Latest Developments in Edible Coatings on Minimally Processed Fruits and Vegetables: A Review
Abstract
:1. Introduction
2. Methods
3. Composition and Methods of Application of Edible Coatings
4. Edible Films and Coatings for Fruits and Vegetables Preservation
5. Edible Films and Coatings with Functional Additives for Minimally Processed Fruit Application
- -
- plasticizers (glycerol, sorbitol, sucrose, mannitol, acetylated, monoglyceride, polyethylene glycol, and xylitol) added to coatings to increase flexibility and prevent coatings from blistering, flaking, and cracking;
- -
- emulsifiers (soy lecithin, stearic acid, and Tweens) and surfactants (Tweens) added to improve coating adhesion;
- -
- antimicrobial agents (nisin, natamycin, phenolic compounds, natural seed extracts, and essential oils—like cinnamaldehyde, eugenol) added to improve the antimicrobial activity of a coating;
- -
- antioxidants (ascorbic acid, citric acid and α-tocopherol) added to coating matrices to prevent oxidative rancidity, degradation, and discoloration;
- -
- nano-compounds (like metal oxides as ZnO or TiO2).
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stan, A.; Bujor, O.-C.; Haida, G.; Badulescu, L.; Asanica, A. Monitoring the quality parameters for organic raspberries in order to determine the optimal storage method by packaging. Acta Hortic. 2019, 1277, 461–468. [Google Scholar] [CrossRef]
- Stan, A.; Butac, M.; Ion, V.A.; Cătuneanu, I.; Frîncu, M.; Bădulescu, L. Post-harvest technologies influences in organic ‘Tita’ plums quality. Sci. Papers Ser. B. Hortic. 2020, LXIV, 105–112. [Google Scholar]
- Verma, T.; Byron, D.; Chaves, B.D.; Irmak, S.; Subbiah, J. Pasteurization of dried basil leaves using radio frequency heating: A microbial challenge study and quality analysis. Food Control 2021, 124, 107932. [Google Scholar] [CrossRef]
- Chitrakar, B.; Zhang, M.; Bhandari, B. Improvement strategies of food supply chain through novel food processing technologies during COVID-19 pandemic. Food Control 2021, 125, 108010. [Google Scholar] [CrossRef] [PubMed]
- Rabadán, A. Consumer Attitudes towards Technological Innovation in a Traditional Food Product: The Case of Wine. Foods 2021, 10, 1363. [Google Scholar] [CrossRef]
- Stefanoiu, G.A.; Popa, E.E.; Mitelut, A.C.; Popa, M.E. Marketing research regarding consumer perceptions on using radio frequency in bakery production. Sci. Bull. Ser. F. Biotechnol. 2018, XXII, 119–124. [Google Scholar]
- Hassan, B.; Chatha, S.A.S.; Hussain, A.I.; Zia, K.M.; Akhtar, N. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. [Google Scholar] [CrossRef]
- Nair, M.S.; Tomar, M.; Punia, S.; Kukula-Koch, W.; Kumar, M. Enhancing the functionality of chitosan- and alginate-based active edible coatings/films for the preservation of fruits and vegetables: A review. Int. J. Biol. Macromol. 2020, 164, 304–320. [Google Scholar] [CrossRef]
- Dehghani, S.; Hosseini, S.V.; Regenstein, J.M. Edible films and coatings in seafood preservation: A review. Food Chem. 2018, 240, 505–513. [Google Scholar] [CrossRef]
- Ulusoy, B.H.; Yildirim, F.K.; Hecer, C. Edible films and coatings: A good idea from past to future technology. J. Food Technol. Res. 2018, 5, 28–33. [Google Scholar] [CrossRef]
- Tural, S.; Sarıcaoğlu, F.T.; Turhan, S. Edible film and coatings: Production, application methods, functions and uses in muscular foods. Acad. Food 2017, 15, 84–94. [Google Scholar]
- Mamtani, K. Edible Packaging Market by Material (Lipids, Polysaccharides, Proteins, Surfactants, and Composite Films), and End Users (Food & Beverages and Pharmaceuticals)-Global Opportunity Analysis and Industry Forecast, 2017–2023. Available online: https://www.alliedmarketresearch.com/edible-packaging-market (accessed on 5 September 2021).
- Suhag, R.; Kumar, N.; Petkoska, A.T.; Upadhyay, A. Film formation and deposition methods of edible coating on food products: A review. Food Res. Int. 2020, 136, 109582. [Google Scholar] [CrossRef]
- Vital, A.C.P.; Guerrero, A.; Kempinski, E.M.B.; de Oliveira Monteschio, J.; Sary, C.; Ramos, T.R.; del Mar Campo, M.; do Prado, I.N. Consumer profile and acceptability of cooked beef steaks with edible and active coating containing oregano and rosemary essential oils. Meat Sci. 2018, 143, 153–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegrist, M.; Hartmann, C. Consumer acceptance of novel food technologies. Nat. Food 2020, 1, 343–350. [Google Scholar] [CrossRef]
- Peters, R.J.B.; Bouwmeester, H.; Gottardo, S.; Amenta, V.; Arena, M.; Brandhoff, P.; Marvin, H.J.P.; Mech, A.; Moniz, F.B.; Pesudo, L.Q.; et al. Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci. Technol. 2016, 54, 155–164. [Google Scholar] [CrossRef]
- MacRitchie, L.A.; Hunter, C.J.; Strachan, N.J.C. Consumer acceptability of interventions to reduce Campylobacter in the poultry food chain. Food Control 2014, 35, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Wan, V.C.-H.; Lee, C.M.; Lee, S.-Y. Understanding consumer attitudes on edible films and coatings: Focus group findings. J. Sens. Stud. 2007, 22, 353–366. [Google Scholar] [CrossRef]
- Deliza, R.; Rosenthal, A.; Silva, A.L.S. Consumer attitude towards information on non-conventional technology. Trends Food Sci. Technol. 2003, 14, 43–49. [Google Scholar] [CrossRef]
- Baldwin, E.A.; Hagenmaier, R.; Bai, J. Edible Coatings and Films to Improve Food Quality; CRC Press: Boca Raton, FL, USA, 2011; p. 460. [Google Scholar]
- Jongsri, P.; Wangsomboondee, T.; Rojsitthisak, P.; Seraypheap, K. Effect of molecular weights of chitosan coating on postharvest quality and physicochemical characteristics of mango fruit. LWT-Food Sci. Technol. 2016, 73, 28–36. [Google Scholar] [CrossRef]
- Galus, S. Development of Edible Coatings in the Preservation of Fruits and Vegetables. In Polymers for Agri-Food Applications; Gutierrez, T., Ed.; Springer: Cham, Switzerland, 2019; pp. 377–390. [Google Scholar]
- Yifan, Y.; Jioyu, R.; Chenxi, L.; Renqiang, Y.; Liqin, G. Fabrication of l-menthol contained edible self-healing coating based on guest-host interaction. Colloids Surf. A Physicochem. Eng. Asp. 2020, 597, 124743. [Google Scholar]
- Fu, B.; Mei, S.; Su, X.; Chen, H.; Zhu, J.; Zheng, Z.; Lin, H.; Dai, C.; Luque, R.; Yang, D.P. Integrating waste fish scale-derived gelatin and chitosan into edible nanocomposite film for perishable fruits. Int. J. Biol. Macromol. 2021, 191, 1164–1174. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Yang, J.; Duan, A.; Li, X. Pectin/sodium alginate/xanthan gum edible composite films as the fresh-cut package. Int. J. Biol. Macromol. 2021, 181, 1003–1009. [Google Scholar] [CrossRef]
- Xu, T.; Gao, C.C.; Feng, X.; Yang, Y.; Shen, X.; Tang, X. Structure, physical and antioxidant properties of chitosan-gum arabic edible films incorporated with cinnamon essential oil. Macromolecules 2019, 134, 230–236. [Google Scholar] [CrossRef]
- De Oliveira, K.A.R.; Fernandez, K.F.D.; de Souza, E.L. Current Advances on the Development and Application of Probiotic-Loaded Edible Films and Coatings for the Bioprotection of Fresh and Minimally Processed Fruits and vegetables. Foods 2021, 10, 2207. [Google Scholar] [CrossRef] [PubMed]
- Dhanapal, A.; Sasikala, P.; Rajamani, L.; Kavitha, V.; Yazhini, G.; Banu, M.S. Edible films from polysaccharides. Food Sci. Qual. Manag. 2012, 3, 1–10. [Google Scholar]
- Jafarzadeh, S.; Nafchi, A.M.; Salehabadi, A.; Oladzad-Abbasabadi, N.; Jafari, S.M. Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables. Adv. Colloid Interface Sci. 2021, 291, 102405. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, A.; Abrunhosa, L.; Pastrana, L.M.; Cerqueira, M.A. Edible Films and Coatings as Carriers of Living Microorganisms: A New Strategy Towards Biopreservation and Healthier Foods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 594–614. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, T.; Teramoto, Y.; Katiyar, V. Influence of nontoxic magnetic cellulose nanofibers on chitosan based edible nanocoating: A candidate for improved mechanical, thermal, optical, and texture properties. J. Agric. Food Chem. 2019, 67, 4289–4299. [Google Scholar] [CrossRef]
- Leandro, D.S.P.; Bitencourt, T.A.; Saltoratto, A.L.; Seleghim, M.H.; Assis, O.B. Antifungal activity of chitosan and its quaternized derivative in gel form and as an edible coating on cut cherry tomatoes. J. Agric. Sci. 2018, 63, 271–285. [Google Scholar]
- Zhang, L.; Chen, F.; Lai, S.; Wang, H.; Yang, H. Impact of soybean protein isolate-chitosan edible coating on the softening of apricot fruit during storage. LWT 2018, 96, 604–611. [Google Scholar] [CrossRef]
- Jiao, W.; Shu, C.; Li, X.; Cao, J.; Fan, X.; Jiang, W. Preparation of a chitosan-chlorogenic acid conjugate and its application as edible coating in postharvest preservation of peach fruit. Postharvest Biol. Technol. 2019, 154, 129–136. [Google Scholar] [CrossRef]
- Mannozzi, C.; Tylewicz, U.; Chinnici, F.; Siroli, L.; Rocculi, P.; Rosa, M.D.; Romani, S. Effects of chitosan based coatings enriched with procyanidin by-product on quality of fresh blueberries during storage. Food Chem. 2018, 251, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wu, Q.; Picha, D.H.; Ferguson, M.H.; Ndukwe, I.E.; Azadi, P. Comparative performance of bio-based coatings formulated with cellulose, chitin, and chitosan nanomaterials suitable for fruit preservation. Carbohydr. Polym. 2021, 259, 117764. [Google Scholar] [CrossRef]
- Wong, C.H.; Mak, I.E.K.; Li, D. Bilayer edible coating with stabilized Lactobacillus plantarum 299v improved the shelf life and safety quality of fresh-cut apple slices. Food Packag. Shelf Life 2021, 30, 100746. [Google Scholar] [CrossRef]
- Bersaneti, G.T.; Prudencio, S.H.; Mali, S.; Celligoi, M.A.P.C. Assessment of a new edible film biodegradable based on starch-nystose to increase quality and the shelf life of blackberries. Food Biosci. 2021, 42, 101173. [Google Scholar] [CrossRef]
- Mahajan, P.V.; Caleb, O.J.; Singh, Z.; Watkins, C.B.; Geyer, M. Postharvest treatments of fresh produce. Phil. Trans. R. Soc. A 2014, 372, 20130309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zillo, R.R.; da Silva, P.P.M.; de Oliveira, J.; da Glória, E.M.; Spoto, M.H.F. Carboxymethylcellulose coating associated with essential oil can increase papaya shelf life. Sci. Hortic. 2018, 239, 70–77. [Google Scholar] [CrossRef]
- Mendy, T.K.; Misran, A.; Mahmud, T.M.M.; Ismail, S.I. Application of Aloe vera coating delays ripening and extend the shelf life of papaya fruit. Sci. Hortic. 2019, 246, 769–776. [Google Scholar] [CrossRef]
- Jing-Fan, X.; Zhang, B.; Yan, H.; Tao Feng, J.; Qing Ma, Z.; Zhang, X. Effect of lotus leaf extract incorporated composite coating on the postharvest quality of fresh goji (Lycium barbarum L.) fruit. Postharvest Biol. Technol. 2019, 148, 132–140. [Google Scholar]
- Parafati, L.; Vitale, A.; Restuccia, C.; Cirvilleri, G. The effect of locust bean gum (LBG)-based edible coatings carrying biocontrol yeasts against Penicillium digitatum and Penicillium italicum causal agents of postharvest decay of Mandarin fruit. Food Microbiol. 2016, 58, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Saberi, B.; Golding, J.B.; Marques, J.R.; Pristijono, P.; Chockchaisawasdee, S.; Scarlett, C.J.; Stathopoulos, C.E. Application of biocomposite edible coatings based on pea starch and guar gum on quality, storability and shelf life of ‘Valencia’ oranges. Postharvest Biol. Technol. 2018, 137, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Rasouli, M.; Saba, M.K.; Ramezanian, A. Inhibitory effect of salicylic acid and Aloe vera gel edible coating on microbial load and chilling injury of orange fruit. Sci. Hortic. 2019, 247, 27–34. [Google Scholar] [CrossRef]
- Dong, F.; Wang, X. Guar gum and ginseng extract coatings maintain the quality of sweet cherry. LWT-Food Sci. Technol. 2018, 89, 117–122. [Google Scholar] [CrossRef]
- Khaliq, G.; Mohamed, M.T.M.; Ding, P.; Ghazali, H.M.; Ali, A. Influence of gum Arabic coating enriched with calcium chloride on physiological, biochemical and quality responses of mango (Mangifera indica L.) fruit stored under low temperature stress. Postharvest Biol. Technol. 2016, 111, 362–369. [Google Scholar] [CrossRef]
- Chiabrando, V.; Giacalone, G. Effects of alginate edible coating on quality and antioxidant properties in sweet cherry during postharvest storage. Int. J. Food Sci. Nutr. 2015, 27, 45–52. [Google Scholar]
- Dhital, R.; Joshi, P.; Mora, N.B.; Umagiliyage, A.; Chai, T.; Kohli, P.; Choudhary, R. Integrity of edible nano-coatings and its effects on quality of strawberries subjected to simulated in-transit vibrations. Food Sci. Technol. 2017, 80, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Riaz, A.; Aadil, R.M.; Amoussa, A.M.O.; Bashari, M.; Abid, M.; Hashim, M.M. Application of chitosan-based apple peel polyphenols edible coating on the preservation of strawberry (Fragaria ananassa cv Hongyan) fruit. J. Food Process. Preserv. 2020, 45, e15018. [Google Scholar] [CrossRef]
- Abebe, Z.; Tola, Y.B.; Mohammed, A. Effects of edible coating materials and stages of maturity at harvest on storage life and quality of tomato (Lycopersicon Esculentum Mill.) fruits. Afr. J. Agric. Res. 2017, 12, 550–565. [Google Scholar]
- Won, J.S.; Lee, S.J.; Park, H.H.; Song, K.B.; Min, S.C. Edible coating using a chitosan-based colloid incorporating grapefruit seed extract for cherry tomato safety and preservation. J. Food Sci. 2018, 83, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Salas-Méndez, E.D.J.; Vicente, A.; Pinheiro, A.C.; Ballesteros, L.F.; Silva, P.; Rodríguez-García, R.; Hernández-Castillo, F.D.; Díaz-Jiménez, M.L.V.; Flores-López, M.L.; Villarreal-Quintanilla, J.A.; et al. Application of edible nanolaminate coatings with antimicrobial extract of Flourensia cernua to extend the shelf life of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 2019, 150, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Sanuja, S.; Agalya, A.; Umapathy, M.J. Synthesis and characterization of zinc oxide-neem oil-chitosan bionanocomposite for food packaging application. Int. J. Biol. Macromol. 2015, 74, 76–84. [Google Scholar] [CrossRef]
- Alvarez, M.V.; Ponce, A.G.; Moreira, M.D.R. Antimicrobial efficiency of chitosan coating enriched with bioactive compounds to improve the safety of fresh-cut broccoli. LWT-Food Sci. Technol. 2019, 50, 78–87. [Google Scholar] [CrossRef]
- Ghosh, T.; Nakano, K.; Katiyar, V. Curcumin doped functionalized cellulose nanofibers based edible chitosan coating on kiwifruits. Int. J. Biol. Macromol. 2021, 184, 936–945. [Google Scholar] [CrossRef] [PubMed]
- Riva, S.C.; Opara, U.O.; Fawole, O.A. Recent developments on postharvest application of edible coatings on stone fruit: A review. Sci. Hortic. 2020, 262, 109074. [Google Scholar] [CrossRef]
- Leena, M.M.; Yoha, K.S.; Moses, J.A.; Anandharamakrishnan, C. Edible coating with resveratrol loaded electrospin zein nanofibers with enhanced bioaccessibility. Food Biosci. 2020, 36, 100669. [Google Scholar] [CrossRef]
- Arnon-Rips, H.; Cohen, Y.; Saidi, L.; Porat, R.; Poverenov, E. Covalent linkage of bioactive volatiles to a polysaccharide support as a potential approach for preparing active edible coatings and delivery systems for food products. Food Chem. 2021, 338, 127822. [Google Scholar] [CrossRef]
- Kumar, P.; Sethi, S.; Sharma, R.R.; Singh, S.; Varghese, E. Improving the shelf life of fresh-cut ‘Royal Delicious’ apple with edible coatings and anti-browning agents. J. Food Sci. Technol. 2018, 55, 3767–3778. [Google Scholar] [CrossRef]
- Salama, E.H.; Aziz, M.S. Optimized alginate and Aloe vera gel edible coating reinforced with nTiO2 for the shelf life extension of tomatoes. Int. J. Biol. Macromol. 2020, 165, 2693–2701. [Google Scholar] [CrossRef]
- Lara, G.; Yakoubi, S.; Villacorta, C.M.; Uemura, K.; Kobayashi, I.; Takahashi, C.; Nakajima, M.; Neves, M.A. Spray technology applications of xanthan gum-based edible coatings for fresh-cut lotus root (Nelumbo nucifera). Food Res. Int. 2020, 137, 109723. [Google Scholar] [CrossRef]
- Alali, A.A.; Awad, M.A.; Al-Qurashi, A.D.; Mohamed, S.A. Postharvest gum Arabic and salicylic acid dipping affect quality and biochemical changes of ‘Grand Nain’ bananas during shelf life. Sci. Hortic. 2018, 237, 51–58. [Google Scholar] [CrossRef]
- Sinha, A.; Gill, P.P.S.; Jawandha, S.K.; Kaur, P.; Grewal, S.K. Chitosan-enriched salicylic acid coatings preserves antioxidant properties and alleviates internal browning of pear fruit under cold storage and supermarket conditions. Postharvest Biol. Technol. 2021, 182, 111721. [Google Scholar] [CrossRef]
- Basiak, E.; Linke, M.; Debeaufort, F.; Lenart, A.; Geyer, M. Dynamic behaviour of starch-based coatings on fruit surfaces. Postharvest Biol. Technol. 2019, 147, 166–173. [Google Scholar] [CrossRef]
- Wani, S.M.; Gull, A.; Ahad, T.; Malik, A.R.; Ganaie, T.A.; Masoodi, F.A.; Gani, A. Effect of gum Arabic, xanthan and carrageenan coatings containing antimicrobial agent on postharvest quality of strawberry: Assessing the physicochemical, enzyme activity and bioactive properties. Int. J. Biol. Macromol. 2021, 183, 2100–2108. [Google Scholar] [CrossRef] [PubMed]
- Muley, A.B.; Singhal, R.S. Extension of postharvest shelf life of strawberries (Fragaria ananassa) using a coating of chitosan-whey protein isolate conjugate. Food Chem. 2020, 329, 127213. [Google Scholar] [CrossRef] [PubMed]
- Alejandra Moreno, M.A.; Vallejo, A.M.; Ballester, A.R.; Zampini, C.; Isla, M.I.; López-Rubio, A.; Fabra, M.J. Antifungal edible coatings containing Argentinian propolis extract and their application in raspberries. Food Hydrocoll. 2020, 107, 105973. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Riahi, Z.; Rhim, J.-W. Antioxidant pectin/pullulan edible coating incorporated with Vitis vinifera grape seed extract for extending the shelf life of peanuts. Postharvest Biol. Technol. 2022, 183, 111740. [Google Scholar] [CrossRef]
- Kumar, N.; Ojha, A.; Upadhyay, A.; Singh, R.; Kumar, S. Effect of active chitosan-pullulan composite edible coating enrich with pomegranate peel extract on the storage quality of green bell pepper. LWT-Food Sci. Technol. 2020, 138, 110435. [Google Scholar] [CrossRef]
- Vilaplana, R.; Guerrero, K.; Guevara, J.; Valencia-Chamorro, S. Chitosan coatings to control soft mold on fresh blackberries (Rubus glaucus Benth.) during postharvest period. Sci. Hortic. 2020, 262, 109049. [Google Scholar] [CrossRef]
- Khodaei, D.; Hamidi-Esfahani, Z. Influence of bioactive edible coatings loaded with Lactobacillus plantarum on physicochemical properties of fresh strawberries. Postharvest Biol. Technol. 2019, 156, 110944. [Google Scholar] [CrossRef]
- Vishwasrao, C.; Ananthanarayan, L. Delayed post-harvest ripening-associated changes in Manilkara zapota L. var. Kalipatti with composite edible coating. J. Sci. Food Agric. 2017, 97, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Passafiume, R.; Gaglio, R.; Sortino, G.; Farina, V. Effect of three different aloe vera gel-based edible coatings on the quality of fresh-cut “Hayward” kiwifruits. Foods 2020, 9, 939. [Google Scholar] [CrossRef]
- Khorram, F.; Ramezanian, A.; Hosseini, S.M.H. Shellac, gelatin and Persian gum as alternative coating for orange fruit. Sci. Hortic. 2017, 225, 22–28. [Google Scholar] [CrossRef]
- Matei, F. Chapter 14-Technical Guide for Fruit Wine Production. In Science and Technology of Fruit Wine Production; Kosseva, M.R., Joshi, V.K., Panesar, P.S., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 663–703. [Google Scholar]
- Guerreiro, A.C.; Gago, C.M.L.; Faleiro, M.L.; Miguel, M.G.C.; Antunes, M.D.C. The effect of alginate-based edible coatings enriched with essential oils constituents on Arbutus unedo L. fresh fruit storage. Postharvest Biol. Technol. 2015, 100, 226–233. [Google Scholar] [CrossRef]
- Oyom, W.; Xu, H.; Liu, Z.; Long, H.; Li, Y.; Zhang, Z.; Bi, Y.; Tahergorabi, R.; Prusky, D. Effects of modified sweet potato starch edible coating incorporated with cumin essential oil on storage quality of ‘early crisp’. LWT 2022, 153, 112475. [Google Scholar] [CrossRef]
- Das, S.; Vishakha, K.; Banerjee, S.; Mondal, S.; Ganguli, A. Sodium alginate-based edible coating containing nanoemulsion of Citrus sinensis essential oil eradicates planktonic and sessile cells of food-borne pathogens and increased quality attributes of tomatoes. Int. J. Biol. Macromol. 2020, 162, 1770–1779. [Google Scholar] [CrossRef]
- Teodosio, A.E.M.M.; Araújo, R.H.C.R.; Santos, B.G.F.L.; Linné, J.A.; da Silva Medeiros, M.L.; Onias, E.A.; de Morais, F.A.; de Melo Silva, S.; de Lima, J.F. Effects of edible coatings of Chlorella sp. containing pomegranate seed oil on quality of Spondias tuberosa fruit during cold storage. Food Chem. 2021, 338, 127916. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A.; Baskaran, R.; Vadivel, V. Citral nanoemulsion incorporated edible coating to extend the shelf life of fresh-cut pineapples. LWT-Food Sci. Technol. 2020, 118, 108851. [Google Scholar] [CrossRef]
- Liu, C.; Jin, T.; Liu, W.; Hao, W.; Yan, L.; Zheng, L. Effects of hydroxyethyl cellulose and sodium alginate edible coating containing asparagus waste extract on postharvest quality of strawberry fruit. LWT-Food Sci. Technol. 2021, 148, 111770. [Google Scholar] [CrossRef]
- Duong, N.T.C.; Uthairatanakij, A.; Laohakunjit, N.; Jitareerat, P.; Kaisangsri, N. An innovative single step of cross-linked alginate-based edible coating for maintaining postharvest quality and reducing chilling injury in rose apple cv. ‘Tabtimchan’ (Syzygium samarangenese). Sci. Hortic. 2022, 292, 110648. [Google Scholar] [CrossRef]
- Yang, G.; Yue, J.; Gong, X.; Qian, B.; Wang, H.; Deng, Y.; Zhao, T. Blueberry leaf extracts incorporated chitosan coatings for preserving postharvest quality of fresh blueberries. Postharvest Biol. Technol. 2014, 92, 46–53. [Google Scholar] [CrossRef]
- Isturiz-Zapata, M.A.; Hernandez-Lopez, M.; Correa-Pacheco, Z.N.; Barrera-Necha, L.L. Quality of cold-stored cucumber as affected by nanostructured coatings of chitosan with cinnamon essential oil and cinnamaldehyde. LWT Food Sci. Technol. 2020, 123, 109089. [Google Scholar] [CrossRef]
- Kou, X.; He, Y.; Li, Y.; Chen, X.; Feng, Y.; Xue, Z. Effect of abscisic acid (ABA) and chitosan/nano-silica/sodium alginate composite film on the color development and quality of postharvest Chinese winter jujube (Zizyphus jujuba Mill. cv. Dongzao). Food Chem. 2019, 270, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Nair, M.S.; Saxena, A.; Kaur, C. Characterization and antifungal activity of pomegranate peel extract and its use in polysaccharide-based edible coatings to extend the shelf life of capsicum (Capsicum annuum L.). Food Bioprocess Technol. 2018, 11, 1317–1327. [Google Scholar] [CrossRef]
Film/Coating Matrix (Coating Method) | Functional Compound (Role) | Coated Fruits or Vegetables | Advantages of Coating Technology and Main Results of Study | Reference |
---|---|---|---|---|
Polysaccharides and their derivatives-based matrix (starch and its derivatives, cellulose and its derivatives, alginate, pectin, chitosan, and gums) | ||||
Methyl cellulose (MC) (Dip coating) | Palm Oil (PO) (anti-browning agents, antioxidants, and antimicrobials) | Sapota fruits (a large berry) | Decrease PO, PPO, PME activity and discoloration; Increase anti-browning effect and retention of ascorbic acid; Delay the loss of total phenolic content; Extend the shelf life by three days | [73] |
Methyl cellulose (MC) (Dip coating) | Curcumin; Limonene (antioxidants, antimicrobials) | ‘Chandler’ strawberries | Decrease fungal growth; Increase TPC, TA | [49] |
Carboxymethyl cellulose (CMC) (Dip coating) | Aloe vera (anti-browning agents, antioxidants, and antimicrobials) | Apple slices | Decrease PO and PPO activity Lower microbial load; Better firmness; Anti browning effect. | [60] |
Carboxymethyl cellulose (CMC) (Coating) | Lactobacillus plantarum (antimicrobials, probiotic) | Strawberries | Reduce the growth rate of molds and yeasts on the surface of strawberries; Improve functionality (as a probiotic) | [72] |
Hydroxyethyl cellulose and sodium alginate (Dip coating) | Asparagus waste extract (antioxidants, antimicrobials) | Strawberries | Maintain the TFC and TPC, delay color change and weight loss | [82] |
Hydroxypropyl methyl cellulose (Spraying) | Aloe vera gel and lemon essential oil (antioxidants, antimicrobials) | Hayward kiwis | Reduce weight loss and browning, maintain higher firmness, brightness, greenness, and TSS Reduce the microbial load | [74] |
Chitosan solutions with different molecular weight (Dip coating) | Chitosan (antimicrobials) | ’Nam Dok Mai’ mango fruits | Delay ripening; Increase TA, Fruit firmness, Reduction of weight loss, ethylene production, and respiration rate; Maintain the ascorbic acid and AOC (the case of chitosan with high molecular weight) | [22] |
Chitosan (Dip coating) | 8% and 12% blueberry (Vaccinium spp.) fruit and leaf extracts (BLE) (antioxidants, antimicrobials) | Blueberries (Vaccinium spp.) | Decrease microbial growth and decay rate; Increase shelf life | [84] |
Chitosan (Dip coating) | Acetic or Lactic acid (antimicrobials) | Blackberry | Antifungal effect over Mucor racemosus | [71] |
Chitosan (Coating) | Vanillin and trans-cinnamaldehyde and mandarin extract (antioxidants, antimicrobials) | Fresh-cut melon | Reduce microbial load; Increase storage life; Maintain sensorial attributes | [59] |
Chitosan-pullulan (Dip coating) | Pomegranate peel extract (anti-browning agents, antioxidants, and antimicrobials) | Green bell pepper | Decrease weight loss and color browning; Maintain firmness, TPC, TFC, AOC, and sensorial attributes | [70] |
Chitosan and cellulose nanofibers (Dip coating) | Iron particles, curcumin (antimicrobials) | Kiwifruits | Reduce weight loss and firmness and reduce respiration rate | [56] |
Chitosan and glycerol (Coating) | Whey protein isolate (antioxidants, antimicrobials) | Strawberries | Decrease weight loss, pH, color modifications, TA, TPC, and DPPH; Extend shelf life with 60% | [67] |
Chitosan, Alginate (Coating) | Flourensia cernua ethanol extract (antimicrobials) | Tomatoes | Decrease weight loss; Decrease microbial growth and ethylene production; Maintain firmness and color | [53] |
Chitin, cellulose, and chitosan (Coating) | Chitosan (antimicrobials) | Strawberries | Decrease microbial growth, decrease color changes and weight loss | [36] |
Chitosan (Coating) | Salicylic acid (antimicrobials) | Pears | Decrease PPO activity; Stalled the development of internal browning throughout the storage period | [64] |
Chitosan (0.05%) (Coating) | Cinnamon essential oil (0.1%), trans-cinnamaldehyde (0.05%) (antimicrobials) | Cucumber | Antifungal activity (Fusarium solani) | [85] |
Chitosan (1%) (Coating) | Nano-silica (0.05%) (anti-browning agents, antioxidants, antimicrobials) | Decrease in PPO activity and browning; Reduced weight loss and TA | [86] | |
Chitosan and alginate (Coating) | Pomegranate peel extract (PPE) (anti-browning agents, antioxidants, antimicrobials) | Capsicum | Decrease loss in weight, firmness, color, and ascorbic acid content | [87] |
Sodium alginate (Dip coating) | Eugenol (Eug) and Citral (Cit) (anti-browning agents, antioxidants, antimicrobials) | Arbutus unedo fruit (red berry) | Decrease microbial growth and weight loss; Improve physicochemical and biochemical parameters: color, firmness, AOC, and sensorial attributes | [77] |
Sodium alginate (Dip coating) | Essential Oil extracted from sweet orange (antimicrobials) | Tomatoes | Decrease weight loss up to 3-fold lower than uncoated samples; Decrease bacterial growth; Increase the firmness with up to 33% | [79] |
Sodium alginate (Dip coating) | Citral nano-emulsions (anti-browning agents, antioxidants, antimicrobials) | Pineapples | Better color retention, low respiration rate, reduce microbial growth | [81] |
Sodium alginate (Dip coating) | CaCl2 (antioxidants, antimicrobials) | Rose apple | Significantly reduce the respiration rate and weight loss; Improve total phenolic content and antioxidant activity | [83] |
Sodium alginate, konjae glucomannan and starch (Dip coating) | lotus leaf extract (antioxidants, antimicrobials) | Goji berries (Lycium barbarum L.) | Reduce decay rate and weight loss; Maintain AA, TA, TSS; | [42] |
Modified starch from sweet potatoes (Dip coating) | Cumin essential oil (antimicrobials) | Pears | Suppress the respiration rate and delay the weight loss and maintain flesh firmness | [78] |
Starch and nystose (Dip coating) | Nystose (antioxidants, antimicrobials) | Blackberries | Positive effects in delaying the increase in pH, maintaining the firmness and anthocyanin content | [38] |
Arabic gum (Dip coating) | Salicylic acid (anti-browning agents, antioxidants) | ‘Grand Nain’ bananas | Decrease weight loss; Improve firmness and peel browning index; Maintain antioxidant activity | [63] |
Arabic gum, xanthan gum (Coating) | Lemon grass essential oil 1% w/v and carrageenan (antioxidants, antimicrobials) | Strawberries | Decrease weight loss; Increase AA, AOC, and firmness; Maintain TANC and TPC | [66] |
Protein-based matrix (vegetable proteins as: corn zein, wheat protein, soy protein, and animal proteins as keratin, collagen, gelatin, casein, fish myofibril protein, egg white protein, protein whey) | ||||
Gelatin (5, 6, and 7%) (Dip coating) | Persian gum (3.5, 4, and 4.5%) and 9, 10, and 11% Shellac (antioxidants) | Oranges | Decrease of weight loss; Decrease TA; Increase TPC and AOC; Maintain fruit firmness and glossiness | [75] |
Gelatin (Spraying) | Ethanolic Extract of Propolis (PEE) and zein nanocapsules (antimicrobials) | Raspberries (Rubus idaeus L.) | Antifungal activity against P. digitatum and B. cinerea strains; Increase shelf life | [68] |
Nano-structured edible coating based on zein (Controlled release coating system) | Resveratrol (anti-browning agents, antioxidants) | Apple slices | Improve color retention; Decrease moisture loss | [58] |
Pectin and pullulan (Coating) | Vitis vinifera grape seed extract (antioxidants, antimicrobials) | Peanuts | Reduced lipid oxidation and antibacterial activity against E. coli and L. monocytogenes | [69] |
Mixed formulations or heterogeneous coatings | ||||
Aloe vera-based gel (Dip coating) | Papaya fruits | Decrease microbial growth rate; Increase TSS, TA, AA, TCAC, TPC, and TFC; Extend the shelf life by 25%. | [41] | |
Starch and starch-whey protein coatings (Coating) | Plums | Increase the total resistance in the water vapor pathway | [65] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miteluț, A.C.; Popa, E.E.; Drăghici, M.C.; Popescu, P.A.; Popa, V.I.; Bujor, O.-C.; Ion, V.A.; Popa, M.E. Latest Developments in Edible Coatings on Minimally Processed Fruits and Vegetables: A Review. Foods 2021, 10, 2821. https://doi.org/10.3390/foods10112821
Miteluț AC, Popa EE, Drăghici MC, Popescu PA, Popa VI, Bujor O-C, Ion VA, Popa ME. Latest Developments in Edible Coatings on Minimally Processed Fruits and Vegetables: A Review. Foods. 2021; 10(11):2821. https://doi.org/10.3390/foods10112821
Chicago/Turabian StyleMiteluț, Amalia Carmen, Elisabeta Elena Popa, Mihaela Cristina Drăghici, Paul Alexandru Popescu, Vlad Ioan Popa, Oana-Crina Bujor, Violeta Alexandra Ion, and Mona Elena Popa. 2021. "Latest Developments in Edible Coatings on Minimally Processed Fruits and Vegetables: A Review" Foods 10, no. 11: 2821. https://doi.org/10.3390/foods10112821
APA StyleMiteluț, A. C., Popa, E. E., Drăghici, M. C., Popescu, P. A., Popa, V. I., Bujor, O.-C., Ion, V. A., & Popa, M. E. (2021). Latest Developments in Edible Coatings on Minimally Processed Fruits and Vegetables: A Review. Foods, 10(11), 2821. https://doi.org/10.3390/foods10112821