Use of Membrane Technologies in Dairy Industry: An Overview
Abstract
:1. Introduction
2. Commercial Membranes in Dairy Industry
3. Market role of Membrane Technologies in Dairy Industry
4. Bibliometric Evolution of Membrane Technologies in Dairy Industry
5. Membrane Technology Processes in Dairy Industry
5.1. Milk and Cheese Production Process
5.1.1. Milk Fat Fractionation by Microfiltration
5.1.2. Bacteria and Spore Removal by Microfiltration
5.1.3. Whey Protein Concentration and Fractionation by Membrane Technologies
5.1.4. Lactose Recovery from Whey Processing by Membrane Technologies
5.1.5. Whey Treatment by Nanofiltration
5.1.6. Emerging Membrane Processes for Dairy Processing Effluents
5.2. Integration of Membrane Technologies in Dairy Industry Processing
6. Membrane Fouling Mechanism in Dairy Processing
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alvarez, C.J.; Cardin, M.; Martinez, E.M.; Neira, X.X.; Cuesta, T.S. Dairy Farm Efficiency in Galicia (NW of Spain). Bulg. J. Agric. Sci. 2014, 20, 51–55. [Google Scholar]
- López-Iglesias, E. El Sector Agrario y Agroalimentario En Galicia; Balance de Las Transformaciones Desde La Integración Europea, 1986–2016. Rev. Galega Econ. 2019, 28, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Di Berardino, S.E. Production of biogas/bioSNG from anaerobic pretreatment of milk-processing wastewater. In Substitute Natural Gas from Waste: Technical Assessment and Industrial Applications of Biochemical and Thermochemical Processes; Academic Press: Cambridge, MA, USA, 2019; pp. 397–424. ISBN 9780128155547. [Google Scholar]
- Augere-Granier, M. The EU Dairy Sector. Main Features, Challenges and Prospects. Brief. Eur. Parliam. 2018, 1–12. [Google Scholar]
- European Union. Agriculture, Forestry and Fishery Statistics; Cook, E., Ed.; Eurostat: Luxembourg, 2019. [Google Scholar]
- Daufin, G.; Escudier, J.P.; Carrére, H.; Bérot, S.; Fillaudeau, L.; Decloux, M. Recent and Emerging Applications of Membrane Processes in the Food and Dairy Industry. Food Bioprod. Process. Trans. Inst. Chem. Eng. Part C 2001, 79, 89–102. [Google Scholar] [CrossRef]
- Carvalho, A.; Maubois, J.-L. Applications of membrane technologies in the dairy industry. In Engineering Aspects of Milk and Dairy Products; CRC Press: Boca Raton, FL, USA, 2009; pp. 33–56. [Google Scholar]
- Dhineshkumar, V.; Ramasamy, D. Review on Membrane Technology Applications in Food and Dairy Processing. J. Appl. Biotechnol. Bioeng. 2017, 3, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Bird, J. The Application of Membrane Systems in the Dairy Industry. J. Soc. Dairy Technol. 1996, 49, 16–23. [Google Scholar] [CrossRef]
- Pouliot, Y. Membrane Processes in Dairy Technology-From a Simple Idea to Worldwide Panacea. Int. Dairy J. 2008, 18, 735–740. [Google Scholar] [CrossRef]
- Global Membrane Technology Market for Food and Beverage Processing (2019–2024). Available online: https://www.autumnmarketresearch.com/industry-reports/global-membrane-technology-market-for-food-and-beverage-processing-2019-2024/ (accessed on 29 July 2020).
- Castro-Muñoz, R.; Yáñez-Fernández, J.; Fíla, V. Phenolic Compounds Recovered from Agro-Food by-Products Using Membrane Technologies: An Overview. Food Chem. 2016, 213, 753–762. [Google Scholar] [CrossRef]
- Bazinet, L.; Doyen, A. Antioxidants, Mechanisms, and Recovery by Membrane Processes. Crit. Rev. Food Sci. Nutr. 2017, 57, 677–700. [Google Scholar] [CrossRef] [PubMed]
- Castro-Muñoz, R.; Barragán-Huerta, B.E.; Fíla, V.; Denis, P.C.; Ruby-Figueroa, R. Current Role of Membrane Technology: From the Treatment of Agro-Industrial by-Products up to the Valorization of Valuable Compounds. Waste Biomass Valorization 2018, 9, 513–529. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Fíla, V. Membrane-Based Technologies as an Emerging Tool for Separating High-Added-Value Compounds from Natural Products. Trends Food Sci. Technol. 2018, 82, 8–20. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Conidi, C.; Cassano, A. Membrane-Based Technologies for Meeting the Recovery of Biologically Active Compounds from Foods and Their by-Products. Crit. Rev. Food Sci. Nutr. 2019, 59, 2927–2948. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Boczkaj, G.; Gontarek, E.; Cassano, A.; Fíla, V. Membrane Technologies Assisting Plant-Based and Agro-Food by-Products Processing: A Comprehensive Review. Trends Food Sci. Technol. 2020, 95, 219–232. [Google Scholar] [CrossRef]
- Doug, E.; Budd, G.C. Overview of Water Treatment Processes. In Water Quality & Treatment: A Handbook on Drinking Water; Edzwald, J.K., Ed.; McGraw-Hill: New York, NY, USA, 2011. [Google Scholar]
- Fievet, P. Nanofiltration. In Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1360–1362. ISBN 978-3-662-44323-1. [Google Scholar]
- Lipnizki, F. Cross-Flow Membrane Applications in the Food Industry. In Membrane Technology: Membranes for Food Applications; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010; Volume 3, pp. 1–24. ISBN 9783527314829. [Google Scholar]
- Li, J.; Chase, H.A. Applications of Membrane Techniques for Purification of Natural Products. Biotechnol. Lett. 2010, 32, 601–608. [Google Scholar] [CrossRef]
- Leu, M.; Marciniak, A.; Chamberland, J.; Pouliot, Y.; Bazinet, L.; Doyen, A. Effect of Skim Milk Treated with High Hydrostatic Pressure on Permeate Flux and Fouling during Ultrafiltration. J. Dairy Sci. 2017, 100, 7071–7082. [Google Scholar] [CrossRef]
- Kravtsov, V.; Kulikova, I.; Mikhaylin, S.; Bazinet, L. Alkalinization of Acid Whey by Means of Electrodialysis with Bipolar Membranes and Analysis of Induced Membrane Fouling. J. Food Eng. 2020, 277, 109891. [Google Scholar] [CrossRef]
- Nath, K.; Dave, H.K.; Patel, T.M. Revisiting the Recent Applications of Nanofiltration in Food Processing Industries: Progress and Prognosis. Trends Food Sci. Technol. 2018, 73, 12–24. [Google Scholar] [CrossRef]
- Novasep. Process Development Services; Novasep Report: Lyon, France, 2014. [Google Scholar]
- Novasep. Optimized Purification Processes for the Dairy Industry; Novasep Report: Lyon, France, 2014. [Google Scholar]
- MEGA, Novasep. Processes for Demineralized Whey; MEGA Report: Prague, Czech Republic, 2014. [Google Scholar]
- GEA Process Engineering. Membrane Filtration in the Dairy Industry; GEA Process Engineering A/S: Skanderborg, Denmark, 2008. [Google Scholar]
- Cuartas-Uribe, B.; Alcaina-Miranda, M.I.; Soriano-Costa, E.; Mendoza-Roca, J.A.; Iborra-Clar, M.I.; Lora-García, J. A Study of the Separation of Lactose from Whey Ultrafiltration Permeate Using Nanofiltration. Desalination 2009, 241, 244–255. [Google Scholar] [CrossRef]
- Hinkova, A.; Zidova, P.; Pour, V.; Bubnik, Z.; Henke, S.; Salova, A.; Kadlec, P. Potential of Membrane Separation Processes in Cheese Whey Fractionation and Separation. Procedia Eng. 2012, 42, 1425–1436. [Google Scholar] [CrossRef] [Green Version]
- Riera, F.A.; Suárez, A.; Muro, C. Nanofiltration of UHT Flash Cooler Condensates from a Dairy Factory: Characterisation and Water Reuse Potential. Desalination 2013, 309, 52–63. [Google Scholar] [CrossRef]
- Kowalik-klimczak, A. The Possibilities of Using Membrane Filtration in The Dairy Industry. J. Mach. Constr. Maintenance 2017, 105, 99–108. [Google Scholar]
- Samaei, S.M.; Gato-Trinidad, S.; Altaee, A. The Application of Pressure-Driven Ceramic Membrane Technology for the Treatment of Industrial Wastewaters—A Review. Sep. Purif. Technol. 2018, 200, 198–220. [Google Scholar] [CrossRef]
- Hofs, B.; Ogier, J.; Vries, D.; Beerendonk, E.F.; Cornelissen, E.R. Comparison of Ceramic and Polymeric Membrane Permeability and Fouling Using Surface Water. Sep. Purif. Technol. 2011, 79, 365–374. [Google Scholar] [CrossRef]
- Mourouzidis-Mourouzis, S.A.; Karabelas, A.J. Whey Protein Fouling of Microfiltration Ceramic Membranes-Pressure Effects. J. Memb. Sci. 2006, 282, 124–132. [Google Scholar] [CrossRef]
- Grand View Research Dairy Processing Equipment Market Size, Share & Trends Analysis Report. Available online: https://www.grandviewresearch.com/industry-analysis/dairy-processing-equipment-market (accessed on 19 February 2021).
- Kunal Ahuja, S.S. Dairy Processing Equipment Market Size 2018–2024—Industry Growth Report. Available online: https://www.gminsights.com/industry-analysis/dairy-processing-equipment-market (accessed on 19 February 2021).
- Konarev, A.; Konstantinova, S.; Georgieva, G.V. Technological Innovations and Total Factor Productivity in Dairy Industry. IOP Conf. Ser. Mater. Sci. Eng. 2019, 618, 012082. [Google Scholar] [CrossRef]
- Maximeze Market Research PVT.LTD Global Ultrafiltered Milk Market: Industry Analysis and Forecast (2019–2027). Available online: https://www.maximizemarketresearch.com/market-report/global-ultrafiltered-milk-market/69717/ (accessed on 19 February 2021).
- Scopus Analyze Search Results: TITLE-ABS-KEY (Dairy) AND TITLE-ABS-KEY (Membrane). Available online: https://www-scopus-com.recursos.biblioteca.upc.edu/term/analyzer.uri?sid=b1adcdc0a372fcf595cc6b33563d4e70&origin=resultslist&src=s&s=%28TITLE-ABS-KEY%28dairy%29+AND+TITLE-ABS-KEY%28membranes%29%29&sort=plf-f&sdt=b&sot=b&sl=51&count=3650&analyzeResults=Analyze+results&txGid=ca67ca3a31cba58a8a491ea4805d734b (accessed on 5 November 2020).
- Kumar, P.; Sharma, N.; Ranjan, R.; Kumar, S.; Bhat, Z.F.; Jeong, D.K. Perspective of Membrane Technology in Dairy Industry: A Review. Asian-Australas. J. Anim. Sci. 2013, 26, 1347–1358. [Google Scholar] [CrossRef] [Green Version]
- Anand, S.; Singh, D.; Avadhanula, M.; Marka, S. Development and Control of Bacterial Biofilms on Dairy Processing Membranes. Compr. Rev. Food Sci. Food Saf. 2014, 13, 18–33. [Google Scholar] [CrossRef]
- Tremblay-Marchand, D.; Doyen, A.; Britten, M.; Pouliot, Y. A Process Efficiency Assessment of Serum Protein Removal from Milk Using Ceramic Graded Permeability Microfiltration Membrane. J. Dairy Sci. 2016, 99, 5230–5243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brião, V.B.; Vieira Salla, A.C.; Miorando, T.; Hemkemeier, M.; Cadore Favaretto, D.P. Water Recovery from Dairy Rinse Water by Reverse Osmosis: Giving Value to Water and Milk Solids. Resour. Conserv. Recycl. 2019, 140, 313–323. [Google Scholar] [CrossRef]
- Brans, G.; Schroën, C.G.P.H.; Van Der Sman, R.G.M.; Boom, R.M. Membrane Fractionation of Milk: State of the Art and Challenges. J. Memb. Sci. 2004, 243, 263–272. [Google Scholar] [CrossRef]
- Portnoy, M.; Barbano, D.M. Lactose: Use, Measurement, and Expression of Results. J. Dairy Sci. 2021, 104, 8314–8325. [Google Scholar] [CrossRef] [PubMed]
- Walstra, P.; Geurts, T.J.; Noomen, A.; Jellema, A.; van Boekel, M.A.J.S. Dairy Technology: Principles of Milk Properties and Processes; Marcel Dekker: New York, NY, USA, 1999; ISBN 082470228X. [Google Scholar]
- Utioh, A. Utilization of Milk Fat Fractions in the Food Industry; Western Dairy Ingredient Seminar: Winnipeg, MB, Canada, 2009. [Google Scholar]
- Scherr, C.; Ribeiro, J.P. Fat Content of Dairy Products, Eggs, Margarines and Oils: Implications for Atherosclerosis. Arq. Bras. Cardiol. 2010, 95, 55–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Barbano, D.M. Gravity Separation of Raw Bovine Milk: Fat Globule Size Distribution and Fat Content of Milk Fractions. J. Dairy Sci. 2000, 83, 1719–1727. [Google Scholar] [CrossRef]
- Dhungana, P.; Truong, T.; Palmer, M.; Bansal, N.; Bhandari, B. Size-Based Fractionation of Native Milk Fat Globules by Two-Stage Centrifugal Separation. Innov. Food Sci. Emerg. Technol. 2017, 41, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Wang, N.S. Spoilage of Milk and Dairy Products. In The Microbiological Quality of Food: Foodborne Spoilers; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; pp. 151–178. ISBN 9780081005033. [Google Scholar]
- The University of Melbourne UHT vs. Pasteurized Milk: Which Is a Better Choice? Available online: https://blogs.unimelb.edu.au/sciencecommunication/2020/09/18/uht-vs-pasteurized-milk%EF%BC%9Awhich-is-a-better-choice/ (accessed on 20 October 2021).
- Goudédranche, H.; Fauquant, J.; Maubois, J.L. Fractionation of Globular Milk Fat by Membrane Microfiltration. Lait 2000, 80, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Phelan, J.A. Standardisation of Milk for Cheesemaking at Factory Level. Int. J. Dairy Technol. 1981, 34, 152–156. [Google Scholar] [CrossRef]
- Chandan, R.C. Cheese: Cheese in the Marketplace. In Encyclopedia of Food Microbiology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 1, pp. 384–394. ISBN 9780123847331. [Google Scholar]
- Malo, P.M.; Urquhart, E.A. Fermented Foods: Use of Starter Cultures. In Encyclopedia of Food and Health; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; pp. 681–685. ISBN 9780123849533. [Google Scholar]
- El Soda, M.; Awad, S. Cheese: Accelerated Cheese Ripening. In Encyclopedia of Dairy Sciences: Second Edition; Elsevier: Amsterdam, The Netherlands, 2011; Volume 1, pp. 795–798. ISBN 9780123744074. [Google Scholar]
- Lauzin, A.; Dussault-Chouinard, I.; Britten, M.; Pouliot, Y. Impact of Membrane Selectivity on the Compositional Characteristics and Model Cheese-Making Properties of Liquid Pre-Cheese Concentrates. Int. Dairy J. 2018, 83, 34–42. [Google Scholar] [CrossRef]
- Saboya, L.V.; Maubois, J.L. Current Developments of Microfiltration Technology in the Dairy Industry. Lait 2000, 80, 541–553. [Google Scholar] [CrossRef] [Green Version]
- Mistry, V.; Maubois, J.-L. Application of Membrane Separation Technology to Mining Processes. In Cheese: Chemistry, Physics and Microbiology; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; pp. 677–697. ISBN 9780124170124. [Google Scholar]
- He, J.; Vazquez-Landaverde, P.; Qian, M.C.; Eskin, N.A.M. Off-Flavors in Milk. In Biochemistry of Foods; Elsevier: Amsterdam, The Netherlands, 2012; Volume 1, pp. 479–500. ISBN 9780080918099. [Google Scholar]
- Mukhopadhyay, S.; Ukuku, D.O. The Role of Emerging Technologies to Ensure the Microbial Safety of Fresh Produce, Milk and Eggs. Curr. Opin. Food Sci. 2018, 19, 145–154. [Google Scholar] [CrossRef]
- Holm, S.; Malmberg, R.; Svensson, K. Method and Plant for Producing Milk with a Low Bacterial Content. Alfa-Laval Food & Dairy Engineering AB. European Patent WO 86/01687, 27 March 1986. [Google Scholar]
- Available online: https://www.alfalaval.com (accessed on 24 October 2021).
- Guerra, A.; Jonsson, G.; Rasmussen, A.; Waagner Nielsen, E.; Edelsten, D. Low Cross-Flow Velocity Microfiltration of Skim Milk for Removal of Bacterial Spores. Int. Dairy J. 1997, 7, 849–861. [Google Scholar] [CrossRef]
- Belna, M.; Ndiaye, A.; Taillandier, F.; Agabriel, L.; Marie, A.L.; Gésan-Guiziou, G. Formulating Multiobjective Optimization of 0.1 Μm Microfiltration of Skim Milk. Food Bioprod. Process. 2020, 124, 244–257. [Google Scholar] [CrossRef]
- Renhe, I.R.T.; Corredig, M. Effect of Partial Whey Protein Depletion during Membrane Filtration on Thermal Stability of Milk Concentrates. J. Dairy Sci. 2018, 101, 8757–8766. [Google Scholar] [CrossRef] [Green Version]
- Cassano, A.; Basile, A. Integrating Different Membrane Operations and Combining Membranes with Conventional Separation Techniques in Industrial Processes; Woodhead Publishing Limited: Cambridge, UK, 2013; Volume 2, ISBN 9780857097347. [Google Scholar]
- Kelly, P.M.; Food, T.; Cork, C. Milk Protein Products: Membrane-Based Fractionation. In Encyclopedia of Dairy Sciences, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 864–872. [Google Scholar] [CrossRef]
- Ahmad, T.; Aadil, R.M.; Ahmed, H.; ur Rahman, U.; Soares, B.C.V.; Souza, S.L.Q.; Pimentel, T.C.; Scudino, H.; Guimarães, J.T.; Esmerino, E.A.; et al. Treatment and Utilization of Dairy Industrial Waste: A Review. Trends Food Sci. Technol. 2019, 88, 361–372. [Google Scholar] [CrossRef]
- Wen-Qiong, W.; Yun-chao, W.; Xiao-feng, Z.; Rui-xia, G.; Mao-lin, L. Whey Protein Membrane Processing Methods and Membrane Fouling Mechanism Analysis. Food Chem. 2019, 289, 468–481. [Google Scholar] [CrossRef]
- Kelly, P. Manufacture of Whey Protein Products: Concentrates, Isolate, Whey Protein Fractions and Microparticulated. In Whey Proteins: From Milk to Medicine; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 97–122. ISBN 9780128121245. [Google Scholar]
- Maubois, J. Current Uses and Future Perspectives of MF Technology in the Dairy Industry. Bull. Int. Dairy Fed. 1997, 320, 37–40. [Google Scholar]
- Fauquant, J.; Vieco, E.; Brule, G.; Maubois, J.L. Clarification Des Lactosérums Doux Par Agrégation Thermocalcique de La Matière Grasse Résiduelle. Lait 1985, 65, 1–20. [Google Scholar] [CrossRef]
- Mohammad, A.W.; Teow, Y.H.; Ho, K.C.; Rosnan, N.A. Recent Developments in Nanofiltration for Food Applications. Nanomater. Food Appl. 2018, 101–120. [Google Scholar] [CrossRef]
- Argenta, A.B.; Scheer, A.D.P. Membrane Separation Processes Applied to Whey: A Review. Food Rev. Int. 2020, 36, 499–528. [Google Scholar] [CrossRef]
- Marx, M.; Bernauer, S.; Kulozik, U. Manufacturing of Reverse Osmosis Whey Concentrates with Extended Shelf Life and High Protein Nativity. Int. Dairy J. 2018, 86, 57–64. [Google Scholar] [CrossRef]
- Bédas, M.; Tanguy, G.; Dolivet, A.; Méjean, S.; Gaucheron, F.; Garric, G.; Senard, G.; Jeantet, R.; Schuck, P. Nanofiltration of Lactic Acid Whey Prior to Spray Drying: Scaling up to a Semi-Industrial Scale. LWT-Food Sci. Technol. 2017, 79, 355–360. [Google Scholar] [CrossRef]
- Heidebrecht, H.J.; Toro-Sierra, J.; Kulozik, U. Concentration of Immunoglobulins in Microfiltration Permeates of Skim Milk: Impact of Transmembrane Pressure and Temperature on the IgG Transmission Using Different Ceramic Membrane Types and Pore Sizes. Foods 2018, 7, 101. [Google Scholar] [CrossRef] [Green Version]
- Toro-Sierra, J.; Tolkach, A.; Kulozik, U. Fractionation of α-Lactalbumin and β-Lactoglobulin from Whey Protein Isolate Using Selective Thermal Aggregation, an Optimized Membrane Separation Procedure and Resolubilization Techniques at Pilot Plant Scale. Food Bioprocess Technol. 2013, 6, 1032–1043. [Google Scholar] [CrossRef]
- Gésan-Guiziou, G.; Daufin, G.; Timmer, M.; Allersma, D.; Van Der Horst, C. Process Steps for the Preparation of Purified Fractions of α-Lactalbumin and β-Lactoglobulin from Whey Protein Concentrates. J. Dairy Res. 1999, 66, 225–236. [Google Scholar] [CrossRef]
- Fischer, C.; Kleinschmidt, T. Synthesis of Galactooligosaccharides in Milk and Whey: A Review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 678–697. [Google Scholar] [CrossRef] [PubMed]
- Michelon, M.; Manera, A.P.; Carvalho, A.L.; Maugeri Filho, F. Concentration and Purification of Galacto-Oligosaccharides Using Nanofiltration Membranes. Int. J. Food Sci. Technol. 2014, 49, 1953–1961. [Google Scholar] [CrossRef]
- Schmidt, C.M.; Mailänder, L.K.; Hinrichs, J. Fractionation of Mono- and Disaccharides via Nanofiltration: Influence of Pressure, Temperature and Concentration. Sep. Purif. Technol. 2019, 211, 571–577. [Google Scholar] [CrossRef]
- Feng, Y.M.; Chang, X.L.; Wang, W.H.; Ma, R.Y. Separation of Galacto-Oligosaccharides Mixture by Nanofiltration. J. Taiwan Inst. Chem. Eng. 2009, 40, 326–332. [Google Scholar] [CrossRef]
- Córdova, A.; Astudillo, C.; Santibañez, L.; Cassano, A.; Ruby-Figueroa, R.; Illanes, A. Purification of Galacto-Oligosaccharides (GOS) by Three-Stage Serial Nanofiltration Units under Critical Transmembrane Pressure Conditions. Chem. Eng. Res. Des. 2017, 117, 488–499. [Google Scholar] [CrossRef]
- Santibáñez, L.; Córdova, A.; Astudillo-Castro, C.; Illanes, A. Effect of the Lactose Hydrolysis on Galacto-Oligosaccharides Mixtures Subjected to Nanofiltration: A Detailed Fractionation Analysis. Sep. Purif. Technol. 2019, 222, 342–351. [Google Scholar] [CrossRef]
- Pruksasri, S.; Nguyen, T.H.; Haltrich, D.; Novalin, S. Fractionation of a Galacto-Oligosaccharides Solution at Low and High Temperature Using Nanofiltration. Sep. Purif. Technol. 2015, 151, 124–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Córdova, A.; Astudillo, C.; Giorno, L.; Guerrero, C.; Conidi, C.; Illanes, A.; Cassano, A. Nanofiltration Potential for the Purification of Highly Concentrated Enzymatically Produced Oligosaccharides. Food Bioprod. Process. 2016, 98, 50–61. [Google Scholar] [CrossRef]
- Córdova, A.; Astudillo, C.; Vera, C.; Guerrero, C.; Illanes, A. Performance of an Ultrafiltration Membrane Bioreactor (UF-MBR) as a Processing Strategy for the Synthesis of Galacto-Oligosaccharides at High Substrate Concentrations. J. Biotechnol. 2016, 223, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Pocedičová, K.; Čurda, L.; Mišún, D.; Dryáková, A.; Diblíková, L. Preparation of Galacto-Oligosaccharides Using Membrane Reactor. J. Food Eng. 2010, 99, 479–484. [Google Scholar] [CrossRef]
- Córdova, A.; Astudillo, C.; Guerrero, C.; Vera, C.; Illanes, A. Assessment of the Fouling Mechanisms of an Ultrafiltration Membrane Bioreactor during Synthesis of Galacto-Oligosaccharides: Effect of the Operational Variables. Desalination 2016, 393, 79–89. [Google Scholar] [CrossRef]
- López, J.; Reig, M.; Gibert, O.; Cortina, J.L. Increasing Sustainability on the Metallurgical Industry by Integration of Membrane Nanofiltration Processes: Acid Recovery. Sep. Purif. Technol. 2019, 226, 267–277. [Google Scholar] [CrossRef]
- Qiu, Z.-L.; Yu, W.-H.; Shen, Y.-J.; Zhu, B.-K.; Fang, L.-F. Cationic Hyperbranched Poly(Amido-Amine) Engineered Nanofiltration Membrane for Molecular Separation. J. Memb. Sci. 2021, 629, 119275. [Google Scholar] [CrossRef]
- Zhang, H.; Tao, Y.; He, Y.; Pan, J.; Yang, K.; Shen, J.; Gao, C. Preparation of Low-Lactose Milk Powder by Coupling Membrane Technology. ACS Omega 2020, 5, 8543–8550. [Google Scholar] [CrossRef] [Green Version]
- Talebi, S.; Suarez, F.; Chen, G.Q.; Chen, X.; Bathurst, K.; Kentish, S.E. Pilot Study on the Removal of Lactic Acid and Minerals from Acid Whey Using Membrane Technology. ACS Sustain. Chem. Eng. 2020, 8, 2742–2752. [Google Scholar] [CrossRef]
- Román, A.; Wang, J.; Csanádi, J.; Hodúr, C.; Vatai, G. Partial Demineralization and Concentration of Acid Whey by Nanofiltration Combined with Diafiltration. Desalination 2009, 241, 288–295. [Google Scholar] [CrossRef]
- Chandrapala, J.; Duke, M.C.; Gray, S.R.; Weeks, M.; Palmer, M.; Vasiljevic, T. Strategies for Maximizing Removal of Lactic Acid from Acid Whey—Addressing the Un-Processability Issue. Sep. Purif. Technol. 2017, 172, 489–497. [Google Scholar] [CrossRef]
- Benedetti, S.; Prudencio, E.S.; Müller, C.M.O.; Verruck, S.; Mandarino, J.M.G.; Leite, R.S.; Petrus, J.C.C. Utilization of Tofu Whey Concentrate by Nanofiltration Process Aimed at Obtaining a Functional Fermented Lactic Beverage. J. Food Eng. 2016, 171, 222–229. [Google Scholar] [CrossRef]
- Demers-Mathieu, V.; Gauthier, S.F.; Britten, M.; Fliss, I.; Robitaille, G.; Jean, J. Antibacterial Activity of Peptides Extracted from Tryptic Hydrolyzate of Whey Protein by Nanofiltration. Int. Dairy J. 2013, 28, 94–101. [Google Scholar] [CrossRef]
- Aydiner, C.; Sen, U.; Topcu, S.; Sesli, D.; Ekinci, D.; Altinay, A.D.; Ozbey, B.; Koseoglu-Imer, D.Y.; Keskinler, B. Techno-Economic Investigation of Water Recovery and Whey Powder Production from Whey Using UF/RO and FO/RO Integrated Membrane Systems. Desalin. Water Treat. 2014, 52, 123–133. [Google Scholar] [CrossRef]
- Wang, Y.N.; Wang, R.; Li, W.; Tang, C.Y. Whey Recovery Using Forward Osmosis—Evaluating the Factors Limiting the Flux Performance. J. Memb. Sci. 2017, 533, 179–189. [Google Scholar] [CrossRef]
- Chen, G.Q.; Artemi, A.; Lee, J.; Gras, S.L.; Kentish, S.E. A Pilot Scale Study on the Concentration of Milk and Whey by Forward Osmosis. Sep. Purif. Technol. 2019, 215, 652–659. [Google Scholar] [CrossRef]
- Chen, G.Q.; Gras, S.L.; Kentish, S.E. The Application of Forward Osmosis to Dairy Processing. Sep. Purif. Technol. 2020, 246, 116900. [Google Scholar] [CrossRef]
- Wang, P.; Chung, T.S. Recent Advances in Membrane Distillation Processes: Membrane Development, Configuration Design and Application Exploring. J. Memb. Sci. 2015, 474, 39–56. [Google Scholar] [CrossRef]
- Cassano, A.; Conidi, C.; Drioli, E. A Comprehensive Review of Membrane Distillation and Osmotic Distillation in Agro-Food Applications. J. Membr. Sci. Res. 2020, 6, 304–318. [Google Scholar] [CrossRef]
- Abdelkader, S.; Gross, F.; Winter, D.; Went, J.; Koschikowski, J.; Geissen, S.U.; Bousselmi, L. Application of Direct Contact Membrane Distillation for Saline Dairy Effluent Treatment: Performance and Fouling Analysis. Environ. Sci. Pollut. Res. 2019, 26, 18979–18992. [Google Scholar] [CrossRef] [PubMed]
- Kezia, K.; Lee, J.; Weeks, M.; Kentish, S. Direct Contact Membrane Distillation for the Concentration of Saline Dairy Effluent. Water Res. 2015, 81, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Gül, K.; Hasanoğlu, A. Concentration of Skim Milk Using a Hybrid System of Osmotic Distillation and Membrane Distillation. Desalin. Water Treat. 2019, 149, 11–22. [Google Scholar] [CrossRef]
- Song, H.; Xie, F.; Chen, W.; Liu, J. FO/MD Hybrid System for Real Dairy Wastewater Recycling. Environ. Technol. 2018, 39, 2411–2421. [Google Scholar] [CrossRef]
- Siebert, J.W.; Lalor, A.; Kim, S.-Y. The Commercial Potential of New Dairy Products from Membrane Technology. J. Food Distrib. Res. 2001, 32, 24–33. [Google Scholar]
- Chamberland, J.; Lessard, M.H.; Doyen, A.; Labrie, S.; Pouliot, Y. Biofouling of Ultrafiltration Membrane by Dairy Fluids: Characterization of Pioneer Colonizer Bacteria Using a DNA Metabarcoding Approach. J. Dairy Sci. 2017, 100, 981–990. [Google Scholar] [CrossRef] [Green Version]
- Steinhauer, T.; Marx, M.; Bogendörfer, K.; Kulozik, U. Membrane Fouling during Ultra- and Microfiltration of Whey and Whey Proteins at Different Environmental Conditions: The Role of Aggregated Whey Proteins as Fouling Initiators. J. Memb. Sci. 2015, 489, 20–27. [Google Scholar] [CrossRef]
- Anand, S.; Avadhanula, M.; Singh, D. Literature Review: Development and Control of Membrane Biofilms in the Dairy Industry. Rev. Lit. Arts Am. 2011, 17–32. [Google Scholar]
- Chamberland, J.; Messier, T.; Dugat-Bony, E.; Lessard, M.H.; Labrie, S.; Doyen, A.; Pouliot, Y. Influence of Feed Temperature to Biofouling of Ultrafiltration Membrane during Skim Milk Processing. Int. Dairy J. 2019, 93, 99–105. [Google Scholar] [CrossRef]
- Stoica, I.M.; Vitzilaiou, E.; Lyng Røder, H.; Burmølle, M.; Thaysen, D.; Knøchel, S.; van den Berg, F. Biofouling on RO-Membranes Used for Water Recovery in the Dairy Industry. J. Water Process Eng. 2018, 24, 1–10. [Google Scholar] [CrossRef]
- Carter, B.; DiMarzo, L.; Pranata, J.; Barbano, D.M.; Drake, M. Determination of the Efficiency of Removal of Whey Protein from Sweet Whey with Ceramic Microfiltration Membranes. J. Dairy Sci. 2021, 104, 8630–8643. [Google Scholar] [CrossRef] [PubMed]
- Patel, T.M.; Nath, K. Alleviation of Flux Decline in Cross Flow Nanofiltration of Two-Component Dye and Salt Mixture by Low Frequency Ultrasonic Irradiation. Desalination 2013, 317, 132–141. [Google Scholar] [CrossRef]
- Fernández de Labastida, M.; Licón, E.E.; Bondarenko, M.; Yaroshchuk, A. Rotating Disk-like Membrane Cell for Pressure-Driven Measurements with Equally-Accessible Membrane Surface: Numerical Simulation and Experimental Validation. J. Memb. Sci. 2018, 550, 492–501. [Google Scholar] [CrossRef]
(a) Polymer-Based Pressure Membranes (Reproduced from [32], with Permission from Elsevier, 2021) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Manufacturer | Symbol | Process | Polymer | MWCO/Pore Size | pH | Retention (%) | Temperature (°C) | ||
GE Osmonics | DL | NF | PPZ | 150–300 Da | 3–9, 2–10 | 98 | 50 | ||
TriSep | TM10 | MF | PVDF | 0.2 µm | 1–12 | - | 45 | ||
UF5 | UF | PES | 5000 Da | 1–12 | - | 50 | |||
TS40 | NF | PPZ | ~200 Da | 2–11 | 90, 40–60 | 45 | |||
TS80 | NF | PA | ~150 Da | 2–11 | 99, 80–90 | 45 | |||
XN45 | NF | PPZ | ~500 Da | 2–11 | 95, 10–30 | 45 | |||
Synder | FR | MF | PVDF | 800 kDa | 3–9, 2–11 | - | 55, 50 | ||
V0.1 | MF | PVDF | 0.1 µm | 3–9, 2–11 | - | 55, 50 | |||
V0.2 | MF | PVDF | 0.2 µm | 3–9, 2–11 | - | 55, 50 | |||
BN | UF | PVDF | 50 kDa | 3–10, 2–11 | - | 60, 85 | |||
MK | UF | PES | 30 kDa | 3–9, 2–11 | - | 55, 50 | |||
ST | UF | PES | 10 kDa | 3–9, 2–11 | - | 55, 50 | |||
NFX | NF | PA | 150–300 Da | 3–10, 2–11 | 99, 40 | 50 | |||
NDX | NF | PA | ~800–1000 Da | 3–10.5 | 90, 30 | 50, 40 | |||
NFG | NF | PA | ~600–800 Da | 4–10 | 50, 10 | 50 | |||
NFW | NF | PA | 300–500 Da | 4–9, 3–10 | 97, 20, 98 | 50, 40 | |||
NanostoneTM | PV650 | MF | PVDF | 0.31 µm | 2–10, 2–11.5 | - | 60, 50 | ||
PE5 | UF | PES | 6 kDa | 2–10 | - | - | |||
PE10HR | UF | PES | 10 kDa | 2–10 | - | - | |||
Microdyn NadirTM | P010 | NF | PES | – | 0–14 | 35–75 | 95 | ||
P030 | NF | PES | – | 0–14 | 80–95 | 95 | |||
Dow Filmtec | NF | NF | PA | ~200–400 Da | 2–11 | 99 | 45 | ||
Koch Membrane Systems | Dairy-ProTMMF-0.1 | MF | PES | 0.1 µm | 2–10, 2–11 | - | 50 | ||
Dairy-ProTMUF-5K | UF | PES | 5 kDa | 2–10, 2–11 | - | 55, 50 | |||
Dairy-ProTMUF-10K | UF | PES | 10 kDa | 2–10, 2–11 | - | 55, 50 | |||
Dairy-ProTMMPS-34 | NF | PSU | ~200 Da | 0–14 | 95 | 50 | |||
Dairy-ProTMMPS-36 | NF | - | 1 kDa | 1–13 | 10 | 50 | |||
Dairy-ProTMNF-200 | NF | PA | ~200 Da | 4–10, 2–11 | - | 50, 60 | |||
Dairy-ProTMRO | RO | PA | - | 4–10, 2–11 | - | 50, 60 | |||
(b) Ceramic Membranes (Reproduced from ([33], with Permission from the Author Kowalik-Klimckaz, 2021)) | |||||||||
Company | Product | Geometry | Designation | Membrane Material | Pore Size/MWCO | Available Length (s)-(mm) | Number of Channels | Outer Dia (mm) | Cannel Dia (mm) |
TAMI Industries | INSIDE CéRAM | tubular | MF UF Fine UF | – | – | 580, 850, 1020, 1178 | 7, 8, 11, 19, 23, 25, 37, 39, 93 | 25, 41 | 1.6, 2.5, 3.5, 3.6, 4.6, 5.5, 6 |
FiltaniumTM | Tubular | MF UF Fine UF | – | – | 580, 1178 | 8, 23, 39 | 25 | 2.5, 3.5, 6 | |
IsofluxTM | Tubular | MF | – | – | 1020, 1178 | 8, 23, 39 | 25 | 2.5, 3.5, 6 | |
EterniumTM | Tubular | – | – | – | 1178 | 7, 8, 23 | 25 | 3.5, 6 | |
Atech Innovations GmbH | atec Ceramic membranes | Tubular | MF and UF | MF: α-Al2O3, TiO2, ZrO2 UF: TiO2, ZrO2, Al2O3 | MF: 1.2, 0.8, 0.4, 0.2, 0.1 µm UF: 0.05 µm, 150, 100, 20, 10, 5, 1 kDa | 1000, 1200, 1500 | 1, 7, 19, 37, 61, 85, 211 | 10, 25.4, 30, 41, 52, 54 | 2, 2.5, 3.3, 3.8, 4, 6, 8, 16 |
Pall Corporation | Pall® Membralox® IC | Tubular (Hexagonal) | MF and UF | MF: α-Al2O3 UF: ZrO2 | MF: 0.8, 0.2 µm UF: 100, 50, 20 nm | 1020 | 48 | 38, 43 | 4 |
Pall Corporation | Pall® Membralox® | Tubular (Hexagonal) | MF and UF | MF: α-Al2O3 UF: ZrO2 | MF: 1.4, 0.8, 0.5, 0.3, 0.1 µm UF: 100, 50, 20 nm | 1020 | 19, 37 | 28, 31, 38, 43 | 3, 4, 6 |
Veolia Water Technologies | CeraMem® | Tubular | MF and UF | MF: mixed oxide, α-Al2O3, SiC, TiO2 UF: SiC, SiO2, TiO2 | MF: 0.1, 0.2, 0.5 µm UF: 0.01, 0.005 µm, 50 nm | 864 | – | 142 | 2, 5 |
ItN Nanovation AG | CFM Systems® | Flat sheet | MF | α-Al2O3 | 0.2 µm | L = 530 W = 6.5 H = 110 | 21 | – | 3 |
Meidensha Corporation | Ceramic flat sheet membrane system | Flat sheet | MF | α-Al2O3 | 0.1 µm | L = 1046 W = 12 H = 281 | – | – | – |
LiqTech International Inc. | CoMem® Conduit | Tubular | – | SiC | – | 865 | – | 146 | 3 |
LiqTech International Inc. | CoMem® | Tubular | – | SiC | – | 305, 1016, 1178 | – | 25 | 3 |
Inopor® | Ceramic inopor® membrane | Tubular | NF | Support layer: Al2O3 Membrane layers: TiO2 or SiO2 | MWCO: 750, 600, 450 Da | 1200 | 1, 4, 7, 19, 31 | 10, 20, 25, 41 | 3, 3.5, 6, 6.1, 7, 15.5 |
Cembrane | Cembrane Ceramic membrane | Flat sheet | MF | SiC | 0.1 µm | L = 532 W = 11 H = 150 | – | – | – |
Concentration (g/L) | Size Range | |
---|---|---|
Solids-not-fat | 8.9 | - |
Fat in dry matter | 31.0 | - |
Fats | 4.0 | 100–15,000 nm |
Protein | 3.3 | - |
Casein (in micelles) | 2.6 | 20–300 nm |
Serum proteins | 0.7 | 3–6 nm |
Lactose | 4.6 | 350 Da |
Organic acids | 0.2 | - |
Mineral substances | 0.7 | - |
Others | 0.2 | - |
Water | 871 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reig, M.; Vecino, X.; Cortina, J.L. Use of Membrane Technologies in Dairy Industry: An Overview. Foods 2021, 10, 2768. https://doi.org/10.3390/foods10112768
Reig M, Vecino X, Cortina JL. Use of Membrane Technologies in Dairy Industry: An Overview. Foods. 2021; 10(11):2768. https://doi.org/10.3390/foods10112768
Chicago/Turabian StyleReig, Mònica, Xanel Vecino, and José Luis Cortina. 2021. "Use of Membrane Technologies in Dairy Industry: An Overview" Foods 10, no. 11: 2768. https://doi.org/10.3390/foods10112768
APA StyleReig, M., Vecino, X., & Cortina, J. L. (2021). Use of Membrane Technologies in Dairy Industry: An Overview. Foods, 10(11), 2768. https://doi.org/10.3390/foods10112768