J.M.; Larrarte, E.; Moro, C. LDL cholesterol-lowering effects of grape extract used as a dietary supplement on healthy volunteers. Int. J. Food Sci. Nutr. 2013, 64, 400–406. [Google Scholar] [CrossRef]
- Rahbar, A.R.; Mahmoudabadi, M.M.S.; Islam, M.S. Comparative effects of red and white grapes on oxidative markers and lipidemic parameters in adult hypercholesterolemic humans. Food Funct. 2015, 6, 1992–1998. [Google Scholar] [CrossRef] [Green Version]
- Sanchez Macarro, M.; Martinez Rodriguez, J.P.; Bernal Morell, E.; Perez-Pinero, S.; Victoria-Montesinos, D.; Maria Garcia-Munoz, A.; Canovas Garcia, F.; Castillo Sanchez, J.; Javier Lopez-Roman, F. Effect of a Combination of Citrus Flavones and Flavanones and Olive Polyphenols for the Reduction of Cardiovascular Disease Risk: An Exploratory Randomized, Double-Blind, Placebo-Controlled Study in Healthy Subjects. Nutrients 2020, 12, 1475. [Google Scholar] [CrossRef]
- Filip, R.; Possemiers, S.; Heyerick, A.; Pinheiro, I.; Raszewski, G.; Davicco, M.-J.; Coxam, V. Twelve-month consumption of a polyphenol extract from olive (Olea europaea) in a double blind, randomized trial increases serum total osteocalcin levels and improves serum lipid profiles in postmenopausal women with osteopenia. J. Nutr. Health Aging 2015, 19, 77–86. [Google Scholar] [CrossRef]
- Georgakouli, K.; Mpesios, A.; Kouretas, D.; Petrotos, K.; Mitsagga, C.; Giavasis, I.; Jamurtas, A.Z. The effects of an olive fruit polyphenol-enriched yogurt on body composition, blood redox status, physiological and metabolic parameters and yogurt microflora. Nutrients 2016, 8, 344. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, B.; Saedisomeolia, A.; Wood, L.G.; Yaseri, M.; Tavasoli, S. Effects of pomegranate extract supplementation on inflammation in overweight and obese individuals: A randomized controlled clinical trial. Complement. Ther. Clin. Pract. 2016, 22, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Sohrab, G.; Roshan, H.; Ebrahimof, S.; Nikpayam, O.; Sotoudeh, G.; Siasi, F. Effects of pomegranate juice consumption on blood pressure and lipid profile in patients with type 2 diabetes: A single-blind randomized clinical trial. Clin. Nutr. ESPEN 2019, 29, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Chai, S.C.; Davis, K.; Wright, R.S.; Kuczmarski, M.F.; Zhang, Z. Impact of tart cherry juice on systolic blood pressure and low-density lipoprotein cholesterol in older adults: A randomized controlled trial. Food Funct. 2018, 9, 3185–3194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, H.C.; Kim, S.H.; Park, Y.; Lee, B.H.; Hwang, H.J. Effects of 12-week oral supplementation of Ecklonia cava polyphenols on anthropometric and blood lipid parameters in overweight Korean individuals: A double-blind randomized clinical trial. Phytother. Res. 2012, 26, 363–368. [Google Scholar] [CrossRef]
- Boots, A.W.; Haenen, G.R.M.M.; Bast, A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol. 2008, 585, 325–337. [Google Scholar] [CrossRef]
- Valentova, K.; Vrba, J.; Bancirova, M.; Ulrichova, J.; Kren, V. Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem. Toxicol. 2014, 68, 267–282. [Google Scholar] [CrossRef]
- Salvamani, S.; Gunasekaran, B.; Shaharuddin, N.A.; Ahmad, S.A.; Shukor, M.Y. Antiartherosclerotic Effects of Plant Flavonoids. Biomed. Res. Int. 2014, 2014, 48058. [Google Scholar] [CrossRef] [Green Version]
- Nickel, T.; Hanssen, H.; Sisic, Z.; Pfeiler, S.; Summo, C.; Schmauss, D.; Hoster, E.; Weis, M. Immunoregulatory effects of the flavonol quercetin in vitro and in vivo. Eur. J. Nutr. 2011, 50, 163–172. [Google Scholar] [CrossRef]
- Jeong, S.-M.; Kang, M.-J.; Choi, H.-N.; Kim, J.-H.; Kim, J.-I. Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice. Nutr. Res. Pract. 2012, 6, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Ying, H.-Z.; Liu, Y.-H.; Yu, B.; Wang, Z.-Y.; Zang, J.-N.; Yu, C.-H. Dietary quercetin ameliorates nonalcoholic steatohepatitis induced by a high-fat diet in gerbils. Food Chem. Toxicol. 2013, 52, 53–60. [Google Scholar] [CrossRef]
- Li, S.-S.; Cao, H.; Shen, D.-Z.; Chen, C.; Xing, S.-L.; Dou, F.-F.; Jia, Q.-L. Effect of Quercetin on Atherosclerosis Based on Expressions of ABCA1, LXR-alpha and PCSK9 in ApoE(-/-) Mice. Chin. J. Integr. Med. 2020, 26, 114–121. [Google Scholar] [CrossRef]
- Mbikay, M.; Mayne, J.; Sirois, F.; Fedoryak, O.; Raymond, A.; Noad, J.; Chretien, M. Mice Fed a High-Cholesterol Diet Supplemented with Quercetin-3-Glucoside Show Attenuated Hyperlipidemia and Hyperinsulinemia Associated with Differential Regulation of PCSK9 and LDLR in their Liver and Pancreas. Mol. Nutr. Food Res. 2018, 62, e1700729. [Google Scholar] [CrossRef]
- Lu, T.-M.; Chiu, H.-F.; Shen, Y.-C.; Chung, C.-C.; Venkatakrishnan, K.; Wang, C.-K. Hypocholesterolemic Efficacy of Quercetin Rich Onion Juice in Healthy Mild Hypercholesterolemic Adults: A Pilot Study. Plant Foods Hum. Nutr. 2015, 70, 395–400. [Google Scholar] [CrossRef]
- Nekohashi, M.; Ogawa, M.; Ogihara, T.; Nakazawa, K.; Kato, H.; Misaka, T.; Abe, K.; Kobayashi, S. Luteolin and Quercetin Affect the Cholesterol Absorption Mediated by Epithelial Cholesterol Transporter Niemann-Pick C1-Like 1 in Caco-2 Cells and Rats. PLoS ONE 2014, 9, e97901. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.; Lee, S.-M.; Do, H.J.; Cho, Y.; Chung, J.H.; Shin, M.-J. Quercetin Up-regulates LDL Receptor Expression in HepG2 Cells. Phytother. Res. 2012, 26, 1688–1694. [Google Scholar] [CrossRef]
- Mbikay, M.; Sirois, F.; Simoes, S.; Mayne, J.; Chretien, M. Quercetin-3-glucoside increases low-density lipoprotein receptor (LDLR) expression, attenuates proprotein convertase subtilisin/kexin 9 (PCSK9) secretion, and stimulates LDL uptake by Huh7 human hepatocytes in culture. FEBS Open Bio 2014, 4, 755–762. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Xie, Z.; Gao, W.; Pu, L.; Wei, J.; Guo, C. Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats. Nutr. Res. 2016, 36, 271–279. [Google Scholar] [CrossRef]
- Eng, Q.Y.; Thanikachalam, P.V.; Ramamurthy, S. Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. J. Ethnopharmacol. 2018, 210, 296–310. [Google Scholar] [CrossRef]
- Moon, H.-S.; Chung, C.-S.; Lee, H.-G.; Kim, T.-G.; Choi, Y.-J.; Cho, C.-S. Inhibitory effect of (-)-epigallocatechin-3-gallate on lipid accumulation of 3T3-L1 cells. Obesity 2007, 15, 2571–2582. [Google Scholar] [CrossRef]
- Guo, Q.N.; Zhao, B.L.; Li, M.F.; Shen, S.R.; Xin, W.J. Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1996, 1304, 210–222. [Google Scholar] [CrossRef]
- Khalatbary, A.R.; Ahmadvand, H. Anti-inflammatory effect of the epigallocatechin gallate following spinal cord trauma in rat. Iran. Biomed. J. 2011, 15, 31–37. [Google Scholar]
- Ren, Z.; Yang, Z.; Lu, Y.; Zhang, R.; Yang, H. Anti-glycolipid disorder effect of epigallocatechin-3-gallate on high-fat diet and STZ-induced T2DM in mice. Mol. Med. Rep. 2020, 21, 2475–2483. [Google Scholar] [CrossRef]
- Hirsova, P.; Kolouchova, G.; Dolezelova, E.; Cermanova, J.; Hyspler, R.; Kadova, Z.; Micuda, S. Epigallocatechin gallate enhances biliary cholesterol secretion in healthy rats and lowers plasma and liver cholesterol in ethinylestradiol-treated rats. Eur. J. Pharmacol. 2012, 691, 38–45. [Google Scholar] [CrossRef]
- Li, Y.; Wu, S. Epigallocatechin gallate suppresses hepatic cholesterol synthesis by targeting SREBP-2 through SIRT1/FOXO1 signaling pathway. Mol. Cell. Biochem. 2018, 448, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.-J.; Jin, J.-L.; Guo, L.-N.; Sun, J.; Wu, N.-Q.; Guo, Y.-L.; Liu, G.; Dong, Q.; Li, J.-J. Beneficial impact of epigallocatechingallate on LDL-C through PCSK9/LDLR pathway by blocking HNF1α and activating FoxO3a. J. Transl. Med. 2020, 18, 195. [Google Scholar] [CrossRef] [PubMed]
- Mielgo-Ayuso, J.; Barrenechea, L.; Alcorta, P.; Larrarte, E.; Margareto, J.; Labayen, I. Effects of dietary supplementation with epigallocatechin-3-gallate on weight loss, energy homeostasis, cardiometabolic risk factors and liver function in obese women: Randomised, double-blind, placebo-controlled clinical trial. Br. J. Nutr. 2014, 111, 1263–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, A.L.; Lane, J.; Coverly, J.; Stocks, J.; Jackson, S.; Stephen, A.; Bluck, L.; Coward, A.; Hendrickx, H. Effects of dietary supplementation with the green tea polyphenol epigallocatechin-3-gallate on insulin resistance and associated metabolic risk factors: Randomized controlled trial. Br. J. Nutr. 2009, 101, 886–894. [Google Scholar] [CrossRef]
- Momose, Y.; Maeda-Yamamoto, M.; Nabetani, H. Systematic review of green tea epigallocatechin gallate in reducing low-density lipoprotein cholesterol levels of humans. Int. J. Food Sci. Nutr. 2016, 67, 606–613. [Google Scholar] [CrossRef]
- Huang, J.; Feng, S.; Liu, A.; Dai, Z.; Wang, H.; Reuhl, K.; Lu, W.; Yang, C.S. Green Tea Polyphenol EGCG Alleviates Metabolic Abnormality and Fatty Liver by Decreasing Bile Acid and Lipid Absorption in Mice. Mol. Nutr. Food Res. 2018, 62, 1700696. [Google Scholar] [CrossRef]
- Raederstorff, D.G.; Schlachter, M.F.; Elste, V.; Weber, P. Effect of EGCG on lipid absorption and plasma lipid levels in rats. J. Nutr. Biochem. 2003, 14, 326–332. [Google Scholar] [CrossRef]
- Kitamura, K.; Okada, Y.; Okada, K.; Kawaguchi, Y.; Nagaoka, S. Epigallocatechin gallate induces an up-regulation of LDL receptor accompanied by a reduction of PCSK9 via the annexin A2-independent pathway in HepG2 cells. Mol. Nutr. Food Res. 2017, 61, 1600836. [Google Scholar] [CrossRef]
- Poirier, S.; Mayer, G.; Benjannet, S.; Bergeron, E.; Marcinkiewicz, J.; Nassoury, N.; Mayer, H.; Nimpf, J.; Prat, A.; Seidah, N.G. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J. Biol. Chem. 2008, 283, 2363–2372. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, D.J.; Burns, A.C.; Kazi, A.; Dou, Q.P. Direct inhibition of the ubiquitin-proteasome pathway by ester bond-containing green tea polyphenols is associated with increased expression of sterol regulatory element-binding protein 2 and LDL receptor. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2004, 1682, 1–10. [Google Scholar] [CrossRef]
- He, J.; Giusti, M.M. Anthocyanins: Natural Colorants with Health-Promoting Properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, L.; Wang, D.; Huo, Y.; Ji, B. Anthocyanin-rich extracts from blackberry, wild blueberry, strawberry, and chokeberry: Antioxidant activity and inhibitory effect on oleic acid-induced hepatic steatosis in vitro. J. Sci. Food Agric. 2016, 96, 2494–2503. [Google Scholar] [CrossRef]
- Hassellund, S.S.; Flaa, A.; Kjeldsen, S.E.; Seljeflot, I.; Karlsen, A.; Erlund, I.; Rostrup, M. Effects of anthocyanins on cardiovascular risk factors and inflammation in pre-hypertensive men: A double-blind randomized placebo-controlled crossover study. J. Hum. Hypertens. 2013, 27, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Aboonabi, A.; Meyer, R.R.; Gaiz, A.; Singh, I. Anthocyanins in berries exhibited anti-atherogenicity and antiplatelet activities in a metabolic syndrome population. Nutr. Res. 2020, 76, 82–93. [Google Scholar] [CrossRef]
- Xia, M.; Hou, M.; Zhu, H.; Ma, J.; Tang, Z.; Wang, Q.; Li, Y.; Chi, D.; Yu, X.; Zhao, T.; et al. Anthocyanins induce cholesterol efflux from mouse peritoneal macrophages: The role of the peroxisome proliferator-activated receptor {gamma}-liver X receptor {alpha}-ABCA1 pathway. J. Biol. Chem. 2005, 280, 36792–36801. [Google Scholar] [CrossRef] [Green Version]
- Kianbakht, S.; Abasi, B.; Dabaghian, F.H. Improved Lipid Profile in Hyperlipidemic Patients Taking Vaccinium arctostaphylos Fruit Hydroalcoholic Extract: A Randomized Double-Blind Placebo-Controlled Clinical Trial. Phytother. Res. 2014, 28, 432–436. [Google Scholar] [CrossRef]
- Qin, Y.; Xia, M.; Ma, J.; Hao, Y.; Liu, J.; Mou, H.; Cao, L.; Ling, W. Anthocyanin supplementation improves serum LDL- and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am. J. Clin. Nutr. 2009, 90, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Soltani, R.; Hakimi, M.; Asgary, S.; Ghanadian, S.M.; Keshvari, M.; Sarrafzadegan, N. Evaluation of the Effects of Vaccinium arctostaphylos L. Fruit Extract on Serum Lipids and hs-CRP Levels and Oxidative Stress in Adult Patients with Hyperlipidemia: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Evid. Based Complement. Altern. Med. 2014, 2014, 217451. [Google Scholar] [CrossRef]
- Zhu, Y.; Ling, W.; Guo, H.; Song, F.; Ye, Q.; Zou, T.; Li, D.; Zhang, Y.; Li, G.; Xiao, Y.; et al. Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: A randomized controlled trial. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 843–849. [Google Scholar] [CrossRef]
- Bakuradze, T.; Tausend, A.; Galan, J.; Groh, I.A.M.; Berry, D.; Tur, J.A.; Marko, D.; Richling, E. Antioxidative activity and health benefits of anthocyanin-rich fruit juice in healthy volunteers. Free Radic. Res. 2019, 53, 1045–1055. [Google Scholar] [CrossRef]
- Zhang, P.-W.; Chen, F.-X.; Li, D.; Ling, W.-H.; Guo, H.-H. A CONSORT-Compliant, Randomized, Double-Blind, Placebo-Controlled Pilot Trial of Purified Anthocyanin in Patients with Nonalcoholic Fatty Liver Disease. Medicine 2015, 94, e758. [Google Scholar] [CrossRef]
- Yang, L.; Ling, W.; Du, Z.; Chen, Y.; Li, D.; Deng, S.; Liu, Z.; Yang, L. Effects of Anthocyanins on Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2017, 8, 684–693. [Google Scholar] [CrossRef]
- Liu, C.; Sun, J.; Lu, Y.; Bo, Y. Effects of Anthocyanin on Serum Lipids in Dyslipidemia Patients: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0162089. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, J.; Zuo, Y.; Ma, K.Y.; Jiang, Y.; Huang, Y.; Chen, Z.-Y. Blueberry anthocyanins at doses of 0.5 and 1 % lowered plasma cholesterol by increasing fecal excretion of acidic and neutral sterols in hamsters fed a cholesterol-enriched diet. Eur. J. Nutr. 2013, 52, 869–875. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, H.; Zhao, Y.; Jiao, R.; Lei, L.; Chen, J.; Wang, X.; Zhang, Z.; Huang, Y.; Wang, T.; et al. Cranberry anthocyanin as an herbal medicine lowers plasma cholesterol by increasing excretion of fecal sterols. Phytomedicine 2018, 38, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Thilavech, T.; Adisakwattana, S. Cyanidin-3-rutinoside acts as a natural inhibitor of intestinal lipid digestion and absorption. BMC Complement. Med. Ther. 2019, 19, 242. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.-L.; Xu, Y.; Zhang, Y.-Y.; Lu, Y.-H. Black rice and anthocyanins induce inhibition of cholesterol absorption in vitro. Food Funct. 2013, 4, 1602–1608. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Xia, M.; Gao, S.; Li, D.; Zhang, Y.; Jin, T.; Ling, W. Cyanidin-3-O-β-glucoside upregulates hepatic cholesterol 7α-hydroxylase expression and reduces hypercholesterolemia in mice. Mol. Nutr. Food Res. 2012, 56, 610–621. [Google Scholar] [CrossRef]
- Aron, P.M.; Kennedy, J.A. Flavan-3-ols: Nature, occurrence and biological activity. Mol. Nutr. Food Res. 2008, 52, 79–104. [Google Scholar] [CrossRef]
- De la Iglesia, R.; Milagro, F.I.; Campión, J.; Boqué, N.; Martínez, J.A. Healthy properties of proanthocyanidins. BioFactors 2010, 36, 159–168. [Google Scholar] [CrossRef]
- Cao, J.; Yu, X.; Deng, Z.; Pan, Y.; Zhang, B.; Tsao, R.; Li, H. Chemical Compositions, Antiobesity, and Antioxidant Effects of Proanthocyanidins from Lotus Seed Epicarp and Lotus Seed Pot. J. Agric. Food Chem. 2018, 66, 13492–13502. [Google Scholar] [CrossRef]
- Zhou, Q.; Han, X.; Li, R.; Zhao, W.; Bai, B.; Yan, C.; Dong, X. Anti-atherosclerosis of oligomeric proanthocyanidins from Rhodiola rosea on rat model via hypolipemic, antioxidant, anti-inflammatory activities together with regulation of endothelial function. Phytomedicine Int. J. Phytother. Phytopharm. 2018, 51, 171–180. [Google Scholar] [CrossRef]
- Wang, Z.; Su, B.; Fan, S.; Fei, H.; Zhao, W. Protective effect of oligomeric proanthocyanidins against alcohol-induced liver steatosis and injury in mice. Biochem. Biophys. Res. Commun. 2015, 458, 757–762. [Google Scholar] [CrossRef]
- Jiao, R.; Zhang, Z.; Yu, H.; Huang, Y.; Chen, Z.-Y. Hypocholesterolemic activity of grape seed proanthocyanidin is mediated by enhancement of bile acid excretion and up-regulation of CYP7A1. J. Nutr. Biochem. 2010, 21, 1134–1139. [Google Scholar] [CrossRef]
- Yasuda, A.; Natsume, M.; Sasaki, K.; Baba, S.; Nakamura, Y.; Kanegae, M.; Nagaoka, S. Cacao procyanidins reduce plasma cholesterol and increase fecal steroid excretion in rats fed a high-cholesterol diet. BioFactors 2008, 33, 211–223. [Google Scholar] [CrossRef]
- Heidker, R.M.; Caiozzi, G.C.; Ricketts, M.-L. Dietary procyanidins selectively modulate intestinal farnesoid X receptor-regulated gene expression to alter enterohepatic bile acid recirculation: Elucidation of a novel mechanism to reduce triglyceridemia. Mol. Nutr. Food Res. 2016, 60, 727–736. [Google Scholar] [CrossRef]
- Quesada, H.; del Bas, J.M.; Pajuelo, D.; Diaz, S.; Fernandez-Larrea, J.; Pinent, M.; Arola, L.; Salvado, M.J.; Blade, C. Grape seed proanthocyanidins correct dyslipidemia associated with a high-fat diet in rats and repress genes controlling lipogenesis and VLDL assembling in liver. Int. J. Obes. 2009, 33, 1007–1012. [Google Scholar] [CrossRef] [Green Version]
- Prasad, S.; Gupta, S.C.; Tyagi, A.K.; Aggarwal, B.B. Curcumin, a component of golden spice: From bedside to bench and back. Biotechnol. Adv. 2014, 32, 1053–1064. [Google Scholar] [CrossRef] [PubMed]
- Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol. 2017, 174, 1325–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panahi, Y.; Kianpour, P.; Mohtashami, R.; Jafari, R.; Simental-Mendía, L.E.; Sahebkar, A. Curcumin Lowers Serum Lipids and Uric Acid in Subjects with Nonalcoholic Fatty Liver Disease: A Randomized Controlled Trial. J. Cardiovasc. Pharmacol. 2016, 68, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Zou, J.; Zhang, S.; Li, X.; Lu, M. Hypocholesterolemic Activity of Curcumin Is Mediated by Down-regulating the Expression of Niemann-Pick C1-like 1 in Hamsters. J. Agric. Food Chem. 2017, 65, 276–280. [Google Scholar] [CrossRef]
- Zou, J.; Zhang, S.; Li, P.; Zheng, X.; Feng, D. Supplementation with curcumin inhibits intestinal cholesterol absorption and prevents atherosclerosis in high-fat diet-fed apolipoprotein E knockout mice. Nutr. Res. 2018, 56, 32–40. [Google Scholar] [CrossRef]
- Kim, M.; Kim, Y. Hypocholesterolemic effects of curcumin via up-regulation of cholesterol 7a-hydroxylase in rats fed a high fat diet. Nutr. Res. Pract. 2010, 4, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Momtazi-Borojeni, A.A.; Zabihi, N.A.; Bagheri, R.K.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Intravenous Curcumin Mitigates Atherosclerosis Progression in Cholesterol-Fed Rabbits. In Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health; Barreto, G.E., Sahebkar, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; Volume 1308, pp. 45–54. [Google Scholar]
- Labban, R.S.M.; Alfawaz, H.A.; Almnaizel, A.T.; Al-Muammar, M.N.; Bhat, R.S.; El-Ansary, A. Garcinia mangostana extract and curcumin ameliorate oxidative stress, dyslipidemia, and hyperglycemia in high fat diet-induced obese Wistar albino rats. Sci. Rep. 2021, 11, 7278. [Google Scholar] [CrossRef]
- Jamilian, M.; Foroozanfard, F.; Kavossian, E.; Aghadavod, E.; Shafabakhsh, R.; Hoseini, A.; Asemi, Z. Effects of curcumin on body weight, glycemic control and serum lipids in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. Clin. Nutr. ESPEN 2020, 36, 128–133. [Google Scholar] [CrossRef]
- Jalali, M.; Mahmoodi, M.; Mosallanezhad, Z.; Jalali, R.; Imanieh, M.H.; Moosavian, S.P. The effects of curcumin supplementation on liver function, metabolic profile and body composition in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. Complement. Ther. Med. 2020, 48, 102283. [Google Scholar] [CrossRef]
- Funamoto, M.; Sunagawa, Y.; Katanasaka, Y.; Miyazaki, Y.; Imaizumi, A.; Kakeya, H.; Yamakage, H.; Satoh-Asahara, N.; Komiyama, M.; Wada, H.; et al. Highly absorptive curcumin reduces serum atherosclerotic low-density lipoprotein levels in patients with mild COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2016, 11, 2029–2034. [Google Scholar] [CrossRef] [Green Version]
- Adibian, M.; Hodaei, H.; Nikpayam, O.; Sohrab, G.; Hekmatdoost, A.; Hedayati, M. The effects of curcumin supplementation on high-sensitivity C-reactive protein, serum adiponectin, and lipid profile in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Phytother. Res. 2019, 33, 1374–1383. [Google Scholar] [CrossRef] [Green Version]
- Feng, D.; Ohlsson, L.; Duan, R.-D. Curcumin inhibits cholesterol uptake in Caco-2 cells by down-regulation of NPC1L1 expression. Lipids Health Dis. 2010, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.; Wo, X.; Dou, X.; Xu, L.; Qian, Y.; Luo, Y.; Yan, J. Regulation of LDL receptor expression by the effect of curcumin on sterol regulatory element pathway. Pharmacol. Rep. 2006, 58, 577–581. [Google Scholar]
- Dou, X.; Fan, C.; Wo, L.; Yan, J.; Qian, Y.; Wo, X. Curcumin Up-Regulates LDL Receptor Expression via the Sterol Regulatory Element Pathway in HepG2 Cells. Planta Med. 2008, 74, 1374–1379. [Google Scholar] [CrossRef] [Green Version]
- Tai, M.-H.; Chen, P.-K.; Chen, P.-Y.; Wu, M.-J.; Ho, C.-T.; Yen, J.-H. Curcumin enhances cell-surface LDLR level and promotes LDL uptake through downregulation of PCSK9 gene expression in HepG2 cells. Mol. Nutr. Food Res. 2014, 58, 2133–2145. [Google Scholar] [CrossRef]
- Cai, Y.; Lu, D.; Zou, Y.; Zhou, C.; Liu, H.; Tu, C.; Li, F.; Liu, L.; Zhang, S. Curcumin Protects Against Intestinal Origin Endotoxemia in Rat Liver Cirrhosis by Targeting PCSK9. J. Food Sci. 2017, 82, 772–780. [Google Scholar] [CrossRef]
- Tian, N.; Li, X.; Luo, Y.; Han, Z.; Li, Z.; Fan, C. Curcumin regulates the metabolism of low density lipoproteins by improving the C-to-U RNA editing efficiency of apolipoprotein B in primary rat hepatocytes. Mol. Med. Rep. 2014, 9, 132–136. [Google Scholar] [CrossRef] [Green Version]
- Hussain, H.; Green, I.R. A patent review of the therapeutic potential of isoflavones (2012–2016). Expert Opin. Ther. Pat. 2017, 27, 1135–1146. [Google Scholar] [CrossRef]
- Mazumder, M.A.R.; Hongsprabhas, P. Genistein as antioxidant and antibrowning agents in in vivo and in vitro: A review. Biomed. Pharmacother. 2016, 82, 379–392. [Google Scholar] [CrossRef]
- Usui, T. Pharmaceutical prospects of phytoestrogens. Endocr. J. 2006, 53, 7–20. [Google Scholar] [CrossRef] [Green Version]
- Behloul, N.; Wu, G. Genistein: A promising therapeutic agent for obesity and diabetes treatment. Eur. J. Pharmacol. 2013, 698, 31–38. [Google Scholar] [CrossRef]
- Yousefinejad, A.; Siassi, F.; Javanbakht, M.H.; Mohammadi, H.; Ghaedi, E.; Zarei, M.; Djalali, E.; Djalali, M. Effect of Genistein and L-carnitine and Their Combination on Lipid Profile and Inflammatory Cytokines in Experimental Nephrotic Syndrome. Rep. Biochem. Mol. Biol. 2018, 7, 1–8. [Google Scholar]
- Incir, S.; Bolayirli, I.M.; Inan, O.; Aydin, M.S.; Bilgin, I.A.; Sayan, I.; Esrefoglu, M.; Seven, A. The effects of genistein supplementation on fructose induced insulin resistance, oxidative stress and inflammation. Life Sci. 2016, 158, 57–62. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, K.; Zhao, Q.; Zhang, J. Effects of Dietary Genistein on Plasma and Liver Lipids, Hepatic Gene Expression, and Plasma Metabolic Profiles of Hamsters with Diet-Induced Hyperlipidemia. J. Agric. Food Chem. 2015, 63, 7929–7936. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, H.; Zheng, Z.; Lu, R.; Jiang, Z. Genistein can ameliorate hepatic inflammatory reaction in nonalcoholic steatohepatitis rats. Biomed. Pharmacother. 2019, 111, 1290–1296. [Google Scholar] [CrossRef]
- Amerizadeh, A.; Asgary, S.; Vaseghi, G.; Farajzadegan, Z. Effect of Genistein Intake on Some Cardiovascular Risk Factors: An Updated Systematic Review and Meta-analysis. Curr. Probl. Cardiol. 2021, 1, 100902. [Google Scholar] [CrossRef]
- Squadrito, F.; Marini, H.; Bitto, A.; Altavilla, D.; Polito, F.; Adamo, E.B.; D’Anna, R.; Arcoraci, V.; Burnett, B.P.; Minutoli, L.; et al. Genistein in the Metabolic Syndrome: Results of a Randomized Clinical Trial. J. Clin. Endocrinol. Metab. 2013, 98, 3366–3374. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, Y.; Wang, T.; Zhao, L.; Feng, W. Does genistein lower plasma lipids and homocysteine levels in postmenopausal women? A meta-analysis. Climacteric 2016, 19, 440–447. [Google Scholar] [CrossRef]
- Lu, R.; Zheng, Z.; Yin, Y.; Jiang, Z. Effect of Genistein on Cholesterol Metabolism-Related Genes in HepG2 Cell. J. Food Sci. 2019, 84, 2330–2336. [Google Scholar] [CrossRef]
- Kartawijaya, M.; Han, H.W.; Kim, Y.; Lee, S.-M. Genistein upregulates LDLR levels via JNK-mediated activation of SREBP-2. Food Nutr. Res. 2016, 60, 31120. [Google Scholar] [CrossRef] [Green Version]
- Borradaile, N.M.; de Dreu, L.E.; Wilcox, L.J.; Edwards, J.Y.; Huff, M.W. Soya phytoestrogens, genistein and daidzein, decrease apolipoprotein B secretion from HepG2 cells through multiple mechanisms. Biochem. J. 2002, 366, 531–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovinazzo, G.; Ingrosso, I.; Paradiso, A.; De Gara, L.; Santino, A. Resveratrol Biosynthesis: Plant Metabolic Engineering for Nutritional Improvement of Food. Plant Foods Hum. Nutr. 2012, 67, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Ravagnan, G.; De Filippis, A.; Carteni, M.; De Maria, S.; Cozza, V.; Petrazzuolo, M.; Tufano, M.A.; Donnarumma, G. Polydatin, A Natural Precursor of Resveratrol, Induces beta-Defensin Production and Reduces Inflammatory Response. Inflammation 2013, 36, 26–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, S.-M.; Lee, S.-A.; Choi, M.-S. Antiobesity and Vasoprotective Effects of Resveratrol in ApoE-Deficient Mice. J. Med. Food 2014, 17, 310–316. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Sun, L.-N.; Xing, W.-W.; Huang, B.-K.; Jia, M.; Wu, J.-Z.; Zhang, H.; Qin, L.-P. Lipid-lowering effects of polydatin from Polygonum cuspidatum in hyperlipidemic hamsters. Phytomedicine 2009, 16, 652–658. [Google Scholar] [CrossRef]
- Xing, W.-W.; Wu, J.-Z.; Jia, M.; Du, J.; Zhang, H.; Qin, L.-P. Effects of polydatin from Polygonum cuspidatum on lipid profile in hyperlipidemic rabbits. Biomed. Pharmacother. 2009, 63, 457–462. [Google Scholar] [CrossRef]
- Xin, P.; Han, H.; Gao, D.; Cui, W.; Yang, X.; Ying, C.; Sun, X.; Hao, L. Alleviative effects of resveratrol on nonalcoholic fatty liver disease are associated with up regulation of hepatic low density lipoprotein receptor and scavenger receptor class B type I gene expressions in rats. Food Chem. Toxicol. 2013, 52, 12–18. [Google Scholar] [CrossRef]
- Yashiro, T.; Nanmoku, M.; Shimizu, M.; Inoue, J.; Sato, R. Resveratrol increases the expression and activity of the low density lipoprotein receptor in hepatocytes by the proteolytic activation of the sterol regulatory element-binding proteins. Atherosclerosis 2012, 220, 369–374. [Google Scholar] [CrossRef]
- Jing, Y.; Hu, T.; Lin, C.; Xiong, Q.; Liu, F.; Yuan, J.; Zhao, X.; Wang, R. Resveratrol downregulates PCSK9 expression and attenuates steatosis through estrogen receptor alpha-mediated pathway in L02 cells. Eur. J. Pharmacol. 2019, 855, 216–226. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, J.; Li, J.; Chen, C.; Huang, J.; Liu, P.; Huang, H. Polydatin ameliorates lipid and glucose metabolism in type 2 diabetes mellitus by downregulating proprotein convertase subtilisin/kexin type 9 (PCSK9). Cardiovasc. Diabetol. 2016, 15, 19. [Google Scholar] [CrossRef] [Green Version]
- Chothe, P.P.; Swaan, P.W. Resveratrol promotes degradation of the human bile acid transporter ASBT (SLC10A2). Biochem. J. 2014, 459, 301–312. [Google Scholar] [CrossRef]
- Miura, D.; Miura, Y.; Yagasaki, K. Hypolipidemic action of dietary resveratrol, a phytoalexin in grapes and red wine, in hepatoma-bearing rats. Life Sci. 2003, 73, 1393–1400. [Google Scholar] [CrossRef]
- Kumar, S.; Prahalathan, P.; Saravanakumar, M.; Raja, B. Vanillic acid prevents the deregulation of lipid metabolism, endothelin 1 and up regulation of endothelial nitric oxide synthase in nitric oxide deficient hypertensive rats. Eur. J. Pharmacol. 2014, 743, 117–125. [Google Scholar] [CrossRef]
- Ma, J.-Q.; Ding, J.; Zhao, H.; Liu, C.-M. Puerarin attenuates carbon tetrachloride-induced liver oxidative stress and hyperlipidaemia in mouse by JNK/c-Jun/CYP7A1 pathway. Basic Clin. Pharmacol. Toxicol. 2014, 115, 389–395. [Google Scholar] [CrossRef]
- Sui, G.-G.; Xiao, H.-B.; Lu, X.-Y.; Sun, Z.-L. Naringin Activates AMPK Resulting in Altered Expression of SREBPs, PCSK9, and LDLR To Reduce Body Weight in Obese C57BL/6J Mice. J. Agric. Food Chem. 2018, 66, 8983–8990. [Google Scholar] [CrossRef]
- Kubota, S.; Tanaka, Y.; Nagaoka, S. Ellagic acid affects mRNA expression levels of genes that regulate cholesterol metabolism in HepG2 cells. Biosci. Biotechnol. Biochem. 2019, 83, 952–959. [Google Scholar] [CrossRef]
- Ochiai, A.; Miyata, S.; Iwase, M.; Shimizu, M.; Inoue, J.; Sato, R. Kaempferol stimulates gene expression of low-density lipoprotein receptor through activation of Sp1 in cultured hepatocytes. Sci. Rep. 2016, 6, 24940. [Google Scholar] [CrossRef] [Green Version]
- Tamura, A.; Fukushima, M.; Shimada, K.-i.; Han, K.-H.; Sekikawa, M.; Watanabe, S.; Nakano, M.; Matsumoto, M.; Chiji, H. Cholesterol metabolism in rat is affected by protocatechuic acid. J. Nutr. Sci. Vitaminol. 2004, 50, 13–18. [Google Scholar]
- Chung, M.J.; Sung, N.-J.; Park, C.-S.; Kweon, D.-K.; Mantovani, A.; Moon, T.-W.; Lee, S.-J.; Park, K.H. Antioxidative and hypocholesterolemic activities of water-soluble puerarin glycosides in HepG2 cells and in C57BL/6J mice. Eur. J. Pharmacol. 2008, 578, 159–170. [Google Scholar] [CrossRef]
- Zhang, K.; Song, W.; Li, D.; Jin, X. Apigenin in the regulation of cholesterol metabolism and protection of blood vessels. Exp. Ther. Med. 2017, 13, 1719–1724. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.Y.; Tan, Y.Q.; Lin, S.-m.; Leung, L.K. Co-administrating apigenin in a high-cholesterol diet prevents hypercholesterolaemia in golden hamsters. J. Pharm. Pharmacol. 2018, 70, 1253–1261. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, Y.; Liu, C.; Xu, D.; Zhang, R.; Cheng, Y.; Pan, Y.; Huang, C.; Chen, Y. Luteolin Alleviates Alcoholic Liver Disease Induced by Chronic and Binge Ethanol Feeding in Mice. J. Nutr. 2014, 144, 1009–1015. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Inoue, J.; Choi, J.-M.; Nakamura, S.; Yan, Z.; Fushinobu, S.; Kamada, H.; Kato, H.; Hashidume, T.; Shimizu, M.; et al. Identification of the Flavonoid Luteolin as a Repressor of the Transcription Factor Hepatocyte Nuclear Factor 4 alpha. J. Biol. Chem. 2015, 290, 24021–24035. [Google Scholar] [CrossRef] [Green Version]
- Sa, C.; Oliveira, A.R.; Machado, C.; Azevedo, M.; Pereira-Wilson, C. Effects on Liver Lipid Metabolism of the Naturally Occurring Dietary Flavone Luteolin-7-glucoside. Evid. Based Complement. Altern. Med. 2015, 2015, 647832. [Google Scholar] [CrossRef] [Green Version]
- Duwensee, K.; Schwaiger, S.; Tancevski, I.; Eller, K.; van Eck, M.; Markt, P.; Linder, T.; Stanzl, U.; Ritsch, A.; Patsch, J.R.; et al. Leoligin, the major lignan from Edelweiss, activates cholesteryl ester transfer protein. Atherosclerosis 2011, 219, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.T.; Chen, J.; Jiao, R.; Peng, C.; Zuo, Y.; Lei, L.; Liu, Y.; Wang, X.; Ma, K.Y.; Huang, Y.; et al. Cholesterol-Lowering Activity of Sesamin Is Associated with Down-Regulation on Genes of Sterol Transporters Involved in Cholesterol Absorption. J. Agric. Food Chem. 2015, 63, 2963–2969. [Google Scholar] [CrossRef]
- Fale, P.L.; Ferreira, C.; Maruzzella, F.; Florencio, M.H.; Frazao, F.N.; Serralheiro, M.L.M. Evaluation of cholesterol absorption and biosynthesis by decoctions of Annona cherimola leaves. J. Ethnopharmacol. 2013, 150, 718–723. [Google Scholar] [CrossRef]
- Morin, B.; Nichols, L.A.; Zalasky, K.M.; Davis, J.W.; Manthey, J.A.; Holland, L.J. The citrus flavonoids hesperetin and nobiletin differentially regulate low density lipoprotein receptor gene transcription in HepG2 liver cells. J. Nutr. 2008, 138, 1274–1281. [Google Scholar] [CrossRef] [PubMed]
- Miwa, Y.; Mitsuzumi, H.; Yamada, M.; Arai, N.; Tanabe, F.; Okada, K.; Kubota, M.; Chaen, H.; Sunayama, T.; Kibata, M. Suppression of apolipoprotein B secretion from HepG2 cells by glucosyl hesperidin. J. Nutr. Sci. Vitaminol. 2006, 52, 223–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Drug | Mechanism of Action | Adverse Effects | References |
---|---|---|---|
Ezetimibe | Inhibition of intestine cholesterol absorption | - | [24] |
Mipomersen | ApoB synthesis inhibition | Injection site reactions; Influenza-like symptoms; Fatty liver | [61] |
Lomitapide | Reduced secretion of apoB-containing lipoproteins by MTP inhibition | Gastrointestinal tract diarrhea, nausea, vomiting, and dyspepsia; Fatty liver | [70,71] |
Statins | Reduced hepatic cholesterol synthesis and increased LDLR expression by blocking hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) | Statin-associated muscle symptoms (myalgia, myopathy, and myositis with elevated creatinine kinase rhabdomyolysis) | [62,69] |
Anti-PCSK9 monoclonal antibodies (mAbs) | Blockade of circulating PCSK9 interaction with LDLR | Injection site reactions | [63] |
Bempedoic acid | Reduced hepatic cholesterol synthesis and increased LDLR expression by blocking ATP-citrate lyase (ACLY) | Elevated uric acid levels; Tendon rupture; Increased serum creatinine | [59] |
Bile acid sequestrants | Reduced bile acid reabsorption and increased fecal elimination | Gastrointestinal side effects: constipation, bloating, abdominal discomfort, and aggravation of hemorrhoids | [64,72] |
CETP inhibitors | Inhibition of CETP | Increase of plasma aldosterone and blood pressure | [60] |
Squalene synthase inhibitors | Reduced hepatic cholesterol synthesis and increased LDLR expression by blocking squalene synthase | Acidosis; Elevation of alanine aminotransferase and total bilirubin | [66,73] |
ASBT inhibitors | Reduced bile acid reabsorption | Abdominal pain and diarrhea | [67] |
Dietary Sources | Polyphenols Components | Treatment | Effect | p-Value (vs. Model) | References |
---|---|---|---|---|---|
White tea (Camellia sinensis) | - | 0.5% aqueous extracts of white tea to diabetes rats for 4 weeks | Decreases in plasma LDL-C | p < 0.05 | [82] |
Green tea (Camellia sinensis) | Epigallocatechin gallate, epicatechin, epicatechin gallate, epigallocatechin, gallocatechin gallate, and catechin | 0.2% green tea extract was given to atherogenic-diet-fed to SD rats for 4 weeks | Decreases in plasma LDL-C by 40% | p < 0.05 | [83] |
Fuzhuan brick tea (Camellia sinensis) | Catechin, epicatechin, epigallocatechin, gallocatechin gallate, epigallocatechin gallate, epicatechin, gallate, rutin, gallic acid, and chlorogenic acid | 75 mg/kg, 300 mg Fuzhuan brick tea water extract/kg bw were given to obese rats for 40 days | Reduction in plasma LDL-C by 38% | p < 0.05 | [84] |
Kombucha (Camellia sinensis) | - | Kombucha (5 mL/kg bw) was given to hypercholesterolemic-diet-fed rats per day for 16 weeks | Decreases in plasma LDL-C by 36% | p < 0.05 | [85] |
Youcha (Camellia sinensis) | - | 1500 mg/kg·bw Youcha were respectively given to hyperlipidemia rats for 32 days | Decreases in plasma LDL-C by 24% | p > 0.05 | [86] |
Sanglan tea (Camellia sinensis) | 15 kinds of flavonoids such as quercetin and kaempferol | Sanglan tea (200 mg/kg bw, respectively) was given to obese mice for 28 weeks | Reduction in plasma LDL-C | p < 0.05 | [87] |
Oil tea (Camellia sinensis) | - | 4 g/kg bw oil tea was given to type 2 diabetic mice | Lowers plasma LDL-C | p < 0.05 | [88] |
Bowl tea (Camellia sinensis) | Gallic acid, epigallocatechin, catechin, L-epicatechin, epigallocatechin gallate, gallocatechin gallate, and epicatechin gallate | Bowl tea (50 mg/kg bw) was given to high-fat-diet-fed mice for 12 weeks | Decreases in plasma LDL-C by 24% | p < 0.05 | [89] |
Persimmon (Diospyros kaki) wine and Grape (Vitis vinifera) wine | Persimmon wine: epicatechin, epigallocatechin-gallate; Grape wine: catechin, epicatechin, epicatechin-3-O-gallate, and epigallocatechin-gallate | Wine (7.4 ml/kg bw) to atherogenic-diet-fed hamsters for 12 weeks | Decreases in plasma LDL-C levels by 38% | p < 0.05 | [75] |
Yellow wine (Oryza sativa L.) | - | Yellow wine polyphenolic compounds (30 mg/kg bw) were given to LDL receptor knockout mice per day for 14 weeks | Decreases in plasma LDL-C by 41% | p < 0.05 | [90] |
Mulberry (Morus alba L.) | Gallic acid, protocatechuic acid, 3-caffeoylquinic acid, chlorogenic acid, 4-caffeoyl quinic acid, caffeic acid, rutin, and quercetin-3-O-glucoside | 0.5%, 1%, and 2% mulberry water extracts were given to high-fat-diet-fed hamsters for 12 weeks | Lowers plasma LDL-C | p < 0.05 | [91] |
Raspberry (Rubus idaeus) juice | Anthocyanins, ellagitannins, and ellagic acid-like compounds | Equivalent to a consumption of 275 mL/day by a 70 kg human to hypercholesterolemic golden Syrian hamsters for 12 weeks | Decreases in plasma LDL-C by 41% | p < 0.05 | [92] |
Bilberry (Vaccinuim myrtillus) | Anthocyanins, quercetin-3-O-glucoside, and chlorogenic acid | 5 g bilberry powder orally given to Zucker diabetic fatty rats for 8 weeks | Ameliorates LDL-C level by 60% | p < 0.05 | [8] |
Berry (Lonicera caerulea L. var. edulis) | Cyanidin-3-glucoside, catechin, and chlorogenic acid | Lonicera caerulea berry extract (300 mg/kg bw) was given to high-fat-diet-fed rats for 12 weeks | Decreases in plasma LDL-C by 48% | p < 0.05 | [93] |
White bayberry (Morella rubra Sieb. et Zucc.) | Epigallocatechin gallate, epigallocatechin, myricetin-3-O-α-l-rhamnoside, quercetin-3-O-rhamnoside, and kaempferol-3-O-rhamnoside | 200 mg/kg bw white bayberry fruit extracts were given to diabetic KK-Ay mice for 5 weeks | Ameliorates plasma LDL-C by 58% | p < 0.05 | [94] |
Kiwifruit (Actinidia deliciosa) | - | 5% of lyophilized kiwifruits were given to atherogenic-diet-fed rats for 33 days | Decreases in plasma LDL-C by 41% | p < 0.05 | [95] |
Tamarindus indica | - | 500 mg Tamarindus indica fruit pulp extract/kg bw to high-cholesterol-diet-fed hamsters for 10 weeks | Lowers plasma LDL-C by 60% | p < 0.05 | [96] |
Apple (Malus ssp.) | - | Apple polyphenols (100 mg/kg bw) were given to apolipoprotein-E deficient (ApoE-/-) mice for 12 weeks | Decreases in plasma LDL-C | p < 0.05 | [97] |
Apple (Malus) juice | Cloudy apple juice: emodin, kaempferol, cyanidin cation, stevioside, and butylated hydroxytoluene | Cloudy apple juice (15 ml/kg bw) was given to diabetic rats for 21 days | Decreases in plasma LDL-C by 74% | p < 0.05 | [98] |
Hawthorn (Crataegus oxyacantha) | Chlorogenic acid, epicatechin, rutin, and hyperoside | 400 mg/kg bw extracts from hawthorn fruit peel and flesh were respectively given to high-fructose-diet-fed mice for 8 weeks | Reduction in plasma LDL-C by 39% | p < 0.05 | [99] |
Ajwa date (Phoenix dactylifera L.) | - | Ajwa date extract (25 mg/kg bw) was given to hypercholestrolemic rats for 28 days | Ameliorates plasma LDL-C | p < 0.05 | [100] |
Hibiscus sabdariffa | 18 phenolic compounds | 100 mg/kg bw Hibiscus sabdariffa polyphenolic extract to diabetic rats for 7 weeks | Reduction in plasma LDL/HDL ratio | p < 0.05 | [101] |
Hibiscus sabdariffa | Protocatechuic acid, catechin, gallocatechins, caffeic acid, and gallocatechin gallates | 0.5% Hibiscus sabdariffa extract were given to obese hamsters for 10 weeks | Ameliorates plasma LDL-C | p < 0.05 | [102] |
Propolis | Green propolis: artepellin c, pinocembrin, and kampferol; Red propolis: 3-Hydroxy-8,9-dimethoxypterocarpan, medicarpin, and daidzein; Brown propolis: pinocembrin, caffeic acid phenyl ester, quercetin, and galangin | Green, red, or brown propolis extract (250 mg/kg bw) to cholesterol-enriched-diet-fed LDLR knockout mice for 4 weeks | Reduces plasma non-HDL-C treated with the red propolis by 17% | p < 0.05 | [103] |
Aloe vera | - | 1.25 g Aloe vera extracts/kg bw was given to type 2 diabetic rats for 28 days | Lowers plasma LDL-C | p > 0.05 | [104] |
Adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) | Gallic acid and catechin | 40 mg total phenolics/kg bw to high-cholesterol-diet-fed rats for 28 days | Decreases in plasma LDL-C by 30% | p < 0.05 | [105] |
Bergamot (Citrus bergamia Risso et Poiteau) | - | 50 mg/kg bw bergamot polyphenolic formulation was given to high-fat-diet-fed mice for 16 weeks | Reduction in plasma LDL-C by 40% | p < 0.05 | [106] |
Perilla. frutescens (L.) Britt. | - | Leaf extracts (250 mg/kg bw) were given to high-fat-diet-fed rats for 4 weeks | Lowers plasma LDL-C by 53% | p < 0.05 | [78] |
Onion (Allium cepa L.) | Quercetin and isoquercitrin | Hyperlipidemic rats treated with onion extract at 4.5g/kg bw for 4 weeks | Ameliorates plasma LDL-C by 45% | p < 0.05 | [79] |
Rhodomyrtus tomentosa fruit juice | - | 2 g/kg bw frozen fruit juice was given to high-fat-diet-fed rats for 75 days | Reduces plasma LDL-C | p < 0.05 | [107] |
Astragalus radix | - | 25 mg Astragalus radix total flavones/kg bw was given to diabetic mice for 8 weeks | Lowers plasma LDL-C | p < 0.05 | [108] |
Turmeric (Curcuma longa) | - | 2.0% turmeric powder was given to high-fat-diet-fed mice for 8 weeks | Lowers plasma LDL-C | p < 0.05 | [109] |
Schinus terebinthifolius Raddi | Gallic acid, catechin, naringenin, and kaempferol | 50 mg Schinus terebinthifolius Raddi extract/kg bw to high-cholesterol-diet-fed rats for 9 weeks | Ameliorates plasma LDL-C by 41% | p < 0.05 | [110] |
Dietary Sources | Polyphenols Components | Treatment | Effect | p-Value | References |
---|---|---|---|---|---|
Green tea (Camellia sinesis) | Epigallocatechin gallate, epicatechin, epigallocatechin, epicatechin gallate, and gallocatechin gallate | Green tea capsules were given to healthy postmenopausal women for 2 months | Reduction in plasma LDL-C by 8% from baseline | p < 0.05 (vs. placebo group) | [76] |
Green tea (Camellia sinesis) | Epigallocatechin gallate, epicatechin gallate, epigallocatechin, epicatechin, and gallocatechin gallate | 1500 mg green tea extract was given to women with central obesity for 12 weeks | Decreases in plasma LDL-C by 10% from baseline | p < 0.05 (vs. baseline) | [111] |
Green tea (Camellia sinesis) | Epigallocatechin 3-gallate, epigallocatechin, catechin, epicatechin, gallocatechin gallate, and epicatechin-3-gallate | 1500 mg STA-2 (a pharmaceutical preparation of green tea polyphenols) daily was given to patients with chronic stable angina for 6 weeks | Decreases in plasma LDL-C | p < 0.05 (vs. placebo group) | [112] |
Green tea (Camellia sinesis) | Catechins and epigallocatechin-3-gallate | 400 mg of decaffeinated green tea extract daily was given to patients with type 2 diabetes mellitu for 12 weeks | Decreases in plasma LDL-C by 9% from baseline | p > 0.05 (vs. placebo group) | [113] |
Goishi tea (Camellia sinesis) | - | 195 ml Goishi tea drink was given to hypercholesterolaemia individuals for 12 weeks | No changes in plasma LDL-C | p > 0.05 (vs. placebo group) | [114] |
Red wine (Vitis vinifera L.) | Resveratrol | 2 capsules daily nonalcoholic red wine extract were given to nondiabetic humans for 8 weeks | Decreases in plasma LDL-C by 4% from baseline | p < 0.05 (vs. baseline) | [115] |
Chokeberry (Aronia melanocarpa L.) juice | Cyanidin 3-galactoside, cyanidin 3-arabinoside, and cyanidin 3-xyloside | 200 mL chokeberry juice given to hypertensive subjects per day for 4 weeks | Reduction in plasma LDL-C by 7% from baseline | p > 0.05 (vs. baseline) | [9] |
Aronia berry (Aronia melanocarpa) | Anthocyanins, hydroxycinnamic acids, and proanthocyanidins | 500 mg aronia extract per day was given to healthy adults for 12 weeks | Reduction in plasma LDL-C by 11% from baseline | p < 0.05 (vs. placebo group) | [116] |
Blueberry (Vaccinium virgatum.) | - | 22 g freeze-dried blueberries daily were given to men with type 2 diabetes for 8 weeks | Decreases in plasma LDL-C by 25% from baseline | p < 0.05 (vs. placebo group) | [117] |
Grape (Vitis vinifera L.) | Myricetin, quercetin, catechin, epicatechin, epigallocatechin, catechin gallate, and ellagic acid | 700 mg grape extract was given to healthy volunteers for 56 days | Reduces plasma LDL-C by 15% from baseline | p < 0.05 (vs. placebo group) | [118] |
Grape (Vitis vinifera L.) | - | 500 g Condori red grapes daily were given to hypercholesterolemic humans for 8 weeks | Reduces plasma LDL-C with grapes treatment by 15% | p < 0.01 (vs. baseline) | [119] |
Grapefruit (Vitis vinifera L.), bitter orange (Citrus aurantium Linné), and olive (Olea europaea) | Naringin, narirutin, rhoifolin, poncirin, apigenin, neohesperidin, neodiosmin, luteolin, and oleuropein | 1000 mg grapefruit, bitter orange, and olive leaf extracts were given to healthy subjects for 8 weeks | Reduces plasma LDL-C by 9% from baseline | p < 0.05 (vs. placebo group) | [120] |
Grape (Vitis vinifera L.) | - | Overweight individuals were assigned to receive grape seed extract (300 mg/day) for 12 weeks | Reduces plasma LDL-C by 16% from baseline | p < 0.05 (vs. placebo group) | [80] |
Olive (Olea europaea) | - | 250 mg/day olive extract was given to postmenopausal women for 12 months | Decreases in plasma LDL-C by 21% from baseline | p < 0.05 (vs. placebo group) | [121] |
Olive (Olea europaea) | - | 400 g yogurt with 50 mg of encapsulated olive polyphenols was given to volunteers for 2 weeks | Ameliorates plasma LDL-C by 6% from baseline | p < 0.05 (vs. baseline) | [122] |
Pomegranate (Punica granatum L.) | Ellagic acid | 1000 mg pomegranate extract was given to obese individuals for 30 days | Reduction in plasma LDL-C by 10% from baseline | p < 0.01 (vs. baseline) | [123] |
Pomegranate (Punica granatum L.) juice | - | 200 mL/day pomegranate juice was given to type 2 diabetes patients for 6 weeks | Reduces plasma LDL-C by 10% from baseline | p < 0.05 (vs. baseline) | [124] |
Cherry (Prunus avium) juice | - | 480 mL cherry juice drink daily to older adults for 12 weeks | Decreases in plasma LDL-C by 3% from baseline | p < 0.05 (vs. placebo group) | [125] |
Tart cherry (Prunus cerasus) | Cyanidin sophoroside, cyanidin glucosylrutinoside, cyanidin-glucoside, cyanidin xylosylrutinoside, cyanidin rutinoside, and peonidin rutinoside | 240 mL of tart cherry juice twice daily was given to adults with metabolic syndrome for 12 weeks | Reduction in plasma LDL-C by 15% from baseline | p > 0.05 (vs. baseline) | [77] |
Ecklonia cava | Dieckol, 8,8′-bieckol, 6,6′-bieckol, and phlorofurofucoeckol A | 72 mg Ecklonia cava polyphenols per day to overweight Korean individuals for 12 weeks | Ameliorates plasma LDL-C by 10% from baseline | p < 0.05 (vs. placebo group) | [126] |
Subclasses | Polyphenol | Study Type | Results | Mechanism | References |
---|---|---|---|---|---|
Phenolic acid | Protocatechuic acid | 0.05% (w/w) given to cholesterol-fed rats for 4 weeks | Lowers levels of non-HDL-C from 0.88 ± 014 mmol/L to 0.74 ± 0.04 mmol/L (p < 0.05) | Increases the expression of hepatic LDLR | [231] |
Phenolic acid | Vanillic acid | Vanillic acid (50 mg/kg bw) to hypertensive rats for 4 weeks | Decreases in plasma LDL-C by 64% (p < 0.05) | Inhibits HMGR activity | [226] |
Isoflavone | Puerarin glycosides | Puerarin glycosides (0.1%) was given to mice for 3 weeks | Reduction in plasma TC levels (p < 0.05) | Increases the expression of LDLR; Downregulates the transcription and translation of HMGR | [232] |
Isoflavone | Puerarin | Orally (200 mg/kg bw and 400 mg/kg bw) puerarin administered to hyperlipidaemia mice for 8 weeks | Decreases in plasma LDL-C level (p < 0.05) | Regulates the expression of phosphorylated JNK, phosphorylated c-Jun protein, and CYP7A1 | [227] |
Flavones | Apigenin | Apigenin was orally administrated to high-fat-fed mice | Decreases the level of LDL-C in plasma by 19%, 16%, and 55%, respectively (p < 0.05) | Promotes the absorption of hepatic LDL-C and increases the transformation of hepatic cholesterol into bile acid by regulating LDLR and CYP7A1 expression | [233] |
Flavones | Apigenin | Apigenin (60 ppm and 300 ppm) given orally to hamsters with hypercholesterolaemia | Reduces the nonHDL-C level by 40% and 41% (p < 0.05) | Reduces the uptake of dietary cholesterol by inhibiting NPC1L1; Stimulates hepatic LDLR expression | [234] |
Flavones | Luteolin | Mice were administered daily 50 mg/kg bw of luteolin in addition to ethanol exposure | Reduces LDL-C level in plasma by 52% (p < 0.05) | Inhibits cholesterol biosynthesis by regulating SREBP2 and HMGR | [235] |
Flavones | Luteolin | Luteolin (1.5%) was given to high-fat-fed mice for 57 days | Reduces LDL-C levels by 33% (p < 0.05) | Suppresses HNF4α targeted genes, such as MTP, apoB | [236] |
Flavones | Luteolin | Luteolin (50 mg/kg bw) given orally to hyperlipidemia rats for 6 weeks | Reduces LDL-C levels by 34% (p < 0.05) | Increases CYP7A1 activities in liver | [81] |
Flavones | Luteolin-7-glucoside | Luteolin-7-glucoside (2 mg/kg bw) orally to rats | Decreases levels of LDL-C in plasma by 40% (p < 0.05) | Decreases cholesterol synthesis via decreasing HMGR expression | [237] |
Flavanones | Naringin | Naringin (25 mg/kg bw) given orally to obese mice for 8 weeks | Decreases the level of LDL-C in plasma (p < 0.05) | Downregulates the expression of SREBP2 and PCSK9, and upregulates the expression of LDLR through AMPK activation | [228] |
Ligans | Leoligin | 0.14 mg leoligin was given to CETP transgenic mice for 7 days | Reduces LDL-C level in plasma | Activates CETP activity | [238] |
Ligans | Sesamin | Hamsters were fed two experimental diets containing 0.02% sesamin or 0.5% sesamin for 6 weeks | Lowers plasma non-HDL-C level by 25% and 32% (p < 0.05) | Reduces cholesterol absorption by inhibiting intestinal NPC1L1, ACAT2, MTP, and ABCG5/8; Stimulates LDLR and CYP7A1 expression | [239] |
Subclasses | Polyphenol | Study Type | Results | Mechanism | References |
---|---|---|---|---|---|
Phenolic acid | Ellagic acid | 25 μM ellagic acid to HepG2 cells | Regulates cholesterol metabolism | Upregulates of LDLR, downregulates MTP mRNA and extracellular apoB levels | [229] |
Flavonols | Kaempferol | The HepG2 cells were incubated for 24 h with kaempferol (100 μM) | Increases fluorescent-labeled LDL uptake (p < 0.05) | Stimulates the expression of LDLR through activating LDLR transcription factor Sp1 | [230] |
Flavones | Luteolin | Caco-2 cells were incubated with 100 μM luteolin | Inhibits cholesterol uptake in Caco-2 cells (p < 0.05) | Inhibits intestinal cholesterol absorption mediated by NPC1L1 | [136] |
Flavones | Rutin | Caco-2 cells were treated with 115.7 μM rutin; Rutin (17.85 μM) was used to measure HMGR activity inhibition | Lowers the amount of cholesterol in the intracellular compartment; Reduces HMGR activity by 50% (p < 0.05) | Inhibits the uptake of dietary cholesterol and the activity of HMGR | [240] |
Flavanones | Hesperetin | HepG2 cells were exposed to hesperetin (100 μM) | Induces the activity of LDLR promoter (p < 0.05) | Induces the transcription of LDLR through SREBPs | [241] |
Flavanones | Glucosyl hesperidin | HepG2 cells were treated with 0.8 mM and 1.2 mM glucosyl hesperidin | Reduces cellular cholesteryl ester content (p < 0.05) | Suppresses the secretion of apoB | [242] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, P.; Zhao, L.; Zhang, N.; Zhou, J.; Zhang, L.; Wu, W.; Ji, B.; Zhou, F. Bioactivity of Dietary Polyphenols: The Role in LDL-C Lowering. Foods 2021, 10, 2666. https://doi.org/10.3390/foods10112666
Sun P, Zhao L, Zhang N, Zhou J, Zhang L, Wu W, Ji B, Zhou F. Bioactivity of Dietary Polyphenols: The Role in LDL-C Lowering. Foods. 2021; 10(11):2666. https://doi.org/10.3390/foods10112666
Chicago/Turabian StyleSun, Peng, Liang Zhao, Nanhai Zhang, Jingxuan Zhou, Liebing Zhang, Wei Wu, Baoping Ji, and Feng Zhou. 2021. "Bioactivity of Dietary Polyphenols: The Role in LDL-C Lowering" Foods 10, no. 11: 2666. https://doi.org/10.3390/foods10112666
APA StyleSun, P., Zhao, L., Zhang, N., Zhou, J., Zhang, L., Wu, W., Ji, B., & Zhou, F. (2021). Bioactivity of Dietary Polyphenols: The Role in LDL-C Lowering. Foods, 10(11), 2666. https://doi.org/10.3390/foods10112666