Food Consumption Patterns in Romania during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
4. Results
4.1. Respondents Profile
4.2. Changes in Consumption Habits during the COVID-19 Pandemic
4.2.1. Frequency of Buying Food Products
4.2.2. Shopping Habits
4.2.3. Place of Purchasing Food Products
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Decree of the Romanian Government Emergency State on the Romanian Territory. 2020. Available online: https://www.presidency.ro/ro/media/decret-semnat-de-presedintele-romaniei-domnul-klaus-iohannis-privind-instituirea-starii-de-urgenta-pe-teritoriul-romaniei (accessed on 15 August 2021).
- Romanian Ministry of Internal Affairs, Military Ordinance No. 3 of 24.03.2020 Regarding Measures to Prevent the Spread of COVID-19. 2020. Available online: https://www.mai.gov.ro/ordonanta-militara-nr-3-din-24-03-2020-privind-masuri-de-prevenire-a-raspandirii-covid-19/ (accessed on 15 August 2021).
- Romanian Ministry of Internal Affairs 2020, Decision No. 24 of 14.05.2020 on the Approval of the Establishment of the State of Alert at National Level and of the Measures for Prevention and Control of Infections, in the Context of the Epidemiological Situation Generated by the SARS-CoV-2 Virus. 2020. Available online: https://www.mai.gov.ro/hotarare-nr-24-din-14-05-2020-privind-aprobarea-instituirii-starii-de-alerta-la-nivel-national-si-a-masurilor-de-prevenire-si-control-a-infectiilor-in-contextul-situatiei-epidemiologice-generate/ (accessed on 15 August 2021).
- Butu, A.; Bruma, I.S.; Tanasa, L.; Rodino, S.; Vasiliu, C.D.; Dobos, S.; Butu, M. The impact of COVID-19 crisis upon the consumer buying behavior of fresh vegetables directly from local producers. Case study: The quarantined area of Suceava county, Romania. Int. J. Environ. Res. Public Health 2020, 17, 5485. [Google Scholar] [CrossRef] [PubMed]
- Burlea-Schiopoiu, A.; Ogarca, R.F.; Barbu, C.M.; Craciun, L.; Baloi, I.C.; Mihai, L.S. The impact of COVID-19 pandemic on food waste behaviour of young people. J. Clean. Prod. 2021, 294, 126333. [Google Scholar] [CrossRef] [PubMed]
- Stănculescu, E. Fear of COVID-19 in Romania: Validation of the Romanian version of the fear of COVID-19 scale using graded response model analysis. Int. J. Ment. Health Addict. 2021, 1–16. [Google Scholar] [CrossRef]
- Ben Hassen, T.; El Bilali, H.; Allahyari, M.S.; Karabasevic, D.; Radosavac, A.; Berjan, S.; Vasko, Z.; Radanov, P.; Obhodas, I. Food Behavior Changes during the COVID-19 Pandemic: Statistical Analysis of Consumer Survey Data from Bosnia and Herzegovina. Sustainability 2021, 13, 8617. [Google Scholar] [CrossRef]
- Matkovski, B.; Dokić, D.; Zekic, S.; Jurjevic, Z. Determining Food Security in Crisis Conditions: A Comparative Analysis of the Western Balkans and the EU. Sustainability 2020, 12, 9924. [Google Scholar] [CrossRef]
- Koncar, J.; Maric, R.; Vukmirovic, G.; Vucenovic, S. Sustainability of Food Placement in Retailing during the COVID-19 Pandemic. Sustainability 2021, 13, 5956. [Google Scholar] [CrossRef]
- Janssen, M.; Chang, B.P.; Hristov, H.; Pravst, I.; Profeta, A.; Millard, J. Changes in food consumption during the COVID-19 pandemic: Analysis of consumer survey data from the first lockdown period in Denmark, Germany, and Slovenia. Front. Nutr. 2021, 8, 60. [Google Scholar] [CrossRef]
- Jia, P.; Liu, L.; Xie, X.; Yuan, C.; Chen, H.; Guo, B.; Zhou, J.; Yang, S. Changes in dietary patterns among youths in China during COVID-19 epidemic: The COVID-19 impact on lifestyle change survey (COINLICS). Appetite 2021, 158, 105015. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, C.; Zhao, Y.; Kitsos, A.; Cannella, M.; Wang, S.; Han, L. Impacts of the COVID-19 pandemic on the dairy industry: Lessons from China and the United States and policy implications. J. Integr. Agric. 2020, 19, 2903–2915. [Google Scholar] [CrossRef]
- Weersink, A.; Massow, M.; Bannon, N.; Ifft, J.; Maples, J.; McEwan, K.; McKendree, M.G.S.; Nicholson, C.; Novakovic, A.; Rangarajan, A.; et al. COVID-19 and the agri-food system in the United States and Canada. Agric. Syst. 2021, 188, 103039. [Google Scholar] [CrossRef]
- Acosta, A.; McCorriston, S.; Nicolli, F.; Venturelli, E.; Wickramasinghe, U.; ArceDiaz, E.; Scudiero, L.; Sammartino, A.; Schneider, F.; Steinfeld, H. Immediate effects of COVID-19 on the global dairy sector. Agric. Syst. 2021, 192, 103177. [Google Scholar] [CrossRef]
- Varrella, S. Coronavirus (COVID-19) in Italy—Statistics & Facts. 2021. Available online: https://www.statista.com/topics/6061/coronavirus-covid-19-in-italy/ (accessed on 15 August 2021).
- Fanelli, R.S. Changes in the food-related behaviour of Italian consumers during the COVID-19 pandemic. Foods 2021, 10, 169. [Google Scholar] [CrossRef]
- Di Renzo, L.; Gualtieri, P.; Pivari, F.; Soldati, L.; Attina, A.; Cinelli, G.; Leggeri, C.; Caparello, G.; Barrea, L.; Scerbo, F.; et al. Eating habits and lifestyle changes during COVID-19 lockdown: An Italian survey. J. Transl. Med. 2020, 18, 229. [Google Scholar] [CrossRef]
- Principato, L.; Secondi, L.; Cicatiello, C.; Mattia, G. Caring more about food: The unexpected positive effect of the COVID-19 lockdown on household food management and waste. Socio-Econ. Plan. Sci. in press. [CrossRef]
- Snuggs, S.; McGregor, S. Food & meal decision making in lockdown: How and who has COVID-19 affected? Food Qual. Prefer. 2021, 89, 104145. [Google Scholar] [CrossRef]
- Filimonau, V.; Vi, L.H.; Beer, S.; Ermolaev, V.A. The COVID-19 pandemic and food consumption at home and away: An exploratory study of English households. Socio-Econ. Plan. Sci. in press. [CrossRef]
- Sidor, A.; Rzymski, P. Dietary Choices and Habits during COVID-19 Lockdown: Experience from Poland. Nutrients 2020, 12, 1657. [Google Scholar] [CrossRef]
- Deschasaux-Tanguy, M.; Druesne-Pecollo, N.; Esseddik, Y.; Szabo de Edelenyi, F.; Allès, B.; Andreeva, V.A.; Baudry, J.; Charreire, H.; Deschamps, V.; Egnell, M.; et al. Diet and physical activity during the COVID-19 lockdown period (March–May 2020): Results from the French NutriNet-Santé cohort study. Am. J. Clin. Nutr. 2021, 113, 924–938. [Google Scholar] [CrossRef]
- Hassen, T.B.; El Bilali, H.; Allahyari, M.S.; Berjan, S.; Fotina, O. Food purchase and eating behavior during the COVID-19 pandemic: A cross-sectional survey of Russian adults. Appetite 2021, 165, 105309. [Google Scholar] [CrossRef]
- Reznik, A.; Gritsenko, V.; Konstantinov, V.; Khamenka, N.; Isralowitz, R. COVID-19 fear in Eastern Europe: Validation of the fear of COVID-19 scale. Int. J. Ment. Health Adddict. 2020, 1–6. [Google Scholar] [CrossRef]
- Ellison, B.; McFadden, B.; Rickard, B.J.; Wilson, N.L.W. Examining food purchase behavior and food values during the COVID-19 pandemic. Appl. Econ. Perspect. Policy 2021, 43, 58–72. [Google Scholar] [CrossRef]
- Bender, K.E.; Badiger, A.; Roe, B.E.; Shu, Y.; Qi, D. Consumer behavior during the COVID-19 pandemic: An analysis of food purchasing and management behaviors in U.S. households through the lens of food system resilience. Socio-Econ. Plan. Sci. in press. [CrossRef]
- Laguna, L.; Fiszman, S.; Puerta, P.; Chaya, C.; Tarrega, A. The impact of COVID-19 lockdown on food priorities. Results from a preliminary study using social media and an online survey with Spanish consumers. Food Qual. Prefer. 2020, 86, 104028. [Google Scholar] [CrossRef]
- Molina-Montes, E.; Uzhova, I.; Verardo, V.; Artacho, R.; Garcia-Villanova, B.; Guerra-Hernandez, E.J.; Kapsokefalou, M.; Malisova, O.; Vlassopoulos, A.; Katidi, A.; et al. Impact of COVID-19 confinement on eating behaviours across 16 European countries: The COVIDiet cross-national study. Food Qual. Prefer. 2021, 93, 104231. [Google Scholar] [CrossRef]
- Bennett, G.; Young, E.; Butler, I.; Coe, S. The impact of lockdown during the COVID-19 outbreak on dietary habits in various population groups: A scoping review. Front. Nutr. 2021, 8, 626432. [Google Scholar] [CrossRef]
- Lehberger, M.; Kleih, A.K.; Sparke, K. Panic buying in times of coronavirus (COVID-19): Extending the theory of planned behavior to understand the stockpiling of nonperishable food in Germany. Appetite 2021, 161, 106118. [Google Scholar] [CrossRef]
- Wang, E.; An, N.; Gao, Z.; Kiprop, E.; Geng, X. Consumer food stockpiling behavior and willingness to pay for food reserves in COVID-19. Food Secur. 2020, 12, 739–747. [Google Scholar] [CrossRef]
- Dammeyer, J. An explorative study of the individual differences associated with consumer stockpiling during the early stages of the 2020 Coronavirus outbreak in Europe. Personal. Individ. Differ. 2020, 167, 110263. [Google Scholar] [CrossRef]
- Hobbs, J.E. Food supply chains during the COVID-19 pandemic. Cand. J. Agric. Econ. 2020, 68, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Yuen, K.F.; Wang, X.; Ma, F.; Li, K.X. The psychological causes of panic buying following a health crisis. Int. J. Environ. Res. Public Health 2020, 17, 3513. [Google Scholar] [CrossRef]
- Omar, N.A.; Nazri, M.A. The panic buying behavior of consumers during the COVID-19 pandemic: Examining the influences of uncertainty, perceptions of severity, perceptions of scarcity, and anxiety. J. Retail. Consum. Serv. 2021, 62, 102600. [Google Scholar] [CrossRef]
- Brizi, A.; Biraglia, A. “Do I have enough food?” How need for cognitive closure and gender impact stockpiling and food waste during the COVID-19 pandemic: A cross-national study in India and the United States of America. Personal. Individ. Differ. 2021, 168, 110396. [Google Scholar] [CrossRef] [PubMed]
- Mustamin, M.; Rombe, E.; Hadi, S.; Vesakha, G. Food loss and food waste: A literature review in 2009–2018. Int. J. Psychosoc. Rehabil. 2020, 24. [Google Scholar] [CrossRef]
- Chiciudean, I.D.; Rezhen, H.; Mureșan, I.C.; Chiciudean, G.O. Consumer Behavior of Local Fruit and Vegetables. ProEnvironment 2020, 13, 95–99. [Google Scholar]
- Mooi, E.; Sarstedt, M.; Mooi-Reci, I. Market Research: The Process, Data, and Methods Using Stata; Springer: Singapore, 2017. [Google Scholar]
- Ruel, E.; Wagner III, W.E.; Gillespie, B.J. The Practice of Survey Research: Theory and Applications; Sage Publications: Thousand Oaks, CA, USA, 2016. [Google Scholar]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Saunders, M.; Lewis, P.; Thornhill, A. Research Method for Business Students, 5th ed.; Pearson Education Limited: London, UK, 2009. [Google Scholar]
- Greene, W.H. Econometric Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Sahu, P.K. Research Methodology: A Guide for Researchers in Agricultural Science, Social Science and Other Related Fields; Springer: New Delhi, India, 2013. [Google Scholar] [CrossRef]
- Chenarides, L.; Grebitus, C.; Lusk, J.L.; Printezis, I. Food consumption behavior during the COVID-19 Pandemic. Agribusiness 2020, 37, 44–81. [Google Scholar] [CrossRef]
- Skotnicka, M.; Karwowska, K.; Kłobukowski, F.; Wasilewska, E.; Małgorzewicz, S. Dietary Habits before and during the COVID-19 Epidemic in Selected European Countries. Nutrients 2021, 13, 1690. [Google Scholar] [CrossRef]
- Eurostat Database. Employed Persons Working from Home as a Percentage of the Total Employment, by Sex, Age and Professional Status (%). Available online: https://ec.europa.eu/eurostat/databrowser/view/LFSA_EHOMP__custom_899843/bookmark/table?lang=en&bookmarkId=1a955ba3-e7ff-42b5-9449-69a6db8750ff (accessed on 12 July 2021).
- Butu, A.; Vasiliu, C.D.; Rodino, S.; Brumă, I.S.; Tanasă, L.; Butu, M. The process of ethnocentralizing the concept of ecological agroalimentary products for the Romanian urban consumer. Sustainability 2019, 11, 6226. [Google Scholar] [CrossRef] [Green Version]
- Dror, Y.; Rimon, E.; Vaida, R. Whole-Wheat Bread for Human Health; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Fitzpatrick, K.M.; Harris, C.; Drawve, G. Fear of COVID-19 and the mental health consequences in America. Psychol. Trauma Theory Res. Pract. Policy 2020, 12 (Suppl. 1), S17–S21. [Google Scholar] [CrossRef]
- Broche-Pérez, Y.; Fernández-Fleites, Z.; Jiménez-Puig, E.; Fernández-Castillo, E.; Rodríguez-Martin, B.C. Gender and fear of COVID-19 in a Cuban population sample. Int. J. Ment. Health Addditc. 2020, 1–9. [Google Scholar] [CrossRef]
- Lo Coco, G.; Gentile, A.; Bosnar, K.; Milovanović, I.; Bianco, A.; Drid, P.; Pišot, S. A cross-country examination on the fear of COVID-19 and the sense of loneliness during the first wave of COVID-19 outbreak. Int. J. Environ. Res. Public Health 2021, 18, 2586. [Google Scholar] [CrossRef]
- Laborde, D.; Martin, W.; Swinnen, J.; Vos, R. COVID-19 risks to global food security. Science 2020, 369, 500–502. [Google Scholar] [CrossRef]
- Onyeaka, H.; Anumudu, C.K.; Al-Sharify, Z.T.; Egele-Godswill, E.; Mbaegbu, P. COVID-19 pandemic: A review of the global lockdown and its far-reaching effects. Sci. Prog. 2021, 104. [Google Scholar] [CrossRef]
- Jeżewska-Zychowicz, M.; Plichta, M.; Królak, M. Consumers’ fears regarding food availability and purchasing behaviors during the COVID-19 pandemic: The importance of trust and perceived stress. Nutrients 2020, 12, 2852. [Google Scholar] [CrossRef]
- Mehrolia, S.; Alagarsamy, S.; Solaikutty, V.M. Customers response to online food delivery services during COVID-19 outbreak using binary logistic regression. Int. J. Consum. Stud. 2021, 45, 396–408. [Google Scholar] [CrossRef]
- Wilkins, J.L. Challenges and opportunities created by the COVID-19 pandemic. J. Nutr. Educ. Behav. 2020, 52, 669–670. [Google Scholar] [CrossRef]
- Gerritsen, S.; Egli, V.; Roy, R.; Haszard, J.; Backer, C.D.; Teunissen, L.; Cuykx, I.; Decorte, P.; Pabian, S.P.; Van Royen, K.; et al. Seven weeks of home-cooked meals: Changes to New Zealanders’ grocery shopping, cooking and eating during the COVID-19 lockdown. J. R. Soc. N. Z. 2021, 51 (Suppl. 1), S4–S22. [Google Scholar] [CrossRef]
- Wolfson, J.A.; Bleich, S.N. Is cooking at home associated with better diet quality or weight-loss intention? Public Health Nutr. 2015, 18, 1397–1406. [Google Scholar] [CrossRef] [Green Version]
- Theodorou, A.; Panno, A.; Carrus, G.; Carbone, G.A.; Massullo, C.; Imperatori, C. Stay home, stay safe, stay green: The role of gardening activities on mental health during the COVID-19 home confinement. Urban For. Urban Green. 2021, 61, 127091. [Google Scholar] [CrossRef]
- Dospinescu, O.; Dospinescu, N.; Bostan, I. Determinants of e-commerce satisfaction: A comparative study between Romania and Moldova. Kybernetes 2021. [Google Scholar] [CrossRef]
- Jędrzejczak-Gas, J.; Barska, A.; Siničáková, M. Level of development of e-commerce in EU countries. Management 2019, 23, 209–224. [Google Scholar] [CrossRef] [Green Version]
- Eurostat. Database; European Commission: Brussels, Belgium, 2021; Available online: http://ec.europa.eu/eurostat/data/database (accessed on 20 July 2021).
- Brihan, D.; Salagean, L.R.; Berta, A.P.; Ciupag, T.; Tarcea, M. Romanian’s habits towards healthy diet. Acta Med. Marisiensis 2019, 65 (Suppl. 3), 6. [Google Scholar]
- Xie, Y.; Grebitus, C.; Davis, G.C. Can the New Label Make a Difference? Comparing Consumer Attention towards the Current versus Proposed Nutrition Facts Panel. Agricultural & Applied Economics Association and Western Agriculture Economics Association Joint Annual Meeting, San Francisco, US, 2015. Available online: https://ageconsearch.umn.edu/record/205683 (accessed on 20 September 2021).
- Zhang, J.; Zhai, L.; Osewe, M.; Liu, A. Analysis of Factors Influencing Food Nutritional Labels Use in Nanjing, China. Foods 2020, 9, 1796. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Food and Nutrition Tips during Self-Quarantine. 2020. Available online: https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/publications-and-technical-guidance/noncommunicable-diseases/food-and-nutrition-tips-during-self-quarantine?fbclid=IwAR0IxmHZqgX-uwgq0cNTsDM3BdHUogV8EcFbqiY3olALGzBP_hbzW6AwYnA (accessed on 26 July 2021).
- Cicero, A.F.G.; Fogacci, F.; Giovannini, M.; Mezzadri, M.; Grandi, E.; Borghi, C. COVID-19-Related Quarantine Effect on Dietary Habits in a Northern Italian Rural Population: Data from the Brisighella Heart Study. Nutrients 2021, 13, 309. [Google Scholar] [CrossRef] [PubMed]
- Hana, T.; Jagtap, S.; Garcia-Garcia, G.; Harastani, R.; Colwill, J.; Trollman, F. COVID-19 demand-induced scarcity effects on nutrition and environment: Investigating mitigation strategies for eggs and wheat flour in the United Kingdom. Sustain. Prod. Consum. 2021, 27, 1255–1272. [Google Scholar]
Characteristic | All (n = 859) | County | ||||||
---|---|---|---|---|---|---|---|---|
Bistrita-Nasaud (n = 93) | Bihor (n = 164) | Cluj (n = 340) | Maramures (n = 142) | Satu-Mare (n = 77) | Salaj (n = 43) | |||
Gender | Female | 61.1 | 58.1 | 52.4 | 67.9 | 50.7 | 67.5 | 69.8 |
Male | 38.9 | 41.9 | 47.6 | 32.1 | 49.3 | 32.5 | 30.2 | |
Χ2(5) = 21.39, p < 0.01 | ||||||||
Age categories | 18–29 years | 29.0 | 32.3 | 21.3 | 36.5 | 20.4 | 24.7 | 27.9 |
30–39 years | 24.1 | 17.2 | 21.3 | 27.9 | 20.4 | 27.2 | 25.5 | |
40–49 years | 18.6 | 20.4 | 23.8 | 13.8 | 23.3 | 18.2 | 18.6 | |
50–59 years | 14.9 | 17.2 | 18.9 | 10.6 | 19.0 | 15.6 | 14.0 | |
60–69 years | 13.4 | 12.9 | 14.7 | 11.2 | 16.9 | 14.3 | 14.0 | |
Χ2(20) = 39.07, p < 0.01 | ||||||||
Level of education | Up to 8 classes | 2.8 | 11.8 | 3.7 | 0.6 | 1.4 | 3.9 | 0.0 |
High school diploma | 23.2 | 30.1 | 21.3 | 20.0 | 31.0 | 19.5 | 20.9 | |
University degree | 74.0 | 58.1 | 75.0 | 79.4 | 67.6 | 76.6 | 79.1 | |
Fisher’s Exact p < 0.001 | ||||||||
Monthly net household income (RON) | ≤2800 | 19.9 | 20.4 | 21.9 | 15.8 | 31.7 | 11.7 | 18.6 |
2801–4200 | 24.1 | 31.2 | 17.1 | 25.3 | 16.2 | 32.5 | 34.9 | |
4201–5600 | 19.7 | 17.2 | 15.9 | 21.5 | 21.8 | 19.5 | 20.9 | |
≥5601 | 36.3 | 31.2 | 45.1 | 37.4 | 30.3 | 36.3 | 25.6 | |
Χ2(15) = 38.71, p < 0.001 | ||||||||
Work | Student | 11.1 | 21.5 | 8.5 | 12.6 | 4.2 | 11.7 | 7.0 |
Unemployed | 1.7 | 3.2 | 3.7 | 0.6 | 2.1 | 0.00 | 2.3 | |
Retired | 10.0 | 5.4 | 6.1 | 12.1 | 11.9 | 15.6 | 2.3 | |
Employed | 62.7 | 51.6 | 66.5 | 59.7 | 69.1 | 62.3 | 76.8 | |
Entrepreneur | 9.1 | 8.6 | 10.3 | 8.8 | 9.9 | 6.5 | 9.3 | |
Maternity leave | 4.0 | 8.6 | 3.7 | 3.8 | 2.8 | 2.6 | 2.3 | |
Other (priest, farmer, freelancer) | 1.4 | 1.1 | 1.2 | 2.4 | 0.0 | 1.3 | 0.0 | |
Fisher’s Exact p < 0.01 | ||||||||
Children (<18 years) in household | Yes | 51.3 | 69.9 | 49.4 | 43.5 | 55.6 | 54.5 | 60.5 |
No | 48.7 | 30.1 | 50.6 | 56.5 | 44.4 | 45.5 | 39.5 | |
Χ2(5) = 24.16, p < 0.001 |
Fruits and Vegetables | Meat and Meat Products | Bread and Bakery Products | Milk and Dairy Products | |||||
---|---|---|---|---|---|---|---|---|
No change (n = 587) | Change (n = 272) | No change (n = 659) | Change (n = 200) | No change (n = 658) | Change (n = 201) | No change (n = 682) | Change (n = 177) | |
OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | |
Gender: male | 0.55 ** (0.41–0.75) | - | 0.72 * (0.545–0.954) | - | 0.73 * (0.55–0.97) | - | 0.60 ** (0.46–0.80) | - |
Age category | ||||||||
30–39 years | - | 1.08 (0.59–1.98) | - | 1.36 (0.68–2.70) | - | - | - | - |
40–49 years | - | 2.23 ** (1.21–4.20) | - | 2.00 * (0.96–4.18) | - | - | - | - |
50–59 years | - | 1.81 * (0.90–3.64) | - | 2.55 * (1.18–5.49) | - | - | - | - |
≥60 years | - | 2.68 ** (1.30–5.51) | - | 1.04 (0.37–2.84) | - | - | - | - |
Log likelihood | −861.327 | −383.47 | −967.865 | −287.87 | −960.325 | −1001.200 | ||
Prob > chi2 | <0.001 | <0.01 | <0.05 | <0.01 | <0.05 | >0.05 | <0.001 | >0.05 |
Pseudo R2 | 0.008 | 0.016 | 0.002 | 0.013 | 0.002 | 0.006 |
Fruits and Vegetables | Meat and Meat Products | Bread and Bakery Products | Milk and Dairy Products | |||||
---|---|---|---|---|---|---|---|---|
No change (n = 587) | Change (n = 272) | No change (n = 659) | Change (n = 200) | No change (n = 658) | Change (n = 201) | No change (n = 682) | Change (n = 177) | |
OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | |
Age category | ||||||||
30–39 years | 1.08 (0.72–1.62) | 1.81 * (0.98–3.32) | 1.07 (0.73–1.58) | 1.88 (0.94–3.78) | 1.42 (0.97–2.07) | 0.97 (0.48–1.95) | 1.35 (0.93–1.96) | - |
40–49 years | 1.77 * (1.12–2.78) | 1.88 * (1.00–3.51) | 1.66 * (1.09–2.54) | 2.20 * (1.05–4.64) | 1.71 ** (1.14–2.54) | 3.55 ** (1.57–8.01) | 2.02 ** (1.36–2.99) | - |
50–59 years | 1.75 * (1.10–2.80) | 2.15 * (1.06–4.36) | 1.67 * (1.06–2.63) | 2.01 * (0.94–4.26) | 1.90 ** (1.22–2.98) | 1.44 (0.66–3.15) | 2.03 ** (1.31–3.17) | - |
≥60 years | 1.72 * (1.07–2.80) | 3.63 ** (1.74–7.54) | 1.94 ** (1/25–3.02) | 4.12 ** (1.56–10.88) | 1.71 * (1.08–2.72) | 3.48 ** (1.55–7.79) | 2.51 ** (1.60–3.93) | - |
Children in household: yes | 1.36 * 0.99–1.85) | - | 1.36 * (1.01–1.82) | - | - | - | - | 2.02 ** (1.18–3.47) |
Log likelihood | −883.631 | −380.70 | −988.754 | −286.017 | −985.057 | −298.901 | −1013.427 | −253.696 |
Prob > chi2 | <0.01 | <0.001 | <0.001 | <0.05 | <0.01 | 0.001 | <0.001 | <0.01 |
Pseudo R2 | 0.010 | 0.030 | 0.009 | 0.017 | 0.006 | 0.031 | 0.011 | 0.013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumitras, D.E.; Harun, R.; Arion, F.H.; Chiciudean, D.I.; Kovacs, E.; Oroian, C.F.; Porutiu, A.; Muresan, I.C. Food Consumption Patterns in Romania during the COVID-19 Pandemic. Foods 2021, 10, 2712. https://doi.org/10.3390/foods10112712
Dumitras DE, Harun R, Arion FH, Chiciudean DI, Kovacs E, Oroian CF, Porutiu A, Muresan IC. Food Consumption Patterns in Romania during the COVID-19 Pandemic. Foods. 2021; 10(11):2712. https://doi.org/10.3390/foods10112712
Chicago/Turabian StyleDumitras, Diana E., Rezhen Harun, Felix H. Arion, Daniel I. Chiciudean, Eniko Kovacs, Camelia F. Oroian, Andra Porutiu, and Iulia C. Muresan. 2021. "Food Consumption Patterns in Romania during the COVID-19 Pandemic" Foods 10, no. 11: 2712. https://doi.org/10.3390/foods10112712
APA StyleDumitras, D. E., Harun, R., Arion, F. H., Chiciudean, D. I., Kovacs, E., Oroian, C. F., Porutiu, A., & Muresan, I. C. (2021). Food Consumption Patterns in Romania during the COVID-19 Pandemic. Foods, 10(11), 2712. https://doi.org/10.3390/foods10112712